Projective Geometry- 2D

Total Page:16

File Type:pdf, Size:1020Kb

Projective Geometry- 2D Projective geometry- 2D Acknowledgements Marc Pollefeys: for allowing the use of his excellent slides on this topic http://www.cs.unc.edu/~marc/mvg/ Richard Hartley and Andrew Zisserman, "Multiple View Geometry in Computer Vision" Homogeneous coordinates Homogeneous representation of lines ax + by + c = 0 ()a,b,c T (ka)x + (kb)y + kc = 0,k 0 ()()a,b,c T ~ k a,b,c T equivalence class of vectors, any vector is representative Set of all equivalence classes in R3(0,0,0)T forms P2 Homogeneous representation of points T T x = ()x, y on l = ()a,b,c if and only if ax + by + c = 0 ()()()x,y,1 a,b,c T = x,y,1 l = 0 ()()x, y,1 T ~ k x, y,1 T ,k 0 The point x lies on the line l if and only if xTl=lTx=0 T Homogeneous coordinates ()x1, x2 , x3 but only 2DOF T Inhomogeneous coordinates ()x, y Spring 2006 Projective Geometry 2D 2 1 Points from lines and vice-versa Intersections of lines The intersection of two lines l and l' is x = ll' Line joining two points The line through two points x and x' is l = x x' Example y =1 x =1 Spring 2006 Projective Geometry 2D 3 Ideal points and the line at infinity Intersections of parallel lines T T T l = ()a,b,c and l'= ()a,b,c' ll'= ()b,a,0 Example x =1 x = 2 T Ideal points ()x1, x2 ,0 Note that this set lies on a single line, T Line at infinity l = ()0,0,1 2 2 Note that in P2 there is no distinction P = R l between ideal points and others Spring 2006 Projective Geometry 2D 4 2 Summary The set of ideal points lies on the line at infinity, intersects the line at infinity in the ideal point A line parallel to l also intersects in the same ideal point, irrespective of the value of c’. In inhomogeneous notation, is a vector tangent to the line. It is orthogonal to (a, b) -- the line normal. Thus it represents the line direction. As the line’s direction varies, the ideal point varies over . --> line at infinity can be thought of as the set of directions of lines in the plane. Spring 2006 Projective Geometry 2D 5 A model for the projective plane Points represented by rays through origin Lines represented by planes through origin x1x2 plane represents line at infinity exactly one line through two points exaclty one point at intersection of two lines Spring 2006 Projective Geometry 2D 6 3 Duality x l xTl = 0 lT x = 0 x = ll' l = x x' Duality principle: To any theorem of 2-dimensional projective geometry there corresponds a dual theorem, which may be derived by interchanging the role of points and lines in the original theorem Spring 2006 Projective Geometry 2D 7 Conics Curve described by 2nd-degree equation in the plane ax2 + bxy + cy 2 + dx + ey + f = 0 x x or homogenized x 1 , y 2 x3 x3 2 2 2 ax1 + bx1x2 + cx2 + dx1x3 + ex2 x3 + fx3 = 0 or in matrix form a b / 2 d / 2 xT C x 0 with C b / 2 c e / 2 = = d / 2 e / 2 f 5DOF: {a :b : c : d : e : f } Spring 2006 Projective Geometry 2D 8 4 Conics … http://ccins.camosun.bc.ca/~jbritton/jbconics.htm Spring 2006 Projective Geometry 2D 9 Five points define a conic For each point the conic passes through 2 2 axi + bxi yi + cyi + dxi + eyi + f = 0 or 2 2 T ()xi , xi yi , yi , xi , yi , f c = 0 c = ()a,b,c,d,e, f stacking constraints yields 2 2 x1 x1 y1 y1 x1 y1 1 2 2 x x y y x y 1 2 2 2 2 2 2 2 2 x3 x3 y3 y3 x3 y3 1c = 0 2 2 x4 x4 y4 y4 x4 y4 1 2 2 x5 x5 y5 y5 x5 y5 1 Spring 2006 Projective Geometry 2D 10 5 Tangent lines to conics The line l tangent to C at point x on C is given by l=Cx l x C Spring 2006 Projective Geometry 2D 11 Dual conics A line tangent to the conic C satisfies lT C* l = 0 In general (C full rank): C* = C1 C* : Adjoint matrix of C. Dual conics = line conics = conic envelopes Spring 2006 Projective Geometry 2D 12 6 Degenerate conics A conic is degenerate if matrix C is not of full rank m e.g. two lines (rank 2) l C = lmT + mlT e.g. repeated line (rank 1) T C = ll l Degenerate line conics: 2 points (rank 2), double point (rank1) * Note that for degenerate conics ()C* C Spring 2006 Projective Geometry 2D 13 Projective transformations Definition: A projectivity is an invertible mapping h from P2 to itself such that three points x1,x2,x3 lie on the same line if and only if h(x1),h(x2),h(x3) do. Theorem: A mapping h:P2P2 is a projectivity if and only if there exist a non-singular 3x3 matrix H such that for any point in P2 represented by a vector x it is true that h(x)=Hx Definition: Projective transformation x' h h h x 1 11 12 13 1 x' h h h x 2 = 21 22 23 2 or x'= H x x'3 h31 h32 h33 x3 8DOF projectivity=collineation=projective transformation=homography Spring 2006 Projective Geometry 2D 14 7 Mapping between planes central projection may be expressed by x’=Hx (application of theorem) Spring 2006 Projective Geometry 2D 15 Removing projective distortion select four points in a plane with know coordinates x' h x + h y + h x' h x + h y + h x'= 1 = 11 12 13 y'= 2 = 21 22 23 x'3 h31x + h32 y + h33 x'3 h31x + h32 y + h33 x'()h31x + h32 y + h33 = h11x + h12 y + h13 (linear in hij) y'()h31x + h32 y + h33 = h21x + h22 y + h23 (2 constraints/point, 8DOF 4 points needed) Remark: no calibration at all necessary, better ways to compute (see later) Spring 2006 Projective Geometry 2D 16 8 Transformation of lines and conics For a point transformation x'= H x Transformation for lines l'= H-T l Transformation for conics C'= H-TCH-1 Transformation for dual conics C'* = HC*HT Spring 2006 Projective Geometry 2D 17 Distortions under center projection Similarity: squares imaged as squares. Affine: parallel lines remain parallel; circles become ellipses. Projective: Parallel lines converge. Spring 2006 Projective Geometry 2D 18 9 Class I: Isometries (iso=same, metric=measure) x' cos sin t x x y' sin cos t y = y = ±1 1 0 0 1 1 orientation preserving: =1 orientation reversing: = 1 R t x' H x x T = E = T R R = I 0 1 3DOF (1 rotation, 2 translation) special cases: pure rotation, pure translation Invariants: length, angle, area Spring 2006 Projective Geometry 2D 19 Class II: Similarities x' s cos ssin t x (isometry + scale) x y' ssin s cos t y = y 1 0 0 1 1 sR t x' H x x T = S = T R R = I 0 1 4DOF (1 scale, 1 rotation, 2 translation) also know as equi-form (shape preserving) metric structure = structure up to similarity (in literature) Invariants: ratios of length, angle, ratios of areas, parallel lines Spring 2006 Projective Geometry 2D 20 10 Class III: Affine transformations x' a a t x 11 12 x y' a a t y = 21 22 y 1 0 0 1 1 A t x' H x x = A = T 0 1 1 0 A = R()( R )DR () D = 0 2 6DOF (2 scale, 2 rotation, 2 translation) non-isotropic scaling! (2DOF: scale ratio and orientation) Invariants: parallel lines, ratios of parallel lengths, ratios of areas Spring 2006 Projective Geometry 2D 21 Class VI: Projective transformations A t T x' H x x v = v ,v = P = T ()1 2 v v 8DOF (2 scale, 2 rotation, 2 translation, 2 line at infinity) Action non-homogeneous over the plane Invariants: cross-ratio of four points on a line (ratio of ratio) Spring 2006 Projective Geometry 2D 22 11 Action of affinities and projectivities on line at infinity x1 x A t A 1 x = T 2 x2 0 v 0 0 Line at infinity stays at infinity, but points move along line x1 x A t A 1 x = T 2 x2 v v 0 v1x1 + v2 x2 Line at infinity becomes finite, allows to observe vanishing points, horizon. Spring 2006 Projective Geometry 2D 23 Decomposition of projective transformations sR tK 0 I 0 A t H H H H = S A P = T T T = T 0 10 1v v v v decomposition unique (if chosen s>0) A = sRK + tvT K upper-triangular, det K =1 Example: 1.707 0.586 1.0 H 2.707 8.242 2.0 = 1.0 2.0 1.0 2cos 45 2sin 45 1.00.5 1 01 0 0 H 2sin 45 2cos 45 2.0 0 2 00 1 0 = 0 0 1 0 0 11 2 1 Spring 2006 Projective Geometry 2D 24 12 Overview transformations h11 h12 h13 Projective Concurrency, collinearity, h21 h22 h23 order of contact (intersection, 8dof tangency, inflection, etc.), h31 h32 h33 cross ratio a11 a12 tx Parallellism, ratio of areas, a a t ratio of lengths on parallel Affine 21 22 y lines (e.g midpoints), linear 6dof 0 0 1 combinations of vectors (centroids).
Recommended publications
  • Globally Optimal Affine and Metric Upgrades in Stratified Autocalibration
    Globally Optimal Affine and Metric Upgrades in Stratified Autocalibration Manmohan Chandrakery Sameer Agarwalz David Kriegmany Serge Belongiey [email protected] [email protected] [email protected] [email protected] y University of California, San Diego z University of Washington, Seattle Abstract parameters of the cameras, which is commonly approached by estimating the dual image of the absolute conic (DIAC). We present a practical, stratified autocalibration algo- A variety of linear methods exist towards this end, how- rithm with theoretical guarantees of global optimality. Given ever, they are known to perform poorly in the presence of a projective reconstruction, the first stage of the algorithm noise [10]. Perhaps more significantly, most methods a pos- upgrades it to affine by estimating the position of the plane teriori impose the positive semidefiniteness of the DIAC, at infinity. The plane at infinity is computed by globally which might lead to a spurious calibration. Thus, it is im- minimizing a least squares formulation of the modulus con- portant to impose the positive semidefiniteness of the DIAC straints. In the second stage, the algorithm upgrades this within the optimization, not as a post-processing step. affine reconstruction to a metric one by globally minimizing This paper proposes global minimization algorithms for the infinite homography relation to compute the dual image both stages of stratified autocalibration that furnish theoreti- of the absolute conic (DIAC). The positive semidefiniteness cal certificates of optimality. That is, they return a solution at of the DIAC is explicitly enforced as part of the optimization most away from the global minimum, for arbitrarily small .
    [Show full text]
  • Projective Geometry: a Short Introduction
    Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g.
    [Show full text]
  • Robot Vision: Projective Geometry
    Robot Vision: Projective Geometry Ass.Prof. Friedrich Fraundorfer SS 2018 1 Learning goals . Understand homogeneous coordinates . Understand points, line, plane parameters and interpret them geometrically . Understand point, line, plane interactions geometrically . Analytical calculations with lines, points and planes . Understand the difference between Euclidean and projective space . Understand the properties of parallel lines and planes in projective space . Understand the concept of the line and plane at infinity 2 Outline . 1D projective geometry . 2D projective geometry ▫ Homogeneous coordinates ▫ Points, Lines ▫ Duality . 3D projective geometry ▫ Points, Lines, Planes ▫ Duality ▫ Plane at infinity 3 Literature . Multiple View Geometry in Computer Vision. Richard Hartley and Andrew Zisserman. Cambridge University Press, March 2004. Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992 . Available online: www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf 4 Motivation – Image formation [Source: Charles Gunn] 5 Motivation – Parallel lines [Source: Flickr] 6 Motivation – Epipolar constraint X world point epipolar plane x x’ x‘TEx=0 C T C’ R 7 Euclidean geometry vs. projective geometry Definitions: . Geometry is the teaching of points, lines, planes and their relationships and properties (angles) . Geometries are defined based on invariances (what is changing if you transform a configuration of points, lines etc.) . Geometric transformations
    [Show full text]
  • Algebraic Geometry Michael Stoll
    Introductory Geometry Course No. 100 351 Fall 2005 Second Part: Algebraic Geometry Michael Stoll Contents 1. What Is Algebraic Geometry? 2 2. Affine Spaces and Algebraic Sets 3 3. Projective Spaces and Algebraic Sets 6 4. Projective Closure and Affine Patches 9 5. Morphisms and Rational Maps 11 6. Curves — Local Properties 14 7. B´ezout’sTheorem 18 2 1. What Is Algebraic Geometry? Linear Algebra can be seen (in parts at least) as the study of systems of linear equations. In geometric terms, this can be interpreted as the study of linear (or affine) subspaces of Cn (say). Algebraic Geometry generalizes this in a natural way be looking at systems of polynomial equations. Their geometric realizations (their solution sets in Cn, say) are called algebraic varieties. Many questions one can study in various parts of mathematics lead in a natural way to (systems of) polynomial equations, to which the methods of Algebraic Geometry can be applied. Algebraic Geometry provides a translation between algebra (solutions of equations) and geometry (points on algebraic varieties). The methods are mostly algebraic, but the geometry provides the intuition. Compared to Differential Geometry, in Algebraic Geometry we consider a rather restricted class of “manifolds” — those given by polynomial equations (we can allow “singularities”, however). For example, y = cos x defines a perfectly nice differentiable curve in the plane, but not an algebraic curve. In return, we can get stronger results, for example a criterion for the existence of solutions (in the complex numbers), or statements on the number of solutions (for example when intersecting two curves), or classification results.
    [Show full text]
  • COMBINATORICS, Volume
    http://dx.doi.org/10.1090/pspum/019 PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS Volume XIX COMBINATORICS AMERICAN MATHEMATICAL SOCIETY Providence, Rhode Island 1971 Proceedings of the Symposium in Pure Mathematics of the American Mathematical Society Held at the University of California Los Angeles, California March 21-22, 1968 Prepared by the American Mathematical Society under National Science Foundation Grant GP-8436 Edited by Theodore S. Motzkin AMS 1970 Subject Classifications Primary 05Axx, 05Bxx, 05Cxx, 10-XX, 15-XX, 50-XX Secondary 04A20, 05A05, 05A17, 05A20, 05B05, 05B15, 05B20, 05B25, 05B30, 05C15, 05C99, 06A05, 10A45, 10C05, 14-XX, 20Bxx, 20Fxx, 50A20, 55C05, 55J05, 94A20 International Standard Book Number 0-8218-1419-2 Library of Congress Catalog Number 74-153879 Copyright © 1971 by the American Mathematical Society Printed in the United States of America All rights reserved except those granted to the United States Government May not be produced in any form without permission of the publishers Leo Moser (1921-1970) was active and productive in various aspects of combin• atorics and of its applications to number theory. He was in close contact with those with whom he had common interests: we will remember his sparkling wit, the universality of his anecdotes, and his stimulating presence. This volume, much of whose content he had enjoyed and appreciated, and which contains the re• construction of a contribution by him, is dedicated to his memory. CONTENTS Preface vii Modular Forms on Noncongruence Subgroups BY A. O. L. ATKIN AND H. P. F. SWINNERTON-DYER 1 Selfconjugate Tetrahedra with Respect to the Hermitian Variety xl+xl + *l + ;cg = 0 in PG(3, 22) and a Representation of PG(3, 3) BY R.
    [Show full text]
  • Two-Dimensional Rotational Kinematics Rigid Bodies
    Rigid Bodies A rigid body is an extended object in which the Two-Dimensional Rotational distance between any two points in the object is Kinematics constant in time. Springs or human bodies are non-rigid bodies. 8.01 W10D1 Rotation and Translation Recall: Translational Motion of of Rigid Body the Center of Mass Demonstration: Motion of a thrown baton • Total momentum of system of particles sys total pV= m cm • External force and acceleration of center of mass Translational motion: external force of gravity acts on center of mass sys totaldp totaldVcm total FAext==mm = cm Rotational Motion: object rotates about center of dt dt mass 1 Main Idea: Rotation of Rigid Two-Dimensional Rotation Body Torque produces angular acceleration about center of • Fixed axis rotation: mass Disc is rotating about axis τ total = I α passing through the cm cm cm center of the disc and is perpendicular to the I plane of the disc. cm is the moment of inertial about the center of mass • Plane of motion is fixed: α is the angular acceleration about center of mass cm For straight line motion, bicycle wheel rotates about fixed direction and center of mass is translating Rotational Kinematics Fixed Axis Rotation: Angular for Fixed Axis Rotation Velocity Angle variable θ A point like particle undergoing circular motion at a non-constant speed has SI unit: [rad] dθ ω ≡≡ω kkˆˆ (1)An angular velocity vector Angular velocity dt SI unit: −1 ⎣⎡rad⋅ s ⎦⎤ (2) an angular acceleration vector dθ Vector: ω ≡ Component dt dθ ω ≡ magnitude dt ω >+0, direction kˆ direction ω < 0, direction − kˆ 2 Fixed Axis Rotation: Angular Concept Question: Angular Acceleration Speed 2 ˆˆd θ Object A sits at the outer edge (rim) of a merry-go-round, and Angular acceleration: α ≡≡α kk2 object B sits halfway between the rim and the axis of rotation.
    [Show full text]
  • 2D and 3D Transformations, Homogeneous Coordinates Lecture 03
    2D and 3D Transformations, Homogeneous Coordinates Lecture 03 Patrick Karlsson [email protected] Centre for Image Analysis Uppsala University Computer Graphics November 6 2006 Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 1 / 23 Reading Instructions Chapters 4.1–4.9. Edward Angel. “Interactive Computer Graphics: A Top-down Approach with OpenGL”, Fourth Edition, Addison-Wesley, 2004. Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 2 / 23 Todays lecture ... in the pipeline Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 3 / 23 Scalars, points, and vectors Scalars α, β Real (or complex) numbers. Points P, Q Locations in space (but no size or shape). Vectors u, v Directions in space (magnitude but no position). Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 4 / 23 Mathematical spaces Scalar field A set of scalars obeying certain properties. New scalars can be formed through addition and multiplication. (Linear) Vector space Made up of scalars and vectors. New vectors can be created through scalar-vector multiplication, and vector-vector addition. Affine space An extended vector space that include points. This gives us additional operators, such as vector-point addition, and point-point subtraction. Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 5 / 23 Data types Polygon based objects Objects are described using polygons. A polygon is defined by its vertices (i.e., points). Transformations manipulate the vertices, thus manipulates the objects. Some examples in 2D Scalar α 1 float. Point P(x, y) 2 floats. Vector v(x, y) 2 floats. Matrix M 4 floats.
    [Show full text]
  • Collineations in Perspective
    Collineations in Perspective Now that we have a decent grasp of one-dimensional projectivities, we move on to their two di- mensional analogs. Although they are more complicated, in a sense, they may be easier to grasp because of the many applications to perspective drawing. Speaking of, let's return to the triangle on the window and its shadow in its full form instead of only looking at one line. Perspective Collineation In one dimension, a perspectivity is a bijective mapping from a line to a line through a point. In two dimensions, a perspective collineation is a bijective mapping from a plane to a plane through a point. To illustrate, consider the triangle on the window plane and its shadow on the ground plane as in Figure 1. We can see that every point on the triangle on the window maps to exactly one point on the shadow, but the collineation is from the entire window plane to the entire ground plane. We understand the window plane to extend infinitely in all directions (even going through the ground), the ground also extends infinitely in all directions (we will assume that the earth is flat here), and we map every point on the window to a point on the ground. Looking at Figure 2, we see that the lamp analogy breaks down when we consider all lines through O. Although it makes sense for the base of the triangle on the window mapped to its shadow on 1 the ground (A to A0 and B to B0), what do we make of the mapping C to C0, or D to D0? C is on the window plane, underground, while C0 is on the ground.
    [Show full text]
  • 1.2 Rules for Translations
    1.2. Rules for Translations www.ck12.org 1.2 Rules for Translations Here you will learn the different notation used for translations. The figure below shows a pattern of a floor tile. Write the mapping rule for the translation of the two blue floor tiles. Watch This First watch this video to learn about writing rules for translations. MEDIA Click image to the left for more content. CK-12 FoundationChapter10RulesforTranslationsA Then watch this video to see some examples. MEDIA Click image to the left for more content. CK-12 FoundationChapter10RulesforTranslationsB 18 www.ck12.org Chapter 1. Unit 1: Transformations, Congruence and Similarity Guidance In geometry, a transformation is an operation that moves, flips, or changes a shape (called the preimage) to create a new shape (called the image). A translation is a type of transformation that moves each point in a figure the same distance in the same direction. Translations are often referred to as slides. You can describe a translation using words like "moved up 3 and over 5 to the left" or with notation. There are two types of notation to know. T x y 1. One notation looks like (3, 5). This notation tells you to add 3 to the values and add 5 to the values. 2. The second notation is a mapping rule of the form (x,y) → (x−7,y+5). This notation tells you that the x and y coordinates are translated to x − 7 and y + 5. The mapping rule notation is the most common. Example A Sarah describes a translation as point P moving from P(−2,2) to P(1,−1).
    [Show full text]
  • Feature Matching and Heat Flow in Centro-Affine Geometry
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 16 (2020), 093, 22 pages Feature Matching and Heat Flow in Centro-Affine Geometry Peter J. OLVER y, Changzheng QU z and Yun YANG x y School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA E-mail: [email protected] URL: http://www.math.umn.edu/~olver/ z School of Mathematics and Statistics, Ningbo University, Ningbo 315211, P.R. China E-mail: [email protected] x Department of Mathematics, Northeastern University, Shenyang, 110819, P.R. China E-mail: [email protected] Received April 02, 2020, in final form September 14, 2020; Published online September 29, 2020 https://doi.org/10.3842/SIGMA.2020.093 Abstract. In this paper, we study the differential invariants and the invariant heat flow in centro-affine geometry, proving that the latter is equivalent to the inviscid Burgers' equa- tion. Furthermore, we apply the centro-affine invariants to develop an invariant algorithm to match features of objects appearing in images. We show that the resulting algorithm com- pares favorably with the widely applied scale-invariant feature transform (SIFT), speeded up robust features (SURF), and affine-SIFT (ASIFT) methods. Key words: centro-affine geometry; equivariant moving frames; heat flow; inviscid Burgers' equation; differential invariant; edge matching 2020 Mathematics Subject Classification: 53A15; 53A55 1 Introduction The main objective in this paper is to study differential invariants and invariant curve flows { in particular the heat flow { in centro-affine geometry. In addition, we will present some basic applications to feature matching in camera images of three-dimensional objects, comparing our method with other popular algorithms.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • The Dual Theorem Concerning Aubert Line
    The Dual Theorem concerning Aubert Line Professor Ion Patrascu, National College "Buzeşti Brothers" Craiova - Romania Professor Florentin Smarandache, University of New Mexico, Gallup, USA In this article we introduce the concept of Bobillier transversal of a triangle with respect to a point in its plan; we prove the Aubert Theorem about the collinearity of the orthocenters in the triangles determined by the sides and the diagonals of a complete quadrilateral, and we obtain the Dual Theorem of this Theorem. Theorem 1 (E. Bobillier) Let 퐴퐵퐶 be a triangle and 푀 a point in the plane of the triangle so that the perpendiculars taken in 푀, and 푀퐴, 푀퐵, 푀퐶 respectively, intersect the sides 퐵퐶, 퐶퐴 and 퐴퐵 at 퐴푚, 퐵푚 and 퐶푚. Then the points 퐴푚, 퐵푚 and 퐶푚 are collinear. 퐴푚퐵 Proof We note that = 퐴푚퐶 aria (퐵푀퐴푚) (see Fig. 1). aria (퐶푀퐴푚) 1 Area (퐵푀퐴푚) = ∙ 퐵푀 ∙ 푀퐴푚 ∙ 2 sin(퐵푀퐴푚̂ ). 1 Area (퐶푀퐴푚) = ∙ 퐶푀 ∙ 푀퐴푚 ∙ 2 sin(퐶푀퐴푚̂ ). Since 1 3휋 푚(퐶푀퐴푚̂ ) = − 푚(퐴푀퐶̂ ), 2 it explains that sin(퐶푀퐴푚̂ ) = − cos(퐴푀퐶̂ ); 휋 sin(퐵푀퐴푚̂ ) = sin (퐴푀퐵̂ − ) = − cos(퐴푀퐵̂ ). 2 Therefore: 퐴푚퐵 푀퐵 ∙ cos(퐴푀퐵̂ ) = (1). 퐴푚퐶 푀퐶 ∙ cos(퐴푀퐶̂ ) In the same way, we find that: 퐵푚퐶 푀퐶 cos(퐵푀퐶̂ ) = ∙ (2); 퐵푚퐴 푀퐴 cos(퐴푀퐵̂ ) 퐶푚퐴 푀퐴 cos(퐴푀퐶̂ ) = ∙ (3). 퐶푚퐵 푀퐵 cos(퐵푀퐶̂ ) The relations (1), (2), (3), and the reciprocal Theorem of Menelaus lead to the collinearity of points 퐴푚, 퐵푚, 퐶푚. Note Bobillier's Theorem can be obtained – by converting the duality with respect to a circle – from the theorem relative to the concurrency of the heights of a triangle.
    [Show full text]