Design and Implementation of the TRIPS EDGE Architecture

Total Page:16

File Type:pdf, Size:1020Kb

Design and Implementation of the TRIPS EDGE Architecture Tutorial Outline Design and Implementation of • Part I: Overview – Introduction (Doug Burger/Steve Keckler) the TRIPS EDGE Architecture – EDGE architectures and the TRIPS ISA (Doug Burger) – TRIPS microarchitecture and prototype overview (Steve Keckler) – TRIPS code examples (Robert McDonald) • Part II: TRIPS Front End TRIPS Tutorial – Global control (Ramdas Nagarajan) – Control-flow prediction (Nitya Ranganathan) Originally Presented at ISCA-32 – Instruction fetch (Haiming Liu) – Register accesses and operand routing (Karu Sankaralingam) June 4, 2005 • Part III: TRIPS Execution Core & Memory System – Issue logic and execution (Premkishore Shivakumar) – Primary memory system (Simha Sethumadhavan) – Secondary memory system (Changkyu Kim) – Chip- and system-level networks and I/O (Paul Gratz) • Part IV: TRIPS Compiler Department of Computer Sciences – Compiler overview (Kathryn McKinley) – Forming TRIPS Blocks (Aaron Smith) The University of Texas at Austin – Code optimization (Kathryn McKinley) • Part V: Conclusions Names in italics refer to both the presenters at ISCA-32 and the main developers of each section’s slide deck. June 4, 2005 UT-Austin TRIPS Tutorial 1 June 4, 2005 UT-Austin TRIPS Tutorial 2 Copyright Information Acknowledgment of TRIPS Sponsors • DARPA • The material in this tutorial is Copyright © 2005-2006 by The University of Texas at Austin. All rights reserved. – Polymorphous Computing Architectures (2001-2006) • Contracts F33615-01-C-1892 and F44615-03-C-4106 • This material was developed as a part of the TRIPS project in the Computer Architecture – Special thanks to Bob Graybill and Technology Laboratory, Department of Computer Sciences, at The University of Texas at Austin. Please contact Doug Burger ([email protected]) or Steve Keckler • Air Force Research Laboratory ([email protected]) for information about redistribution or usage of these materials • Intel Research Council in other presentations. – 2 Research Grants (2000-2004) and equipment donations (2000-2005) • Portions of the TRIPS technology described in this tutorial are patent pending. •IBM Commercial parties interested in licensing or using TRIPS technology for profit should – Faculty Partnership Awards (1999-2004) and SUR grants (1999, 2003) contact the project principal investigators listed above. • Sun Microsystems – Research Grant (2003) • National Science Foundation – CAREER and Research Infrastructure Grants (1999-2008) • Peter O’Donnell Foundation • UT-Austin College of Natural Sciences – Matching funds for industrial fellows, infrastructure grants (1999-2008) June 4, 2005 UT-Austin TRIPS Tutorial 3 June 4, 2005 UT-Austin TRIPS Tutorial 4 Other Members of the TRIPS Team Relevant TRIPS/EDGE Publications Research Scientists Graduate Students • “The Design and Implementation of the TRIPS Prototype Chip” – HotChips 17, 2005. • Bill Yoder •Xia Chen – Contains details about the prototype ASIC. – Chief developer of the TRIPS toolchain – PowerPC to TRIPS translation and emulation • “Dynamic Placement, Static Issue (SPDI) Scheduling for EDGE Architectures” • Jim Burrill • Raj Desikan – Intl. Conference on Parallel Architectures and Compilation Techniques (PACT), 2004. – Chief engineer of the Scale compiler – Initial data tile design • Nick Nethercote • Saurabh Drolia – Specifies compiler algorithm for scheduling instructions on the TRIPS architecture. – TRIPS compiler performance leader – Prototype DMA controller, system simulator, parallel • “Scaling to the End of Silicon with EDGE Architectures” software – IEEE Computer, July, 2004 • Madhu Sibi Govindan – Prototype external bus and clock controller – Provides an overview of EDGE architectures using the TRIPS architecture as a case study. • Divya Gulati • “Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS Architecture” – Execution tile design, processor core verification – Intl. Symposium on Computer Architecture (ISCA-30), 2003. • Heather Hanson – Details the flexibility of the TRIPS architecture for exploiting different types of parallelism. – Operand router design • Sundeep Kushwaha • “An Adaptive, Non-Uniform Cache Structure for Wire-Dominated On-Chip Caches” – Back-end instruction placement – Intl. Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS- •Bert Maher X), 2002. – Hyperblock construction and formation – The first paper describing NUCA caches and their design tradeoffs. • Suriya Narayanan • “A Design Space Evaluation of Grid Processor Architectures” – Compiler/memory system optimization • Sadia Sharif – Intl. Symposium on Microarchitecture (MICRO-34), 2001. – TRIPS system software – An early study that formed the basis for the TRIPS architecture. June 4, 2005 UT-Austin TRIPS Tutorial 5 June 4, 2005 UT-Austin TRIPS Tutorial 6 1 Principal Related Work Key Trends •Power • Transport-Triggered Architectures [Supercomputing 1991] – Now a budget, just like area – Hans Mulder and Henk Corporaal – What performance can you get for a given power and area budget? – MOVE Architecture had direct instruction-to-instruction communication bypassing registers • WaveScalar [Micro 2003] – Transferring work from the HW to the SW (compiler, programmer, etc.) is power efficient – Mark Oskin, Steve Swanson, Ken Michelson, and Andrew Schwerin – Leakage trends must be addressed (not underlying goal of TRIPS) – Imperative/dataflow EDGE ISA • Slowing (stopping?) frequency increases – 3 most significant differences with TRIPS: – Pipelining has reached depth limits • Dynamic instruction placement – Device speed scaling may stop tracking feature size reduction • All-path execution • Two-level microarchitectural execution hierarchy – May result in decreasing main memory latencies • ASH/CASH/Pegasus IR [CGO-03, ASPLOS-04, ISPASS-05] – Must exploit more concurrency – Mihai Budiu and Seth Goldstein – Key issue: how to expose this concurrency? Force the programmer? – Similar goals and related compiler techniques • Wire Delays 35 nm – More of a focus on compiling to ASICs or reconfigurable substrates – Will force growing partitioning of future chips • RAW [IEEE Computer-97, ISCA-04] 65 nm – Works against reduced power and improved concurrency – Pioneering tiled architecture tackling concurrency and wire delays • Reliability – Leading work on Scalar Operand Networks 90 nm – Direct instruction-to-instruction communication through network switch I-stream – Do everything twice (or thrice) at some level of abstraction – Works against power limits and exploitation of concurrency 130 nm 20 mm June 4, 2005 UT-Austin TRIPS Tutorial 7 June 4, 2005 UT-Austin TRIPS Tutorial 8 Performance Scaling and Technology Challenges EDGE Architectures: Can New ISAs Help? Single-processor Performance Scaling 55%/year improvement 16.0 New programming '60s, '70s '80s, '90s, early '00s late '00s, '10s models needed? 14.0 EDGE CPI 12.0 1 Frequency wall Concurrency only CISC RISC EDGE? solution for higher 10.0 performance Device speed 8.0 Complex, few instructions More numerous, simple instructions Blocks amortize per-inst overhead Discrete components Reliance on compiler ordering Hundreds to thousands in flight Architectural frequency wall Conventional architectures Minimize storage Optimized for pipelining Inter-inst. communication explicit Log2 Speedup 6.0 cannot improve performance Small numbers in flight Tens of instructions in flight Exploits more concurrency 4.0 Pipelining Pipelining difficult Wide issue inefficient Leakage not yet addressed Reliability not yet addressed 2.0 RISC ILP wall Industry shifts to frequency RISC/CISC CPI dominated strategy 0.0 1RISC concepts implemented 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 in both ISA and H/W 90 nm 65 nm 45 nm 35nm 25nm June 4, 2005 UT-Austin TRIPS Tutorial 9 June 4, 2005 UT-Austin TRIPS Tutorial 10 What is an EDGE Architecture? The TRIPS EDGE ISA • Explicit Data Graph Execution – Defined by two key features 1. Program graph is broken into sequences of blocks ISCA-32 Tutorial – Basic blocks, hyperblocks, or something else – Blocks commit atomically or not - a block never partially executes 2. Within a block, ISA support for direct producer-to-consumer communication Doug Burger – No shared named registers within a block (point-to-point dataflow edges only) – Caveat: memory is still a shared namespace – The block’s dataflow graph (DFG) is explicit in the architecture Department of Computer Sciences • What are design alternatives for different architectures? The University of Texas at Austin – Single path through program block graph (TRIPS) – All paths through program block graph (WaveScalar) – Mechanism for specifying instruction-to-instruction links in the ISA – Block constraints (composition, fixed size vs. variable size, etc.) June 4, 2005 UT-Austin TRIPS Tutorial 11 June 4, 2005 UT-Austin TRIPS Tutorial 12 2 Architectural Structure of a TRIPS Block TRIPS Block Contents Blocks encoded in object file include: Address+targets sent to Block characteristics: Read memory, data returned Reg. banks • Read/Write instructions to target instructions • Fixed size: • Computation instructions 32 read instructions – 128 instructions max • 32-bit store mask for tracking store – L1 and core expands empty completion 32 loads 32-inst chunks to NOPs 32 stores • Load/store IDs: Two major considerations 1 - 128 – Maximum of 32 Normal Memory loads+stores may be • Every possible execution of a given instruction instruction block must emit a consistent number of PC read emitted, but blocks can hold
Recommended publications
  • Performance and Energy Efficient Network-On-Chip Architectures
    Linköping Studies in Science and Technology Dissertation No. 1130 Performance and Energy Efficient Network-on-Chip Architectures Sriram R. Vangal Electronic Devices Department of Electrical Engineering Linköping University, SE-581 83 Linköping, Sweden Linköping 2007 ISBN 978-91-85895-91-5 ISSN 0345-7524 ii Performance and Energy Efficient Network-on-Chip Architectures Sriram R. Vangal ISBN 978-91-85895-91-5 Copyright Sriram. R. Vangal, 2007 Linköping Studies in Science and Technology Dissertation No. 1130 ISSN 0345-7524 Electronic Devices Department of Electrical Engineering Linköping University, SE-581 83 Linköping, Sweden Linköping 2007 Author email: [email protected] Cover Image A chip microphotograph of the industry’s first programmable 80-tile teraFLOPS processor, which is implemented in a 65-nm eight-metal CMOS technology. Printed by LiU-Tryck, Linköping University Linköping, Sweden, 2007 Abstract The scaling of MOS transistors into the nanometer regime opens the possibility for creating large Network-on-Chip (NoC) architectures containing hundreds of integrated processing elements with on-chip communication. NoC architectures, with structured on-chip networks are emerging as a scalable and modular solution to global communications within large systems-on-chip. NoCs mitigate the emerging wire-delay problem and addresses the need for substantial interconnect bandwidth by replacing today’s shared buses with packet-switched router networks. With on-chip communication consuming a significant portion of the chip power and area budgets, there is a compelling need for compact, low power routers. While applications dictate the choice of the compute core, the advent of multimedia applications, such as three-dimensional (3D) graphics and signal processing, places stronger demands for self-contained, low-latency floating-point processors with increased throughput.
    [Show full text]
  • Computer Architecture: Dataflow (Part I)
    Computer Architecture: Dataflow (Part I) Prof. Onur Mutlu Carnegie Mellon University A Note on This Lecture n These slides are from 18-742 Fall 2012, Parallel Computer Architecture, Lecture 22: Dataflow I n Video: n http://www.youtube.com/watch? v=D2uue7izU2c&list=PL5PHm2jkkXmh4cDkC3s1VBB7- njlgiG5d&index=19 2 Some Required Dataflow Readings n Dataflow at the ISA level q Dennis and Misunas, “A Preliminary Architecture for a Basic Data Flow Processor,” ISCA 1974. q Arvind and Nikhil, “Executing a Program on the MIT Tagged- Token Dataflow Architecture,” IEEE TC 1990. n Restricted Dataflow q Patt et al., “HPS, a new microarchitecture: rationale and introduction,” MICRO 1985. q Patt et al., “Critical issues regarding HPS, a high performance microarchitecture,” MICRO 1985. 3 Other Related Recommended Readings n Dataflow n Gurd et al., “The Manchester prototype dataflow computer,” CACM 1985. n Lee and Hurson, “Dataflow Architectures and Multithreading,” IEEE Computer 1994. n Restricted Dataflow q Sankaralingam et al., “Exploiting ILP, TLP and DLP with the Polymorphous TRIPS Architecture,” ISCA 2003. q Burger et al., “Scaling to the End of Silicon with EDGE Architectures,” IEEE Computer 2004. 4 Today n Start Dataflow 5 Data Flow Readings: Data Flow (I) n Dennis and Misunas, “A Preliminary Architecture for a Basic Data Flow Processor,” ISCA 1974. n Treleaven et al., “Data-Driven and Demand-Driven Computer Architecture,” ACM Computing Surveys 1982. n Veen, “Dataflow Machine Architecture,” ACM Computing Surveys 1986. n Gurd et al., “The Manchester prototype dataflow computer,” CACM 1985. n Arvind and Nikhil, “Executing a Program on the MIT Tagged-Token Dataflow Architecture,” IEEE TC 1990.
    [Show full text]
  • Configurable Fine-Grain Protection for Multicore Processor Virtualization 1
    Configurable Fine-Grain Protection for Multicore Processor Virtualization David Wentzlaff1, Christopher J. Jackson2, Patrick Griffin3, and Anant Agarwal2 [email protected], [email protected], griffi[email protected], [email protected] 1Princeton University 2Tilera Corp. 3Google Inc. Abstract TLB Access DMA Engine “User” Network I/O Network 2 2 2 2 1 3 1 3 1 3 1 3 Multicore architectures, with their abundant on-chip re- 0 0 0 0 sources, are effectively collections of systems-on-a-chip. The protection system for these architectures must support Key: 0 – User Code, 1 – OS, 2 – Hypervisor, 3 – Hypervisor Debugger multiple concurrently executing operating systems (OSes) Figure 1. With CFP, system software can dy• with different needs, and manage and protect the hard- namically set the privilege level needed to ac• ware’s novel communication mechanisms and hardware cess each fine•grain processor resource. features. Traditional protection systems are insufficient; they protect supervisor from user code, but typically do not protect one system from another, and only support fixed as- ticore systems, a protection system must both temporally signment of resources to protection levels. In this paper, protect and spatially isolate access to resources. Spatial iso- we propose an alternative to traditional protection systems lation is the need to isolate different system software stacks which we call configurable fine-grain protection (CFP). concurrently executing on spatially disparate cores in a mul- CFP enables the dynamic assignment of in-core resources ticore system. Spatial isolation is especially important now to protection levels. We investigate how CFP enables differ- that multicore systems have directly accessible networks ent system software stacks to utilize the same configurable connecting cores to other cores and cores to I/O devices.
    [Show full text]
  • CG-Ooo Energy-Efficient Coarse-Grain Out-Of-Order Execution
    CG-OoO Energy-Efficient Coarse-Grain Out-of-Order Execution Milad Mohammadi⋆, Tor M. Aamodt†, William J. Dally⋆‡ ⋆Stanford University, †University of British Columbia, ‡NVIDIA Research [email protected], [email protected], [email protected] ABSTRACT CG-OoO model to make it even more energy efficient. We introduce the Coarse-Grain Out-of-Order (CG- Despite the significant achievements in improving en- OoO) general purpose processor designed to achieve ergy and performance properties of the OoO proces- close to In-Order processor energy while maintaining sor in the recent years [2], studies show the energy Out-of-Order (OoO) performance. CG-OoO is an and performance attributes of the OoO execution model energy-performance proportional general purpose remain superlinearly proportional [3, 4]. Studies indi- architecture that scales according to the program cate control speculation and dynamic scheduling tech- load1. Block-level code processing is at the heart of nique amount to 88% and 10% of the OoO superior the this architecture; CG-OoO speculates, fetches, performance compared to the In-Order (InO) proces- schedules, and commits code at block-level granu- sor [5]. Scheduling and speculation in OoO is performed larity. It eliminates unnecessary accesses to energy at instruction granularity regardless of the instruction consuming tables, and turns large tables into smaller type even though they are mainly effective during un- and distributed tables that are cheaper to access. predictable dynamic events (e.g. unpredictable cache CG-OoO leverages compiler-level code optimizations misses) [5]. Furthermore, our studies show speculation to deliver efficient static code, and exploits dynamic and dynamic scheduling amount to 67% and 51% of instruction-level parallelism and block-level parallelism.
    [Show full text]
  • Parallel Computer Architecture III
    Parallel Computer Architecture III Stefan Lang Interdisciplinary Center for Scientific Computing (IWR) University of Heidelberg INF 368, Room 532 D-69120 Heidelberg phone: 06221/54-8264 email: [email protected] WS 14/15 Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 1 / 51 Parallel Computer Architecture III Parallelism and Granularity Graphic cards I/O Detailed study Hypertransport Protocol Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 2 / 51 Parallelism and Granularity level five jobs or Programs coarse grained Subprograms, modules level four or classes middle grained Increase of Increase of Parallelism Communications Procedures, functions level three Requirements or methods Non−recursive loops level two or iterators fine grained Instructions level one or statements Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 3 / 51 Graphics Cards GPU = Graphics Processing Unit CUDA = Compute Unified Device Architecture ◮ Toolkit by NVIDIA for direct GPU Programming ◮ Programming of a GPU without graphical API ◮ GPGPU compared to CPUs strongly increased computing performance and storage bandwidth GPUs are cheap and broadly established Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 4 / 51 Computing Performance: CPU vs. GPU Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 5 / 51 Graphics Cards: Hardware Specification Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 6 / 51 Chip Architecture: CPU vs. GPU Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 7 / 51 Graphics Cards: Hardware Design Stefan Lang (IWR) Simulation on High-Performance Computers WS 14/15 8 / 51 Graphics Cards: Memory Design 8192 registers (32-bit), in total 32KB per multiprocessor 16KB of fast shared memory per multiprocessor Large global memory (hundreds of MBs, e.g.
    [Show full text]
  • Distributed Microarchitectural Protocols in the TRIPS Prototype Processor
    Øh Appears in the ¿9 Annual International Symposium on Microarchitecture Distributed Microarchitectural Protocols in the TRIPS Prototype Processor Karthikeyan Sankaralingam Ramadass Nagarajan Robert McDonald Ý Rajagopalan DesikanÝ Saurabh Drolia M.S. Govindan Paul Gratz Divya Gulati Heather HansonÝ ChangkyuKim HaimingLiu NityaRanganathan Simha Sethumadhavan Sadia SharifÝ Premkishore Shivakumar Stephen W. Keckler Doug Burger Department of Computer Sciences ÝDepartment of Electrical and Computer Engineering The University of Texas at Austin [email protected] www.cs.utexas.edu/users/cart Abstract are clients on one or more micronets. Higher-level mi- croarchitectural protocols direct global control across the Growing on-chip wire delays will cause many future mi- micronets and tiles in a manner invisible to software. croarchitectures to be distributed, in which hardware re- In this paper, we describe the tile partitioning, micronet sources within a single processor become nodes on one or connectivity, and distributed protocols that provide global more switched micronetworks. Since large processor cores services in the TRIPS processor, including distributed fetch, will require multiple clock cycles to traverse, control must execution, flush, and commit. Prior papers have described be distributed, not centralized. This paper describes the this approach to exploiting parallelism as well as high-level control protocols in the TRIPS processor, a distributed, tiled performanceresults [15, 3], but have not described the inter- microarchitecture that supports dynamic execution. It de- tile connectivity or protocols. Tiled architectures such as tails each of the five types of reused tiles that compose the RAW [23] use static orchestration to manage global oper- processor, the control and data networks that connect them, ations, but in a dynamically scheduled, distributed archi- and the distributed microarchitectural protocols that imple- tecture such as TRIPS, hardware protocols are required to ment instruction fetch, execution, flush, and commit.
    [Show full text]
  • An Evaluation of the TRIPS Computer System
    Appears in the Proceedings of the 14th International Conference on Architecture Support for Programming Languages and Operating Systems An Evaluation of the TRIPS Computer System Mark Gebhart Bertrand A. Maher Katherine E. Coons Jeff Diamond Paul Gratz Mario Marino Nitya Ranganathan Behnam Robatmili Aaron Smith James Burrill Stephen W. Keckler Doug Burger Kathryn S. McKinley Department of Computer Sciences The University of Texas at Austin [email protected] www.cs.utexas.edu/users/cart Abstract issue-width scaling of conventional superscalar architec- The TRIPS system employs a new instruction set architec- tures. Because of these trends, major microprocessor ven- ture (ISA) called Explicit Data Graph Execution (EDGE) dors have abandoned architectures for single-thread perfor- that renegotiates the boundary between hardware and soft- mance and turned to the promise of multiple cores per chip. ware to expose and exploit concurrency. EDGE ISAs use a While many applications can exploit multicore systems, this block-atomic execution model in which blocks are composed approach places substantial burdens on programmers to par- of dataflow instructions. The goal of the TRIPS design is allelize their codes. Despite these trends, Amdahl’s law dic- to mine concurrency for high performance while tolerating tates that single-thread performance will remain key to the emerging technology scaling challenges, such as increas- future success of computer systems [9]. ing wire delays and power consumption. This paper eval- In response to semiconductor scaling trends, we designed uates how well TRIPS meets this goal through a detailed a new architecture and microarchitecture intended to extend ISA and performance analysis.
    [Show full text]
  • A Survey on Coarse-Grained Reconfigurable Architectures from a Performance Perspective
    Received May 31, 2020, accepted July 13, 2020, date of publication July 27, 2020, date of current version August 20, 2020. Digital Object Identifier 10.1109/ACCESS.2020.3012084 A Survey on Coarse-Grained Reconfigurable Architectures From a Performance Perspective ARTUR PODOBAS 1,2, KENTARO SANO1, AND SATOSHI MATSUOKA1,3 1RIKEN Center for Computational Science, Kobe 650-0047, Japan 2Department of Computer Science, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden 3Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo 152-8550, Japan Corresponding author: Artur Podobas ([email protected]) This work was supported by the New Energy and Industrial Technology Development Organization (NEDO). ABSTRACT With the end of both Dennard’s scaling and Moore’s law, computer users and researchers are aggressively exploring alternative forms of computing in order to continue the performance scaling that we have come to enjoy. Among the more salient and practical of the post-Moore alternatives are reconfigurable systems, with Coarse-Grained Reconfigurable Architectures (CGRAs) seemingly capable of striking a balance between performance and programmability. In this paper, we survey the landscape of CGRAs. We summarize nearly three decades of literature on the subject, with a particular focus on the premise behind the different CGRAs and how they have evolved. Next, we compile metrics of available CGRAs and analyze their performance properties in order to understand and discover knowledge gaps and opportunities for future CGRA research specialized towards High-Performance Computing (HPC). We find that there are ample opportunities for future research on CGRAs, in particular with respect to size, functionality, support for parallel programming models, and to evaluate more complex applications.
    [Show full text]
  • Designing Heterogeneous Many-Core Processors to Provide High Performance Under Limited Chip Power Budget
    DESIGNING HETEROGENEOUS MANY-CORE PROCESSORS TO PROVIDE HIGH PERFORMANCE UNDER LIMITED CHIP POWER BUDGET A Thesis Presented to The Academic Faculty by Dong Hyuk Woo In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering Georgia Institute of Technology December 2010 DESIGNING HETEROGENEOUS MANY-CORE PROCESSORS TO PROVIDE HIGH PERFORMANCE UNDER LIMITED CHIP POWER BUDGET Approved by: Dr. Hsien-Hsin S. Lee, Advisor Dr. Sung Kyu Lim School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Sudhakar Yalamanchili Dr. Milos Prvulovic School of Electrical and Computer School of Computer Science Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Marilyn Wolf Date Approved: 23 September 2010 School of Electrical and Computer Engineering Georgia Institute of Technology To my family. iii ACKNOWLEDGEMENTS I would like to take this opportunity to thank all those who directly or indirectly helped me in completing my Ph.D. study. First of all, I would like to thank my advisor, Dr. Hsien-Hsin S. Lee, who contin- uously motivated me, patiently listened to me, and often challenged me with critical feedback. I would also like to thank Dr. Sudhakar Yalamanchili, Dr. Marilyn Wolf, Dr. Sung Kyu Lim, and Dr. Milos Prvulovic for volunteering to serve in my commit- tee and reviewing my thesis. I would also like to thank all the MARS lab members, Dr. Weidong Shi, Dr. Taeweon Suh, Dr. Chinnakrishnan Ballapuram, Dr. Mrinmoy Ghosh, Fayez Mo- hamood, Richard Yoo, Dean Lewis, Eric Fontaine, Ahmad Sharif, Pratik Marolia, Vikas Vasisht, Nak Hee Seong, Sungkap Yeo, Jen-Cheng Huang, Abilash Sekar, Manoj Athreya, Ali Benquassmi, Tzu-Wei Lin, Mohammad Hossain, Andrei Bersatti, and and Jae Woong Sim.
    [Show full text]
  • Modeling Instruction Placement on a Spatial Architecture
    Modeling Instruction Placement on a Spatial Architecture Martha Mercaldi Steven Swanson Andrew Petersen Andrew Putnam Andrew Schwerin Mark Oskin Susan J. Eggers Computer Science & Engineering University of Washington Seattle, WA USA {mercaldi,swanson,petersen,aputnam,schwerin,oskin,eggers}@cs.washington.edu ABSTRACT Keywords In response to current technology scaling trends, architects dataflow, instruction placement, spatial computing are developing a new style of processor, known as spatial computers. A spatial computer is composed of hundreds or even thousands of simple, replicated processing elements 1. INTRODUCTION (or PEs), frequently organized into a grid. Several current Today’s manufacturing technologies provide an enormous spatial computers, such as TRIPS, RAW, SmartMemories, quantity of computational resources. Computer architects nanoFabrics and WaveScalar, explicitly place a program’s are currently exploring how to convert these resources into instructions onto the grid. improvements in application performance. Despite signifi- Designing instruction placement algorithms is an enor- cant differences in execution models and underlying process mous challenge, as there are an exponential (in the size of technology, five recently proposed architectures - nanoFab- the application) number of different mappings of instruc- rics [18], TRIPS [34], RAW [23], SmartMemories [26], and tions to PEs, and the choice of mapping greatly affects pro- WaveScalar [39] - share the task of mapping large portions gram performance. In this paper we develop an instruction of an application’s binary onto a collection of processing el- placement performance model which can inform instruction ements. Once mapped, the instructions execute “in place”, placement. The model comprises three components, each explicitly sending data between the processing elements. Re- of which captures a different aspect of spatial computing searchers call this form of computation distributed ILP [34, performance: inter-instruction operand latency, data cache 23, 39] or spatial computing [18].
    [Show full text]
  • Compiling for EDGE Architectures
    Appears in the Proceedings of the 4th International Symposium on Code Generation and Optimization (CGO 04). Compiling for EDGE Architectures AaronSmith JimBurrill1 Jon Gibson Bertrand Maher Nick Nethercote BillYoder DougBurger KathrynS.McKinley Department of Computer Sciences 1Department of Computer Science The University of Texas at Austin University of Massachusetts Austin, Texas 78712 Amherst, Massachusetts 01003 Abstract sibilities between programmer, compiler, and hardware to discover and exploit concurrency. Explicit Data Graph Execution (EDGE) architectures of- In previous solutions, CISC processors intentionally fer the possibility of high instruction-level parallelism with placed few ISA-imposed requirements on the compiler to energy efficiency. In EDGE architectures, the compiler expose concurrency. In-order RISC processors required the breaks a program into a sequence of structured blocks that compiler to schedule instructions to minimize pipeline bub- the hardware executes atomically. The instructions within bles for effective pipelining concurrency. With the advent each block communicate directly, instead of communicating of large-window out-of-order microarchitectures, however, through shared registers. The TRIPS EDGE architecture both RISC and CISC processors rely mostly on the hard- imposes restrictions on its blocks to simplify the microar- ware to support superscalar issue. These processors use a chitecture: each TRIPS block has at most 128 instructions, dynamic placement, dynamic issue execution model that re- issues at most 32 loads and/or stores, and executes at most quires the hardware to construct the program dataflow graph 32 register bank reads and 32 writes. To detect block com- on the fly, with little compiler assistance. VLIW processors, pletion, each TRIPS block must produce a constant number conversely, place most of the burden of identifying con- of outputs (stores and register writes) and a branch deci- current instructions on the compiler, which must fill long sion.
    [Show full text]
  • Scatter-Add in Data Parallel Architectures
    Scatter-Add in Data Parallel Architectures Jung Ho Ahn, Mattan Erez and William J. Dally ∗ Computer Systems Laboratory Stanford University, Stanford, CA 94305, USA {gajh,merez,billd}@cva.stanford.edu Abstract histogram Many important applications exhibit large amounts of data parallelism, and modern computer systems are de- signed to take advantage of it. While much of the com- putation in the multimedia and scientific application do- mains is data parallel, certain operations require costly bins serialization that increase the run time. Examples in- clude superposition type updates in scientific computing and histogram computations in media processing. We in- troduce scatter-add, which is the data-parallel form of dataset the well-known scalar fetch-and-op, specifically tuned for SIMD/vector/stream style memory systems. The scatter-add Figure 1: Parallel histogram computation leads to mem- mechanism scatters a set of data values to a set of mem- ory collision, when multiple elements of the dataset up- ory addresses and adds each data value to each refer- date the same histogram bin. enced memory location instead of overwriting it. This novel architecture extension allows us to efficiently sup- tencies. In this paper we will concentrate on the single in- port data-parallel atomic update computations found in struction multiple data (SIMD) class of DPAs, exemplified parallel programming languages such as HPF, and ap- by vector [9, 6], and stream processors [21, 10, 37]. plies both to single-processor and multi-processor SIMD While much of the computation of a typical multimedia data-parallel systems. We detail the micro-architecture ofa or scientific application is indeed data parallel, some sec- scatter-add implementation on a stream architecture, which tions of the code require serialization which significantly requires less than 2% increase in die area yet shows per- limits overall performance.
    [Show full text]