Efficient Pattern Matching over Event Streams ∗ Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman Department of Computer Science University of Massachusetts Amherst Amherst, MA, USA fjagrati, yanlei, dpg,
[email protected] ABSTRACT against complex patterns and the events used to match each Pattern matching over event streams is increasingly being pattern are transformed into new events for output. Re- employed in many areas including financial services, RFID- cently, such pattern matching over streams has aroused sig- based inventory management, click stream analysis, and elec- nificant interest in industry [28, 30, 29, 9] due to its wide tronic health systems. While regular expression matching applicability in areas such as financial services [10], RFID- is well studied, pattern matching over streams presents two based inventory management [31], click stream analysis [26], new challenges: Languages for pattern matching over streams and electronic health systems [16]. In financial services, for are significantly richer than languages for regular expression instance, a brokerage customer may be interested in a se- matching. Furthermore, efficient evaluation of these pattern quence of stock trading events that represent a new market queries over streams requires new algorithms and optimiza- trend. In RFID-based tracking and monitoring, applica- tions: the conventional wisdom for stream query processing tions may want to track valid paths of shipments and detect (i.e., using selection-join-aggregation) is inadequate. anomalies such as food contamination in supply chains. In this paper, we present a formal evaluation model that While regular expression matching is a well studied com- offers precise semantics for this new class of queries and a puter science problem [17], pattern matching over streams query evaluation framework permitting optimizations in a presents two new challenges: principled way.