Bayesianism and Causality, Or, Why I Am Only a Half-Bayesian
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Philosophical Analysis of Causality in Econometrics
A Philosophical Analysis of Causality in Econometrics Damien James Fennell London School of Economics and Political Science Thesis submitted to the University of London for the completion of the degree of a Doctor of Philosophy August 2005 1 UMI Number: U209675 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U209675 Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract This thesis makes explicit, develops and critically discusses a concept of causality that is assumed in structural models in econometrics. The thesis begins with a development of Herbert Simon’s (1953) treatment of causal order for linear deterministic, simultaneous systems of equations to provide a fully explicit mechanistic interpretation for these systems. Doing this allows important properties of the assumed causal reading to be discussed including: the invariance of mechanisms to intervention and the role of independence in interventions. This work is then extended to basic structural models actually used in econometrics, linear models with errors-in-the-equations. This part of the thesis provides a discussion of how error terms are to be interpreted and sets out a way to introduce probabilistic concepts into the mechanistic interpretation set out earlier. -
ABSTRACT CAUSAL PROGRAMMING Joshua Brulé
ABSTRACT Title of dissertation: CAUSAL PROGRAMMING Joshua Brul´e Doctor of Philosophy, 2019 Dissertation directed by: Professor James A. Reggia Department of Computer Science Causality is central to scientific inquiry. There is broad agreement on the meaning of causal statements, such as \Smoking causes cancer", or, \Applying pesticides affects crop yields". However, formalizing the intuition underlying such statements and conducting rigorous inference is difficult in practice. Accordingly, the overall goal of this dissertation is to reduce the difficulty of, and ambiguity in, causal modeling and inference. In other words, the goal is to make it easy for researchers to state precise causal assumptions, understand what they represent, understand why they are necessary, and to yield precise causal conclusions with minimal difficulty. Using the framework of structural causal models, I introduce a causation coeffi- cient as an analogue of the correlation coefficient, analyze its properties, and create a taxonomy of correlation/causation relationships. Analyzing these relationships provides insight into why correlation and causation are often conflated in practice, as well as a principled argument as to why formal causal analysis is necessary. Next, I introduce a theory of causal programming that unifies a large number of previ- ously separate problems in causal modeling and inference. I describe the use and implementation of a causal programming language as an embedded, domain-specific language called `Whittemore'. Whittemore permits rigorously identifying and esti- mating interventional queries without requiring the user to understand the details of the underlying inference algorithms. Finally, I analyze the computational com- plexity in determining the equilibrium distribution of cyclic causal models. -
Causal Screening to Interpret Graph Neural
Under review as a conference paper at ICLR 2021 CAUSAL SCREENING TO INTERPRET GRAPH NEURAL NETWORKS Anonymous authors Paper under double-blind review ABSTRACT With the growing success of graph neural networks (GNNs), the explainability of GNN is attracting considerable attention. However, current works on feature attribution, which frame explanation generation as attributing a prediction to the graph features, mostly focus on the statistical interpretability. They may struggle to distinguish causal and noncausal effects of features, and quantify redundancy among features, thus resulting in unsatisfactory explanations. In this work, we focus on the causal interpretability in GNNs and propose a method, Causal Screening, from the perspective of cause-effect. It incrementally selects a graph feature (i.e., edge) with large causal attribution, which is formulated as the individual causal effect on the model outcome. As a model-agnostic tool, Causal Screening can be used to generate faithful and concise explanations for any GNN model. Further, by conducting extensive experiments on three graph classification datasets, we observe that Causal Screening achieves significant improvements over state-of-the-art approaches w.r.t. two quantitative metrics: predictive accuracy, contrastivity, and safely passes sanity checks. 1 INTRODUCTION Graph neural networks (GNNs) (Gilmer et al., 2017; Hamilton et al., 2017; Velickovic et al., 2018; Dwivedi et al., 2020) have exhibited impressive performance in a wide range of tasks. Such a success comes from the powerful representation learning, which incorporates the graph structure with node and edge features in an end-to-end fashion. With the growing interest in GNNs, the explainability of GNN is attracting considerable attention. -
Artificial Intelligence Is Stupid and Causal Reasoning Won't Fix It
Artificial Intelligence is stupid and causal reasoning wont fix it J. Mark Bishop1 1 TCIDA, Goldsmiths, University of London, London, UK Email: [email protected] Abstract Artificial Neural Networks have reached `Grandmaster' and even `super- human' performance' across a variety of games, from those involving perfect- information, such as Go [Silver et al., 2016]; to those involving imperfect- information, such as `Starcraft' [Vinyals et al., 2019]. Such technological developments from AI-labs have ushered concomitant applications across the world of business, where an `AI' brand-tag is fast becoming ubiquitous. A corollary of such widespread commercial deployment is that when AI gets things wrong - an autonomous vehicle crashes; a chatbot exhibits `racist' behaviour; automated credit-scoring processes `discriminate' on gender etc. - there are often significant financial, legal and brand consequences, and the incident becomes major news. As Judea Pearl sees it, the underlying reason for such mistakes is that \... all the impressive achievements of deep learning amount to just curve fitting". The key, Pearl suggests [Pearl and Mackenzie, 2018], is to replace `reasoning by association' with `causal reasoning' - the ability to infer causes from observed phenomena. It is a point that was echoed by Gary Marcus and Ernest Davis in a recent piece for the New York Times: \we need to stop building computer systems that merely get better and better at detecting statistical patterns in data sets { often using an approach known as \Deep Learning" { and start building computer systems that from the moment of arXiv:2008.07371v1 [cs.CY] 20 Jul 2020 their assembly innately grasp three basic concepts: time, space and causal- ity"[Marcus and Davis, 2019]. -
The Practice of Causal Inference in Cancer Epidemiology
Vol. 5. 303-31 1, April 1996 Cancer Epidemiology, Biomarkers & Prevention 303 Review The Practice of Causal Inference in Cancer Epidemiology Douglas L. Weedt and Lester S. Gorelic causes lung cancer (3) and to guide causal inference for occu- Preventive Oncology Branch ID. L. W.l and Comprehensive Minority pational and environmental diseases (4). From 1965 to 1995, Biomedical Program IL. S. 0.1. National Cancer Institute, Bethesda, Maryland many associations have been examined in terms of the central 20892 questions of causal inference. Causal inference is often practiced in review articles and editorials. There, epidemiologists (and others) summarize evi- Abstract dence and consider the issues of causality and public health Causal inference is an important link between the recommendations for specific exposure-cancer associations. practice of cancer epidemiology and effective cancer The purpose of this paper is to take a first step toward system- prevention. Although many papers and epidemiology atically reviewing the practice of causal inference in cancer textbooks have vigorously debated theoretical issues in epidemiology. Techniques used to assess causation and to make causal inference, almost no attention has been paid to the public health recommendations are summarized for two asso- issue of how causal inference is practiced. In this paper, ciations: alcohol and breast cancer, and vasectomy and prostate we review two series of review papers published between cancer. The alcohol and breast cancer association is timely, 1985 and 1994 to find answers to the following questions: controversial, and in the public eye (5). It involves a common which studies and prior review papers were cited, which exposure and a common cancer and has a large body of em- causal criteria were used, and what causal conclusions pirical evidence; over 50 studies and over a dozen reviews have and public health recommendations ensued. -
Statistics and Causal Inference (With Discussion)
Applied Statistics Lecture Notes Kosuke Imai Department of Politics Princeton University February 2, 2008 Making statistical inferences means to learn about what you do not observe, which is called parameters, from what you do observe, which is called data. We learn the basic principles of statistical inference from a perspective of causal inference, which is a popular goal of political science research. Namely, we study statistics by learning how to make causal inferences with statistical methods. 1 Statistical Framework of Causal Inference What do we exactly mean when we say “An event A causes another event B”? Whether explicitly or implicitly, this question is asked and answered all the time in political science research. The most commonly used statistical framework of causality is based on the notion of counterfactuals (see Holland, 1986). That is, we ask the question “What would have happened if an event A were absent (or existent)?” The following example illustrates the fact that some causal questions are more difficult to answer than others. Example 1 (Counterfactual and Causality) Interpret each of the following statements as a causal statement. 1. A politician voted for the education bill because she is a democrat. 2. A politician voted for the education bill because she is liberal. 3. A politician voted for the education bill because she is a woman. In this framework, therefore, the fundamental problem of causal inference is that the coun- terfactual outcomes cannot be observed, and yet any causal inference requires both factual and counterfactual outcomes. This idea is formalized below using the potential outcomes notation. -
Bayesian Causal Inference
Bayesian Causal Inference Maximilian Kurthen Master’s Thesis Max Planck Institute for Astrophysics Within the Elite Master Program Theoretical and Mathematical Physics Ludwig Maximilian University of Munich Technical University of Munich Supervisor: PD Dr. Torsten Enßlin Munich, September 12, 2018 Abstract In this thesis we address the problem of two-variable causal inference. This task refers to inferring an existing causal relation between two random variables (i.e. X → Y or Y → X ) from purely observational data. We begin by outlining a few basic definitions in the context of causal discovery, following the widely used do-Calculus [Pea00]. We continue by briefly reviewing a number of state-of-the-art methods, including very recent ones such as CGNN [Gou+17] and KCDC [MST18]. The main contribution is the introduction of a novel inference model where we assume a Bayesian hierarchical model, pursuing the strategy of Bayesian model selection. In our model the distribution of the cause variable is given by a Poisson lognormal distribution, which allows to explicitly regard discretization effects. We assume Fourier diagonal covariance operators, where the values on the diagonal are given by power spectra. In the most shallow model these power spectra and the noise variance are fixed hyperparameters. In a deeper inference model we replace the noise variance as a given prior by expanding the inference over the noise variance itself, assuming only a smooth spatial structure of the noise variance. Finally, we make a similar expansion for the power spectra, replacing fixed power spectra as hyperparameters by an inference over those, where again smoothness enforcing priors are assumed. -
Part IV: Reminiscences
Part IV: Reminiscences 31 Questions and Answers Nils J. Nilsson Few people have contributed as much to artificial intelligence (AI) as has Judea Pearl. Among his several hundred publications, several stand out as among the historically most significant and influential in the theory and practice of AI. With my few pages in this celebratory volume, I join many of his colleagues and former students in showing our gratitude and respect for his inspiration and exemplary career. He is a towering figure in our field. Certainly one key to Judea’s many outstanding achievements (beyond dedication and hard work) is his keen ability to ask the right questions and follow them up with insightful intuitions and penetrating mathematical analyses. His overarching question, it seems to me, is “how is it that humans can do so much with simplistic, unreliable, and uncertain information?” The very name of his UCLA laboratory, the Cognitive Systems Laboratory, seems to proclaim his goal: understanding and automating the most cognitive of all systems, namely humans. In this essay, I’ll focus on the questions and inspirations that motivated his ground-breaking research in three major areas: heuristics, uncertain reasoning, and causality. He has collected and synthesized his work on each of these topics in three important books [Pearl 1984; Pearl 1988; Pearl 2000]. 1 Heuristics Pearl is explicit about what inspired his work on heuristics [Pearl 1984, p. xi]: The study of heuristics draws its inspiration from the ever-amazing ob- servation of how much people can accomplish with that simplistic, un- reliable information source known as intuition. -
Articles Causal Inference in Civil Rights Litigation
VOLUME 122 DECEMBER 2008 NUMBER 2 © 2008 by The Harvard Law Review Association ARTICLES CAUSAL INFERENCE IN CIVIL RIGHTS LITIGATION D. James Greiner TABLE OF CONTENTS I. REGRESSION’S DIFFICULTIES AND THE ABSENCE OF A CAUSAL INFERENCE FRAMEWORK ...................................................540 A. What Is Regression? .........................................................................................................540 B. Problems with Regression: Bias, Ill-Posed Questions, and Specification Issues .....543 1. Bias of the Analyst......................................................................................................544 2. Ill-Posed Questions......................................................................................................544 3. Nature of the Model ...................................................................................................545 4. One Regression, or Two?............................................................................................555 C. The Fundamental Problem: Absence of a Causal Framework ....................................556 II. POTENTIAL OUTCOMES: DEFINING CAUSAL EFFECTS AND BEYOND .................557 A. Primitive Concepts: Treatment, Units, and the Fundamental Problem.....................558 B. Additional Units and the Non-Interference Assumption.............................................560 C. Donating Values: Filling in the Missing Counterfactuals ...........................................562 D. Randomization: Balance in Background Variables ......................................................563 -
Awards and Distinguished Papers
Awards and Distinguished Papers IJCAI-15 Award for Research Excellence search agenda in their area and will have a first-rate profile of influential re- search results. e Research Excellence award is given to a scientist who has carried out a e award is named for John McCarthy (1927-2011), who is widely rec- program of research of consistently high quality throughout an entire career ognized as one of the founders of the field of artificial intelligence. As well as yielding several substantial results. Past recipients of this honor are the most giving the discipline its name, McCarthy made fundamental contributions illustrious group of scientists from the field of artificial intelligence: John of lasting importance to computer science in general and artificial intelli- McCarthy (1985), Allen Newell (1989), Marvin Minsky (1991), Raymond gence in particular, including time-sharing operating systems, the LISP pro- Reiter (1993), Herbert Simon (1995), Aravind Joshi (1997), Judea Pearl (1999), Donald Michie (2001), Nils Nilsson (2003), Geoffrey E. Hinton gramming languages, knowledge representation, commonsense reasoning, (2005), Alan Bundy (2007), Victor Lesser (2009), Robert Anthony Kowalski and the logicist paradigm in artificial intelligence. e award was estab- (2011), and Hector Levesque (2013). lished with the full support and encouragement of the McCarthy family. e winner of the 2015 Award for Research Excellence is Barbara Grosz, e winner of the 2015 inaugural John McCarthy Award is Bart Selman, Higgins Professor of Natural Sciences at the School of Engineering and Nat- professor at the Department of Computer Science, Cornell University. Pro- ural Sciences, Harvard University. Professor Grosz is recognized for her pio- fessor Selman is recognized for expanding our understanding of problem neering research in natural language processing and in theories and applica- complexity and developing new algorithms for efficient inference. -
Relative Entropy, Probabilistic Inference and AI
I I RELATIVE ENTROPY, PROBABILISTIC INFERENCE, AND AI John E. Shore I Computer Science and Systems Branch Code 7591 Information Technology Division I Naval Research Laboratory Washington, D. C. 20375 I I. INTRODUCTION For probability distributions q and p, the relative entropy I n "" q · H(q,p) = L.Jqilog -'. (1) i=l p, I is an information-theoretic measure of the dissimilarity between q = q 1, • • · ,qn and p = p1 1 • • • , pn (H is also called cross-entropy, discrimination information, directed divergence, !-divergence, K-L number, among other terms). Various properties of relative entropy have led to its widespread use in information theory. These properties suggest that relative entropy has a role I to play in systems that attempt to perform inference in terms of probability distributions. In this paper, I will review some basic properties of relative entropy as well as its role in probabilistic inference. I will also mention briefly a few existing and potential applications of relative entropy I to so-called artificial intelligence (AI). I II. INFORMATION, ENTROPY, AND RELATIVE-ENTROPY A. Information and Entropy Suppose that some proposition Xi has probability p(xi) of being true. Then the amount of I information that we would obtain if we learn that Xi is true is I ( xi) = - log p ( xi) . (2) !(xi) measures the uncertainty of xi. Except for the base of the logarithm, this common I definition arises essentially from the requirement that the information implicit in two independent propositions be additive. In particular, if xi and xi, i =I=j, are independent propositions with joint probability p(xi/\ x1) = p(xi )p (x; ), then the requirements I !(xi/\ xi)= !(xi)+ !(xi) (3) and I I(xd � 0 (4) are sufficient to establish (2) except for the arbitrary base of the logarithm, which determines the units. -
Causation and Causal Inference in Epidemiology
PUBLIC HEALTH MAnERS Causation and Causal Inference in Epidemiology Kenneth J. Rothman. DrPH. Sander Greenland. MA, MS, DrPH. C Stat fixed. In other words, a cause of a disease Concepts of cause and causal inference are largely self-taught from early learn- ing experiences. A model of causation that describes causes in terms of suffi- event is an event, condition, or characteristic cient causes and their component causes illuminates important principles such that preceded the disease event and without as multicausality, the dependence of the strength of component causes on the which the disease event either would not prevalence of complementary component causes, and interaction between com- have occun-ed at all or would not have oc- ponent causes. curred until some later time. Under this defi- Philosophers agree that causal propositions cannot be proved, and find flaws or nition it may be that no specific event, condi- practical limitations in all philosophies of causal inference. Hence, the role of logic, tion, or characteristic is sufiicient by itself to belief, and observation in evaluating causal propositions is not settled. Causal produce disease. This is not a definition, then, inference in epidemiology is better viewed as an exercise in measurement of an of a complete causal mechanism, but only a effect rather than as a criterion-guided process for deciding whether an effect is pres- component of it. A "sufficient cause," which ent or not. (4m JPub//cHea/f/i. 2005;95:S144-S150. doi:10.2105/AJPH.2004.059204) means a complete causal mechanism, can be defined as a set of minimal conditions and What do we mean by causation? Even among eral.