Geologic Map and Map Database of Western Sonoma, Northernmost Marin, and Southernmost Mendocino Counties, California

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Map and Map Database of Western Sonoma, Northernmost Marin, and Southernmost Mendocino Counties, California Geologic Map and Map Database of Western Sonoma, Northernmost Marin, and Southernmost Mendocino Counties, California By M.C. Blake, Jr., R.W. Graymer, and R.E. Stamski Pamphlet to accompany MISCELLANEOUS FIELD STUDIES MAP MF-2402 Version 1.0 2002 U.S. Department of the Interior U.S. Geological Survey Contents Geologic explanation and acknowledgements 1 Introduction 1 Stratigraphy 1 Mesozoic and Tertiary terrane complexes 1 Description of Terranes 2 Tertiary Stratigraphy 10 Quaternary Surficial Deposits 11 Paleontology 11 Radiometric Ages 11 Structure 12 Structural History 12 Description of Map Units 15 Acknowledgements 23 Digital publication and database description 24 Introduction 24 For those who don’t use digital geologic map databases 24 MF-2402 Digital Contents 24 PostScript plotfile package 25 PDF plotfile package 25 Digital database package 25 TAR files 26 PostScript plotfiles 27 PDF plotfiles 27 Obtaining the Digital Database and Plotfile Packages 28 To obtain TAR files of database or plotfile packages from the USGS web pages 28 To obtain TAR files of database or plotfile packages by ftp 28 Obtaining plots from a commercial vendor 28 Obtaining plots from USGS Map On Demand Services 28 Revisions and version numbers 28 Digital database format 29 Converting ARC export files 29 Digital compilation 29 Base maps 29 Faults and landslides 29 Spatial resolution 29 Database specifics 30 Lines 30 Areas 32 Points 33 References Cited 35 ii Geologic Explanation and Acknowledgements Introduction The map in this report is modified from and supercedes USGS Open-File Report 71-44 (Blake and This report contains a new geologic map at 1:100,000 others, 1971). Two factors led to the decision to remap scale and an associated set of geologic map databases (Arc- the area. First, there has been almost 30 years of new Info coverages) containing information at a resolution geologic information accumulated for the map area. Two associated with 1:62,500 scale. The map and map areas within the map, in particular, have received much database, along with this interprative text, are based on the attention since the earlier work: Cazadero/Ward Creek in integration of previous work with new geologic mapping the central part of the map, where the medium- to high- and field checking by the authors (see Sources of Data grade blueschist rocks and minerals have been studied in index map on the map sheet or the Arc-Info coverage wso- detail (Liou and Maruyama, 1987; Maruyama and Liou, so and the textfile wso-so.txt). The descriptive text 1988, 1989; Erickson, 1995; Wakabayashi, 1992a), and (below) contains new ideas about the geologic structures the Geysers geothermal field in the northeast corner of the in the area, including the active Hayward-Rodgers Creek- map, which was carefully studied in relation to the Healdsburg Fault system and other active faults in the production of geothermal steam for generating electricity area, as well as the geologic units and their relations, (McLaughlin, 1978, 1981; McLaughlin and Ohlin, 1984; including the origin of the Franciscan Complex mélange Eberhart-Phillips and Oppenheimer, 1984; Oppenheimer, and the Coast Range ophiolite. 1986; Dalrymple, 1992; Hulen and Nielson, 1993; Together, the map (or map database) and unit Stanley and others, 1998). Second, tectonic theories for descriptions in this report describe the composition and the California Coast Ranges have changed since the distribution of geologic materials and the orientation and publication of the earlier map, and the new tectonic distribution of geologic structures within the study area at models have a strong influence on the depiction of regional scale. Such regional geologic information is through-going active faults, volcanic fields, folds, and important for analysis of earthquake shaking, landslide other mapped features. susceptibility, engineering materials properties, mineral The digital nature of the geologic map resources and hazards, and groundwater resources and information available in this publication is important for hazards. It is also vital for answering questions about the three reasons. First, the geologic map data can be geologic history and development of the California Coast digitally combined with other map datasets (topography, Ranges. groundwater information, landslide distribution) for rapid The information, however, is not sufficiently and complex regional analysis of geologic resources and detailed for site-specific evaluations. Those seeking hazards. Second, digital maps are much more easily detailed information of that kind should consult the more updated than traditional printed maps. Third, digital detailed earthquake-hazards maps produced by the publication provides an opportunity for regional planners, California Division of Mines and Geology or contact a local, state, and federal agencies, teachers, consultants, and licensed geologist or engineering geologist. others who are interested in geologic data to have the new The map area includes about two-thirds of information long before a traditional paper map could be Sonoma County and a small part of Marin County west published. of longitude 122°45’W and north of latitude 38°15’N, plus a tiny part of southern Mendocino County along the north Stratigraphy edge of the map. This area includes the Pacific coastline in the western part, low rolling hills in the southern part, Mesozoic and Tertiary terrane complexes rugged mountainous terrain in the northern and central parts, and the broad flatlands of Santa Rosa and Alexander The bedrock units in the San Francisco Bay region are Valleys in the eastern part. The northern and central made up of two components: amalgamated, highly mountains are largely uninhabited, but the eastern valleys deformed tectonostratigraphic terranes that are displaced, at are undergoing rapid development. least in part, hundreds to thousands of kilometers from 1 their position of origin (allocthonous or relationship to the older Fransiscan complex rocks and the parautochthonous); and generally younger, less deformed Great Valley complex is not well understood. Because rocks that overlie the amalgamated terranes and are much of the Franciscan Complex was accreted beneath the roughly in their original location (except for transport Great Valley complex, the contact between the two along the San Andreas fault system). In most of the Mesozoic complexes is everywhere faulted (Bailey and region, the older set of rocks is Mesozoic and the younger others, 1964), and the Franciscan Complex presumably is Tertiary, but in the map area the amalgamated terranes underlies the entire San Francisco Bay area east of the San include some rocks as young as Miocene. The young age Andreas Fault. Subsequent deformation, described below, of rocks within these displaced terranes reflects additional has obliterated the original subduction contact almost complexity in the geologic and structural history of the everywhere. map area that is not found in any other part of the region. A third complex crops out in the map area only west of the San Andreas Fault Zone at Bodega Head, The amalgamated terranes can be grouped into which is composed of granitic rocks of the Salinian three related rock complexes. One of these, the Great complex. This is the northernmost outcrop of the Valley complex, is made up of the Jurassic Coast Range Salinian complex, which extends southwards between the ophiolite, which in the map area consists mostly of San Andreas and Sur-Nacimiento Fault Zones about 500 serpentinite, gabbro, diabase, basalt, and keratophyre km to the Big Pine Fault east of Santa Barbara (Ross, (altered silicic volcanic rocks), and the Jurassic and 1972). The complex in the San Francisco Bay region is Cretaceous Great Valley sequence, composed of sandstone, made up of Late Cretaceous (81.6-91.6 Ma, Curtis and conglomerate, and shale. Although the sedimentary rocks others, 1958; 80-117 Ma, Kistler and Champion, 1991) and ophiolite have been tectonically separated almost granitic rocks intruded into high-grade metamorphic rocks, everywhere in the map area, the Great Valley sequence was Late Jurassic (161 Ma, James and others, 1993) gabbroic originally deposited on the ophiolite. This depositional rocks, and Late Cretaceous (Campanian to Maastrictian) relationship is extrapolated from contacts exposed outside sedimentary rocks (Branner and others, 1909; Hall and the map area: in the Berkeley Hills (Jones and Curtis, others, 1959; Clark, 1981; Brabb and others, 2000). 1991; Graymer and others, 1996) and Solano County in Both the Franciscan and the Great Valley the San Francisco Bay region, and elsewhere in California. complexes have been further divided into a number of This complex represents the accreted and deformed fault-bounded tectonostratigraphic terranes (Blake and remnants of arc-related Jurassic oceanic crust with a thick others, 1982, 1984). When the terranes were first defined, sequence of overlying turbidites, at least in part related to the prevailing methodology was to identify separate the North American forearc (parautochthonous). terranes if there was any doubt about stratigraphic linkage The second set of amalgamated terranes is the between structurally separated entities. As a result of Franciscan Complex. These terranes are composed of further research, many additional data, in particular new weakly to strongly metamorphosed graywacke, argillite, fossil localities, are known and the distribution and nature basalt, chert, limestone, and other rocks. The rocks of
Recommended publications
  • Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, 1973
    Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, 1973 GEOLOGICAL SURVEY BULLETIN 1395-A NOV1419/5 5 81 Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, 1973 By GEORGE V. COHEE and WILNA R. WRIGHT CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1395-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1975 66 01-141-00 oM UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Cohee, George Vincent, 1907 Changes in stratigraphic nomenclatures by the U. S. Geological Survey, 1973. (Contributions to stratigraphy) (Geological Survey bulletin; 1395-A) Supt. of Docs, no.: I 19.3:1395-A 1. Geology, Stratigraphic Nomenclature United States. I. Wright, Wilna B., joint author. II. Title. III. Series. IV. Series: United States. Geological Survey. Bulletin; 1395-A. QE75.B9 no. 1395-A [QE645] 557.3'08s 74-31466 [551.7'001'4] For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, B.C. 20402 Price 95 cents (paper cover) Stock Number 2401-02593 CONTENTS Page Listing of nomenclatural changes ______ _ Al Beulah Limestone and Hardscrabble Limestone (Mississippian) of Colorado abandoned, by Glenn R. Scott _________________ 48 New and revised stratigraphic names in the western Sacramento Valley, Calif., by John D. Sims and Andre M. Sarna-Wojcicki __ 50 Proposal of the name Orangeburg Group for outcropping beds of Eocene age in Orangeburg County and vicinity, South Carolina, by George E. Siple and William K. Pooser _________________ 55 Abandonment of the term Beattyville Shale Member (of the Lee Formation), by Gordon W.
    [Show full text]
  • 3.12 Paleontological Resources
    3.12 PALEONTOLOGICAL RESOURCES 3.12 PALEONTOLOGICAL RESOURCES 3.12.1 Definitions Paleontological resources—or fossils—are the remains of ancient plants and animals that can provide scientifically significant information about the history of life on earth. Paleontological “sensitivity” is defined as the potential for a geologic unit to produce scientifically significant fossils. This sensitivity is determined by rock type, history of the geologic unit in producing significant fossils, and fossil localities that are recorded from that unit. Paleontological sensitivity is assigned based on fossil data collected from the entire geologic unit, not just at a specific site. Paleontological sensitivity ratings are described as follows: High Sensitivity. Indicates fossils are currently observed on site, localities are recorded within the study area, and/or the unit has a history of producing numerous significant fossil remains. Moderate Sensitivity. Fossils within the unit are generally not unique, or are so poorly preserved as to have only moderate scientific significance. Low Sensitivity. Indicates significant fossils are not likely to be found because of a random fossil distribution pattern, extreme youth of the rock unit, and/or the method of rock formation, such as alteration by heat and pressure. Marginal Sensitivity. Indicates the limited probability of the geologic unit composed of either pyroclastic or metasedimentary rocks conducive to the existence and/or preservation of fossils. Zero Sensitivity. Origin of the geologic unit renders it not conducive to the existence of organisms and/or preservation of fossils, such as high‐grade metamorphic rocks, intrusive igneous rocks, and most volcanic rocks. Indeterminate Sensitivity. Unknown or undetermined sensitivity indicates that the geologic unit has not been sufficiently studied, or lacks good exposures to warrant a definitive rating.
    [Show full text]
  • Geology and Paleontology of the Late Miocene Wilson Grove Formation at Bloomfield Quarry, Sonoma County, California
    Geology and Paleontology of the Late Miocene Wilson Grove Formation at Bloomfield Quarry, Sonoma County, California 2 cm 2 cm Scientific Investigations Report 2019–5021 U.S. Department of the Interior U.S. Geological Survey COVER. Photographs of fragments of a walrus (Gomphotaria pugnax Barnes and Raschke, 1991) mandible from the basal Wilson Grove Formation exposed in Bloomfield Quarry, just north of the town of Bloomfield in Sonoma County, California (see plate 8 for more details). The walrus fauna at Bloomfield Quarry is the most diverse assemblage of walrus yet reported worldwide from a single locality. cm, centimeter. (Photographs by Robert Boessenecker, College of Charleston.) Geology and Paleontology of the Late Miocene Wilson Grove Formation at Bloomfield Quarry, Sonoma County, California By Charles L. Powell II, Robert W. Boessenecker, N. Adam Smith, Robert J. Fleck, Sandra J. Carlson, James R. Allen, Douglas J. Long, Andrei M. Sarna-Wojcicki, and Raj B. Guruswami-Naidu Scientific Investigations Report 2019–5021 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2019 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Geologic Map and Map Database of Western Sonoma, Northernmost Marin, and Southernmost Mendocino Counties, California
    Geologic Map and Map Database of Western Sonoma, Northernmost Marin, and Southernmost Mendocino Counties, California By M.C. Blake, Jr., R.W. Graymer, and R.E. Stamski Pamphlet to accompany MISCELLANEOUS FIELD STUDIES MAP MF-2402 Version 1.0 2002 U.S. Department of the Interior U.S. Geological Survey Contents Geologic explanation and acknowledgements 1 Introduction 1 Stratigraphy 1 Mesozoic and Tertiary terrane complexes 1 Description of Terranes 2 Tertiary Stratigraphy 10 Quaternary Surficial Deposits 11 Paleontology 11 Radiometric Ages 11 Structure 12 Structural History 12 Description of Map Units 15 Acknowledgements 23 Digital publication and database description 24 Introduction 24 For those who don’t use digital geologic map databases 24 MF-2402 Digital Contents 24 PostScript plotfile package 25 PDF plotfile package 25 Digital database package 25 TAR files 26 PostScript plotfiles 27 PDF plotfiles 27 Obtaining the Digital Database and Plotfile Packages 28 To obtain TAR files of database or plotfile packages from the USGS web pages 28 To obtain TAR files of database or plotfile packages by ftp 28 Obtaining plots from a commercial vendor 28 Obtaining plots from USGS Map On Demand Services 28 Revisions and version numbers 28 Digital database format 29 Converting ARC export files 29 Digital compilation 29 Base maps 29 Faults and landslides 29 Spatial resolution 29 Database specifics 30 Lines 30 Areas 32 Points 33 References Cited 35 ii Geologic Explanation and Acknowledgements Introduction The map in this report is modified from and supercedes USGS Open-File Report 71-44 (Blake and This report contains a new geologic map at 1:100,000 others, 1971).
    [Show full text]
  • 3.12 Paleontological Resources
    3.12 PALEONTOLOGICAL RESOURCES 3.12 PALEONTOLOGICAL RESOURCES 3.12.1 Definitions Paleontological resources—or fossils—are the remains of ancient plants and animals that can provide scientifically significant information about the history of life on earth. Paleontological “sensitivity” is defined as the potential for a geologic unit to produce scientifically significant fossils. This sensitivity is determined by rock type, history of the geologic unit in producing significant fossils, and fossil localities that are recorded from that unit. Paleontological sensitivity is assigned based on fossil data collected from the entire geologic unit, not just at a specific site. Paleontological sensitivity ratings are described as follows: • High Sensitivity. Indicates fossils are currently observed on site, localities are recorded within the study area, and/or the unit has a history of producing numerous significant fossil remains. • Moderate Sensitivity. Fossils within the unit are generally not unique, or are so poorly preserved as to have only moderate scientific significance. • Low Sensitivity. Indicates significant fossils are not likely to be found because of a random fossil distribution pattern, extreme youth of the rock unit, and/or the method of rock formation, such as alteration by heat and pressure. • Marginal Sensitivity. Indicates the limited probability of the geologic unit composed of either pyroclastic or metasedimentary rocks conducive to the existence and/or preservation of fossils. • Zero Sensitivity. Origin of the geologic unit renders it not conducive to the existence of organisms and/or preservation of fossils, such as high-grade metamorphic rocks, intrusive igneous rocks, and most volcanic rocks. • Indeterminate Sensitivity. Unknown or undetermined sensitivity indicates that the geologic unit has not been sufficiently studied, or lacks good exposures to warrant a definitive rating.
    [Show full text]
  • Santa Rosa Geologic
    U.S. DEPARTMENT OF THE INTERIOR Open-File Report 2008-1009 U.S. GEOLOGICAL SURVEY Sheet 1 of 3 DESCRIPTION OF MAP UNITS Pamphlet accompanies map 122°37ʹ30ʹʹ 122°45ʹ 38°30 38°30ʹ Tsd Tsd Tst Tst Tgp A' Tsb? 67 Tst bls SURFICIAL DEPOSITS Qoa Tsb Tsb bls Qt Qt 14 sc D 1 fcm fcc fcm Qal U Tst Tgp B'',C'' af Artificial Fill Diatomite and diatomaceous mudstone–The diatom flora in these Contact–Dashed where approximately located; dotted where concealed; 2 Qls Tpd af QTg Qhc 20 Qls Tsb 3 2 25 Jos Tst strata (fossil locality 4) suggest a shallow, eutrophic, neutral to queried where uncertain Tst Tsb Alluvium, undivided (Holocene) Tsb Tsb Qal 30 Qal Qls Tsb Qls Qha slightly alkalic, stagnant lacustrine setting (S. Staratt, written 2 Qhf D? Tsb 54 commun. 2006) Fault–Dashed where approximately located or inferred; dotted where D QTg Qls fcm Tsb 58 fcm U? fcm U U Qt Qhb Basin deposits (Holocene)–Mapped locally, generally includes local silty concealed; queried where uncertain 2 4 Jos Qls 2 Qhf Qls D Qls to muddy alluvial and lacustrine deposits accumulated in low areas Tplg Lignite and lignitic mudstone Qls Tsb Tsb Qal 5 fcm where water is ponded U 6 D Normal fault–Showing geometry of fault plane and sense of slip. Bar and 3 Qal Qls 60 57 Tp Tst Jos Tpwd Silicified (petrified) wood ball on down-dropped block; U on upthrown block; D on down-dropped Qhf 1 Qoa? QTg Qhf Tsb? bls bls Qhc Channels (Holocene)–Incise older deposits block where fault dip unknown.
    [Show full text]
  • By K. F. Fox, Jr., R. 3. Fleck, G. H. Curtis, and C. E. Meyer
    DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP MF-1753 U.S. GEOLOGICAL SURVEY POTASSIUM-ARGON AND FISSION-TRACK AGES OF THE SONOMA VOLCANICS IN AN AREA NORTH OF SAN PABLO BAY, CALIFORNIA By K. F. Fox, Jr., R. 3. Fleck, G. H. Curtis, and C. E. Meyer INTRODUCTION This map presents a compilation of potassium-argon and The zircons were etched in phosphoric acid using a fission-track ages of lithologic units found within the Sonoma modification of the process outlined by Fleisher, Price, and Volcanics. Also included are ages of other volcanic rocks in Walker (1964). In that process, cleaved zircons were the vicinity of the Sonoma Volcanics and ages of tuff immersed in phosphoric acid at a temperature of 375-500° interbedded with nearby sedimentary rocks. The ages C. With that method it is desirable to maintain constant reported here (tables 1, 2, 4) are a compendium of data circulation of the not acid, in order to prevent under-etching produced at the University of California (Berkeley) laboratory because of build-up of an insoluble phosphat'c incrustation by Garniss H. Curtis and Robert a. Fleck, and at the U.S. around the zircon. We maintain constant circulation with the Geological Survey (USGS) laboratory by Charles E. Meyer, procedure outlined below. Kenneth F. Fox, Jr., and their colleagues. The geologic map is modified from compilations by Blake and others (1971), A small quantity of the concentrated phosphoric acid is Blake and others (1974), Fox and others (1973), and Sims and dehydrated by heating slowly to approximatefy 500° C in a others (1973).
    [Show full text]
  • Geology of Sonoma County Guidebook.Pdf
    I l ASSOCIATION OF ENGINEERING GEOLOGISTS \ San Francisco Section 1 I 1 AEG San Francisco Section Field Trip Geology and Tectonics of the San Francisco North Bay Area Saturday June 14, 2008 Leaders: James Allen, CSU East Bay, Earth and Environmental Sciences Peter Holland, Vector Engineering James Wilen Jr., BACE Geotechnical Guidebook by: James Allen Peter Holland James Wilen Jr. l l TABLE OF CONTENTS (Page numbers exclude figure pages) Directions & Road Log. .. I Overview of Stops... ........................ .. ........................... .......................................... I Introduction. .............................................. ................................................ ...... ..... 2 Regional Geology. 3 Franciscan Complex ................................................................................... 3 Great Valley Group.. ...................... .................... ........................................ 3 Salinian Block at Pt. Reyes ........................................................................... 4 Tertiary Rocks East of the San Andreas Fault. ..................................................... 4 Monterey Group ....................................................................................... 4 San Pablo Group ........ ........................................................ ........................ 4 Orinda Formation..................................................................................... 4 Moraga Formation ..............................................................................
    [Show full text]
  • Index to the Geologic Names of North America
    Index to the Geologic Names of North America GEOLOGICAL SURVEY BULLETIN 1056-B Index to the Geologic Names of North America By DRUID WILSON, GRACE C. KEROHER, and BLANCHE E. HANSEN GEOLOGIC NAMES OF NORTH AMERICA GEOLOGICAL SURVEY BULLETIN 10S6-B Geologic names arranged by age and by area containing type locality. Includes names in Greenland, the West Indies, the Pacific Island possessions of the United States, and the Trust Territory of the Pacific Islands UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.G. - Price 60 cents (paper cover) CONTENTS Page Major stratigraphic and time divisions in use by the U.S. Geological Survey._ iv Introduction______________________________________ 407 Acknowledgments. _--__ _______ _________________________________ 410 Bibliography________________________________________________ 410 Symbols___________________________________ 413 Geologic time and time-stratigraphic (time-rock) units________________ 415 Time terms of nongeographic origin_______________________-______ 415 Cenozoic_________________________________________________ 415 Pleistocene (glacial)______________________________________ 415 Cenozoic (marine)_______________________________________ 418 Eastern North America_______________________________ 418 Western North America__-__-_____----------__-----____ 419 Cenozoic (continental)___________________________________
    [Show full text]
  • Geologic Map of the Kenwood 7.5' Quadrangle Sonoma and Napa Counties, California
    Preliminary Geologic Map available from: STATE OF CALIFORNIA- ARNOLD SCHWARZENEGGER, GOVERNOR http://www.conservation.ca.gov/cgs/rghm/rgm/preliminary_geologic_maps.htm CALIFORNIA GEOLOGICAL SURVEY THE RESOURCES AGENCY- MIKE CHRISMAN, SECRETARY FOR RESOURCES JOHN G. PARRISH, Ph.D., STATE GEOLOGIST DEPARTMENT OF CONSERVATION- BRIDGETT LUTHER, DIRECTOR 122°37'30" 122°30' GEOLOGIC MAP OF THE KENWOOD 7.5' QUADRANGLE 38°30' Qls 15 38°30' Qls Tss ? Qls Tsvt Qls Tsv m? Qls SONOMA AND NAPA COUNTIES, CALIFORNIA: A DIGITAL DATABASE Tsv m? Qf adf Tsv r KJfm Qls Tsv m Tsv r sp Qls Qls Qls sp KJfs Qhc Qls Qls Tsv m Qf VERSION 1.0 Qls Qls Qls Qls KJfs Qls adf Qls KJfm By Qls Qls Qls Qls Qls adf Qls 1 1 1 2 2 KJfm Tsvm 20 Tgd 35 Qf Qls Marc P. Delattre , David L. Wagner , Chris T. Higgins , Robert C. Witter , and Janet M. Sowers Tsv t Qls Qls Qhc Qls KJfm Tsv m Qls Tsv m Qls Qf Qf 15 fgc Tsv t 12 Qls Digital Database Tgd KJfs fgc Qls Qls KJfm Qls Tgd Qls By: Qls Qls Qls Qls 1 1 KJfm Qls Qls Carlos I. Gutierrez and Karen Toman-Sager Tsv t fgc Qls fgw fgs Qls 2007 Tsvm fgc Qls Qls Qls fgc adf Qls fgw sp fgs Qls Qls Qls sp Tsv t Tsv t KJfs 1. California Geological Survey Qls Qls fgw Qls Qls KJfm Qls 2. William Lettis & Associates, Inc., Walnut Creek, CA Qls KJfs KJfm Qls Qls Qls fgs fgc fgc Qls Qls Qls Qls Qls Qls Qls Qls Qls KJfm fgc Qls Qls DESCRIPTION OF MAP UNITS CORRELATION OF MAP UNITS Qls sp fgs? Tsvft Qls Qls Qls Qls 35 KJfm Qls Artificial fill (Holocene, historic) – May be engineered and/or non-engineered.
    [Show full text]
  • Geology of Sonoma Mountain Guidebook.Pdf
    NCGS FIELD TRIP The Geology of Sonoma Mountain Sonoma County, California Saturday, May 16, 2009 Field Trip Leaders: James R. Allen, PG, M.Sci. CSU East Bay, Dept. of Earth and Environmental and Sciences Peter Holland, Vector Engineering Ron Rubin, AMEC Geomatrix Copyright © 2009 Northern California Geological Society Road Log: SSU to Stop 1: 0.0 Miles Depart parking lot F, Sonoma State University. Make a left onto South Redwood Drive as you depart Parking Lot F. Make a left onto Sequoia Way (campus main entrance). 0.2 Miles Make a left onto East Cotati Avenue. 0.6 Miles Make a right onto Petaluma Hill Road and head south for 1.5 miles. Get comfy and prep for an amazing ride on Sonoma County infrastructure at its best! 2.8 Miles Make a left onto Adobe Road and travel about 5 miles to Old Adobe Road/Frates Road. 8 Miles Make a right onto Frates Road, travel southwest and make a left onto 9.25 Miles Hwy. 116 Lakeville Hwy. Travel southeast. Keep going straight down Lakeville Highway. Do not turn left where Highway 116 peals away from Lakeville Highway around 11.85 miles. On the right side (about 1:00) is Mt Burdell across the Petaluma River Valley. This prominent mountain is composed of 11 Ma volcanics overlying an unnamed Miocene marine sandstone, which overlies Franciscan Complex. This assemblage is nearly identical to an assemblage to the 11Ma Quien Sabe Volcanics/Mid Miocene Lone Tree Formation/Franciscan Complex east of Hollister and has provided strong evidence for about 190 km of combined offset along faults in the East Bay such as the Hayward and Calaveras Faults.
    [Show full text]
  • Geological Gems of California State Parks by California Geological Survey and California State Parks State of California Edmund G
    CGS SPECIAL REPORT 230 Geological Gems of California State Parks By California Geological Survey and California State Parks State of California Edmund G. Brown Jr., Governor Natural Resources Agency John Laird, Secretary Department of Conservation David Bunn, Director Department of Parks and Recreation Lisa Mangat, Director California Geological Survey John G. Parrish, Ph.D., State Geologist Copyright © 2015 jointly held by California Department of Conservation, California Geological Survey, and California State Parks. All rights reserved. “The Department of Conservation makes no warranties as to the suitability of this product for any particular purpose.” This page intentionally left blank. Geological Gems of California State Parks by California Geological Survey and California State Parks 2015 SPECIAL REPORT 230 Copies of Geological Gems of California State Parks, and other related information are available at www.conservation.ca.gov/cgs. Copies are also available from the Public Information Offices of the California Geological Survey. California Geological Survey’s Public Information Office Southern California Regional Office Publications and Information Office Bay Area Regional Office 320 W. 4th Street 801 K Street Earth Science Information Center/Map Sales Suite 850 MS 14-33 Building 3, Room 3-121 Los Angeles, CA 90013 Sacramento, CA 95814-3532 Menlo Park, CA 94025 213.239.0878 916.445.5716 650.688.6327 This page intentionally left blank. ACKNOWLEDGEMENTS Authors: Don Braun, Marc Delattre, Ron Churchill, Tim Dawson, Jim Falls, Mike Fuller, Will Harris, Chris Higgins, Jeremy Lancaster, Dave Longstreth, Gerald Marshal, Paul Remeika, Steve Reynolds, Chris Wills, and Michael Wopat. Editors: Syd Brown, Mike Fuller, Bill Short, and Chris Wills.
    [Show full text]