What Are Bacteria, Yeasts and Molds?

Total Page:16

File Type:pdf, Size:1020Kb

What Are Bacteria, Yeasts and Molds? University of Georgia Cooperative Extension Bulletin 817 1 What are Bacteria, Yeasts & Molds? Table of Contents Looking Beyond What Your Eyes Can See ............................................3 The Universal Cell..............................................................................................3 Bacteria ...............................................................................................................4 Bacterial Eating Habits ...................................................................................5 Growth and Importance to Food Industry ..................................................5 Sugar-Loving Yeasts .....................................................................................6 Growth and Importance to Food Industry ..................................................6 Moisture and Air-Loving Molds .................................................................7 Growth and Importance to Food Industry ..................................................7 Additional Information ..................................................................................8 This publication is part of the UGA EFS “Starting a New Food Business” packet. For more informa- tion, please contact the UGA Food Science specialists. Extension Food Science Outreach Program 240 Food Science Building The University of Georgia Athens, GA 30602-7610 (706) 542-2574 fax (706) 542-9066 Website: http://www.EFSonline.uga.edu Grateful appreciation is expressed to the individuals and organizations who contributed to this publication. Prepared by William C. Hurst, Extension Food Scientist, James A. Christian, Former Extension Food Scientist, and George A. Schuler, Former Extension Food Scientist What are Bacteria, Yeasts & Molds? 2 University of Georgia Cooperative Extension Bulletin 817 Looking Beyond What Your Eyes Can See Just what are microorganisms? They are small living forms of life which we cannot see with the naked eye. Bacteria, yeasts and molds are three types of microorganisms. Some people often confuse, and almost always misunderstand, their functions, but they are just as real and alive as you are. They eat and grow. They reproduce and die. Have you ever wondered just how small microorganisms really are? Molds can be seen with only slight magnification -- use of an ordinary magnifying glass. Yeasts must be viewed through a mi- croscope that magnifies several hundred times. Bacteria can best be seen when studied with a more powerful scope that enlarges 1,000 times. Bacteria, yeasts and molds can be found everywhere. Scientists have gathered them from clouds above mountain tops and in the deepest parts of the ocean. They are present on animals, people and even in the air we breathe. Microorganisms have a direct impact on our daily lives. Some are helpful. They aid our bodily pro- cesses by helping break down complex foods into simpler substances. Some, called germs, are harm- ful to us by the role they play in causing diseases. The Universal Cell All living organisms, large and small, have one thing in common – the cell. This is a tiny living fac- tory capable of converting simple food substances into energy and new cell material and of reproduc- ing itself. Larger organisms, including people, are composed of billions of cells with many different roles. They make up your body’s parts from your brain to your big toe. Microorganisms, on the other hand, are made up of a very few or even a single cell capable of carrying on all of life’s processes. So a basic understanding of cell structure and func- tion is essential to understanding the actions of bacte- ria, yeasts and molds. Since the cell is the basic unit of all living things, you might think it is a simple structure. Nothing could be farther from the truth. The cell is complex in its make- up and its function. Many scientists have spent their lives studying it. The main parts of the cell are the nucleus, cytoplasm and cell wall. The nucleus is the control center. It directs cell division or the formation of new cells. They cytoplasm contains the parts which convert food material into energy and new cell material. The cell wall or membrane holds everything together and controls the passage of material into and out of the cell. University of Georgia Cooperative Extension Bulletin 817 3 What are Bacteria, Yeasts & Molds? Bacteria Bacteria make up the largest group of microorganisms. People often think of them only as germs and the harm they do. Actually, only a small number of bacteria types are pathogenic (disease causing). Most are harmless and many are helpful. There are thousands of different kinds of bacteria. Some differ only slightly and it takes a highly trained person to identify them. There are also groups which differ greatly in growth habits and appearance and are quite easily identified. But regardless of minor differences, most bacteria can be classified according to the five basic cell shapes illustrated. In addition to their different shapes, their cell arrangement varies. For example, some cocci are always grouped in pairs (diplococci). Others are arranged in chains (streptococci). Still others are bunched (staphylococci). Diplococci are the kind which cause pneumonia. Streptococci are often associated with “strep throat”. Staphylococci are familiar to many because of their role in “staph infections” and some types of food poisoning. Bacteria also vary somewhat in size, but average about 1/25,000 inch. In other words, 25,000 bacteria laid side by side would occupy only one inch of space. One cubic inch is big enough to hold nine tril- lion average size bacteria -- about 3,000 bacteria for every person on earth. Microorganisms, including bacteria, can also be grouped according to their requirement for oxygen. Some grow only in the presence of oxygen (aerobes). Others grow only in the absence of oxygen (an- aerobes). Some are able to grow with or without oxygen (facultative anaerobes). Under natural conditions, anaerobes grow only in places protected from the air, such as deep in the soil or under water. They can also grow under man-made anaerobic conditions, such as in canned or vacuum packed foods which have not been processed or handled properly. What are Bacteria, Yeasts & Molds? 4 University of Georgia Cooperative Extension Bulletin 817 Bacterial Eating Habits Bacteria and other microorganisms need food in order to grow and multiply. They vary in their food needs, but nearly everything we consider as food can also be used as food by some type of bacteria. To be used by bacteria, a food substance must pass into the cell where it can be processed into energy and new cell material. Because most foods are too complex to move into a bacterial cell, they must be broken down into simpler substances. Enzymes do this by increasing the rate of biochemical reac- tions. Produced within the bacterial cell, enzymes move through the cell wall to break down the food on the outside into a form bacteria can use. Growth and Importance to Food Industry Bacteria reproduce by a process called binary fission-- one cell divides and becomes two. Some can reproduce at a very rapid rate under proper conditions. If food and moisture are adequate and the temperature is right, certain bacteria can reproduce in as little as 20 minutes. ithinW 20 minutes, one cell becomes two; in 40 minutes, there will be four, and so on. In only eight hours, the original cell will have multiplied to nearly 17 million new bacteria. Of course, conditions don’t remain favorable for such a rate of reproduction for long. If they did, we could be buried in bacterial cells. We must use a microscope capable of magnifying 500 times in order to see a single bacterial cell. However, if that cell is al- lowed to grow on suitable food or solid media, it will reproduce rapidly into a colony consisting of millions of cells. The colony is visible to the naked eye. The photo shows hundreds of bacte- rial colonies which grew and reproduced within 24 hours after a dirty apron was touched to a place of nutrient agar. Plate counting, a technique by which colonies of bacteria are grown from single cells, makes it possible to determine the num- ber of bacteria in a food sample without the aid of a microscope. An important thing to consider in the growth of bacteria is the Bacterial colonies from a dirty apron after ability of certain types to produce spores. A spore is a dormant 24 hours. or resting state of a bacterial cell. There are certain basic differences between spores andactive or vegetative bacterial cells. Spores are not easily killed. In fact, conditions which will quickly kill active bacteria have little or no effect on spores. A temperature of 180oF will kill bacterial cells within minutes, but bacterial spores can resist this temperature indefinitely. This is important to us in that all processing times for canned foods are calculated by using both the time and temperature required to kill bacterial spores. Another important method of classifying bacteria is by their ability to grow and reproduce at various temperatures. Some are cold loving and grow well under refrigeration. Called psychrophilic bacteria, this group grows at temperatures less that 50oF. They are responsible for many types of spoilage in refrigerated foods, such as slime formation on meats and ropiness in milk. The second group – mesophilic bacteria – includes those which cause disease and food poisoning. They grow only at moderate temperatures of 50oF to 110oF. You can see, therefore, why it’s so impor- tant to store
Recommended publications
  • Chapter 10: Classification of Microorganisms
    Chapter 10: Classification of Microorganisms 1. The Taxonomic Hierarchy 2. Methods of Identification 1. The Taxonomic Hierarchy Phylogenetic Tree of the 3 Domains Taxonomic Hierarchy • 8 successive taxa are used to classify each species: Domain Kingdom Phylum Class Order Family Genus **species can also contain different strains** Species Scientific Nomenclature To avoid confusion, every type of organism must be referred to in a consistent way. The current system of nomenclature (naming) has been in use since the 18th century: • every type of organism is referred by its genus name followed by its specific epithet (i.e., species name) Homo sapiens (H. sapiens) Escherichia coli (E. coli) • name should be in italics and only the genus is capitalized which can also be abbreviated • names are Latin (or “Latinized” Greek) with the genus being a noun and the specific epithet an adjective **strain info can be listed after the specific epithet (e.g., E. coli DH5α)** 2. Methods of Identification Biochemical Testing In addition to morphological (i.e., appearance under the microscope) and differential staining characteristics, microorganisms can also be identified by their biochemical “signatures”: • the nutrient requirements and metabolic “by-products” of of a particular microorganism • different growth media can be used to test the physiological characteristics of a microorganism • e.g., medium with lactose only as energy source • e.g., medium that reveals H2S production **appearance on test medium reveals + or – result!** Commercial devices for rapid Identification Perform multiple tests simultaneously Enterotube II Such devices involve the simultaneous inoculation of various test media: • ~24 hrs later the panel of results reveals ID of organism! Use of Dichotomous Keys Series of “yes/no” biochemical tests to ID organism.
    [Show full text]
  • Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
    antioxidants Review Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide Ivan Kushkevych 1,* , Veronika Bosáková 1,2 , Monika Vítˇezová 1 and Simon K.-M. R. Rittmann 3,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (V.B.); [email protected] (M.V.) 2 Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria * Correspondence: [email protected] (I.K.); [email protected] (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.) Abstract: Hydrogen sulfide is a toxic compound that can affect various groups of water microorgan- isms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as Citation: Kushkevych, I.; Bosáková, well as the conditions for isolation and cultivation of these microorganisms will be presented. V.; Vítˇezová,M.; Rittmann, S.K.-M.R.
    [Show full text]
  • Revised Glossary for AQA GCSE Biology Student Book
    Biology Glossary amino acids small molecules from which proteins are A built abiotic factor physical or non-living conditions amylase a digestive enzyme (carbohydrase) that that affect the distribution of a population in an breaks down starch ecosystem, such as light, temperature, soil pH anaerobic respiration respiration without using absorption the process by which soluble products oxygen of digestion move into the blood from the small intestine antibacterial chemicals chemicals produced by plants as a defence mechanism; the amount abstinence method of contraception whereby the produced will increase if the plant is under attack couple refrains from intercourse, particularly when an egg might be in the oviduct antibiotic e.g. penicillin; medicines that work inside the body to kill bacterial pathogens accommodation ability of the eyes to change focus antibody protein normally present in the body acid rain rain water which is made more acidic by or produced in response to an antigen, which it pollutant gases neutralises, thus producing an immune response active site the place on an enzyme where the antimicrobial resistance (AMR) an increasing substrate molecule binds problem in the twenty-first century whereby active transport in active transport, cells use energy bacteria have evolved to develop resistance against to transport substances through cell membranes antibiotics due to their overuse against a concentration gradient antiretroviral drugs drugs used to treat HIV adaptation features that organisms have to help infections; they
    [Show full text]
  • Marine Microorganisms: Evolution and Solution to Pollution Fu L Li1, Wang B1,2
    COMMENTARY Marine microorganisms: Evolution and solution to pollution Fu L Li1, Wang B1,2 Li FL, Wang B. Marine microorganisms: Evolution and solution to pollution. J Mar Microbiol. 2018;2(1):4-5. nce ocean nurtured life, now she needs our care. Marine microorganism will be an opportunity to further understand ourselves and to seek for new Ois the host of ocean in all ages. We should learn from them humbly. methods of fighting old infections. Marine microorganism is tightly bond with human during the history of evolution and nowadays’ environment pollution. Along with industrial revolution, our marine ecosystem suffered serious pollutions. Microplastics are tiny plastic particles (<5 mm) (Figure 1B), Although the topic is still in debate, life is probably originated from which poison marine lives. Because these microplastics are very hard to be submarine in hydrothermal vent systems (1). In the journey of evolution, our degraded, it is predicted that there will be more microplastics than fish in biosphere was completely dominated by microbes for a very long time (Figure ocean by the year 2050 (7). Since marine sediments are considered as the sink 1A). Human being evolves with those microorganisms. Consequently, of microplastics and marine microbes are key dwellers of marine sediments, the influences of microorganisms can be found in all aspects of human more attention should be paid on the interactions between microplastics biology. More than 65% of our genes originated with bacteria, archaea, and and marine microbes. Actually, a call for this has been published in 2011 unicellular eukaryotes, including those genes responsible for host-microbe (8).
    [Show full text]
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • Lokiarchaeota: Biologists Discover 'Missing Link' Microorganism
    Home About Us News Archive Copyright Privacy Policy Contact Us Newsletter RSS HOME ASTRONOMY SPACE EXPLORATION ARCHAEOLOGY PALEONTOLOGY BIOLOGY PHYSICS Lokiarchaeota: Biologists Discover ‘Missing Link’ Microorganism May 7, 2015 by Sci-News.com « PREVIOUS Published in A team of biologists, co-led by Dr Lionel Guy and Dr Thijs J. G. Ettema from Biology Uppsala University in Sweden, has discovered a new group of Tagged as microorganisms that represents an intermediate form in-between the Archaea simple cells of bacteria and the complex cell types of eukaryotes. Bacteria Eukaryote Lokiarchaeota Follow Like 16k Share Tweet 12 Like 58 41 You Might Like Bottlenose Dolphins Form Highly Complex Networks of Friends Rorqual Whales This false-color image shows a cell of thermophilic methanogenic archaea. Image credit: University of Have Unique California Museum of Paleontology. Stretchy Nerves In 1977, biochemist Dr Carl Woese and his colleagues at the University of Illinois described an entirely new group of organisms, the Archaea (originally found in extreme environments, such as hydrothermal vents and terrestrial hot springs). The scientists were studying relationships among the prokaryotes using DNA Extinction of sequences, and found that Archaea have distinct molecular characteristics World’s Largest separating them from bacteria as well as from eukaryotes. They proposed that Herbivores May Lead to Empty life can be divided into three domains: Eukaryota, Eubacteria, and Landscapes, Say Archaebacteria. Researchers Despite that archaeal cells were simple and small like bacteria, scientists found that Archaea were more closely related to organisms with complex cell types, a group collectively known as ‘eukaryotes.’ This observation has puzzled Sichuan Bush biologists for years.
    [Show full text]
  • Marine Microplankton Ecology Reading
    Marine Microplankton Ecology Reading Microbes dominate our planet, especially the Earth’s oceans. The distinguishing feature of microorganisms is their small size, usually defined as less than 200 micrometers (µm); they are all invisible to the naked eye. As a group, sea microbes are extremely diverse, and extremely versatile with respect to their abilities to make and eat food. All marine microbes are too small to swim against the current and are therefore classified as plankton. First we will discuss several ways to classify marine microbes. 1. Size Planktonic marine organisms can be divided into the following size categories: Category Size femtoplankton <0.2 µm picoplankton 0.2-2 µm nanoplankton 2-20 µm microplankton 20-200 µm mesoplankton 200-2000 µm In this laboratory we are concerned with the microscopic portion of the plankton, less than 200 µm. These organisms are not visible to the naked eye (Figure 1). Figure 1. Size classes of marine plankton 2. Type A. Viruses Viruses are the smallest and simplest microplankton. They range from 0.01 to 0.3 um in diameter. Externally, viruses have a capsid, or protein coat. Viruses can also have simple or complex external morphologies with tail fibers and structures that are used to inject DNA or RNA into their host. Viruses have little internal morphology. They do not have a nucleus or organelles. They do not have chlorophyll. Inside a virus there is only nucleic acid, either DNA or RNA. Viruses do not grow and have no metabolism. Marine viruses are highly abundant. There are up to 10 billion in one liter of seawater! B.
    [Show full text]
  • Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
    City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I.
    [Show full text]
  • Human Microbiome: Your Body Is an Ecosystem
    Human Microbiome: Your Body Is an Ecosystem This StepRead is based on an article provided by the American Museum of Natural History. What Is an Ecosystem? An ecosystem is a community of living things. The living things in an ecosystem interact with each other and with the non-living things around them. One example of an ecosystem is a forest. Every forest has a mix of living things, like plants and animals, and non-living things, like air, sunlight, rocks, and water. The mix of living and non-living things in each forest is unique. It is different from the mix of living and non-living things in any other ecosystem. You Are an Ecosystem The human body is also an ecosystem. There are trillions tiny organisms living in and on it. These organisms are known as microbes and include bacteria, viruses, and fungi. There are more of them living on just your skin right now than there are people on Earth. And there are a thousand times more than that in your gut! All the microbes in and on the human body form communities. The human body is an ecosystem. It is home to trillions of microbes. These communities are part of the ecosystem of the human Photo Credit: Gaby D’Alessandro/AMNH body. Together, all of these communities are known as the human microbiome. No two human microbiomes are the same. Because of this, you are a unique ecosystem. There is no other ecosystem like your body. Humans & Microbes Microbes have been around for more than 3.5 billion years.
    [Show full text]
  • MOLD and MILDEW – an OVERVIEW/MARINE UPHOLSTERY Mold and Mildew Problems in the Marine Or Exterior Likely Element to Control Is Moisture
    performance products PERFORMANCE PRODUCTS DIVISION MOLD AND MILDEW – AN OVERVIEW/MARINE UPHOLSTERY Mold and mildew problems in the marine or exterior likely element to control is moisture. Keep a surface upholstery, wallcovering, paint, tarpaulin, swimming dry and the ambient air dry, and you can break the pool and shower curtain markets, to name a few, link in the Mildew Square. In actuality, this is very have been well documented over the last 25 years. difficult. Marine upholstery may be dry when one sits The objective of this overview is to review the causes on it, but it is constantly exposed to rain, splashes and and cures of these unsightly and odoriferous wet bathing suits. problems and suggest actions to reduce their impact on the quality of goods as perceived by the Spores consumers. Food THE CAUSE – MICROORGANISMS The two principal causes of offensive odors and Water unsightly stains and growths are bacteria and fungi, Warmth commonly called microorganisms. Bacteria are simple, single-celled organisms. Fungi, referred to as mold and mildew, are significantly more complex. A A COMPLEX PROBLEM – AN EXAMPLE subset of fungal organisms is a type that produces One can observe an unsightly stain, dirt, or mildew colored byproducts as part of its digestive process. growth on the surface of a marine seat and ask the These byproducts are recognized as stains and are question, “How did it get there?” Dirt carried by the typically pink, yellow, purple or black. All wind or sudden shower will carry the spores or seeds, microorganisms require a source of energy; carbon inoculating the surface.
    [Show full text]
  • Microbial Growth
    7 Microbial Growth 1 7.1 Reproductive strategies 1. Describe binary fission as observed in bacteria and archaea 2. Compare the three reproductive strategies used by bacteria other than binary fission 2 Reproductive Strategies • The reproductive strategies of eukaryotic microbes – asexual and sexual, haploid or diploid • Bacteria and Archaea – haploid only, asexual - binary fission, budding, filamentous – all must replicate and segregate the genome prior to division 3 4 7.2 Bacterial cell cycle 1. Summarize the two major events in a typical bacterial cell cycle 2. State the functions of cytoskeletal proteins in a typical bacterial cell cycle and in determining cell shape 5 Bacterial Cell Cycle • Cell cycle is sequence of events from formation of new cell through the next cell division – most bacteria divide by binary fission • Two pathways function during cycle – DNA replication and partition – cytokinesis 6 Chromosome Replication and Partitioning - 1 • Most bacterial chromosomes are circular • Single origin of replication – site at which replication begins • Terminus – site at which replication is terminated, located opposite of the origin • Replisome – group of proteins needed for DNA synthesis • DNA replication proceeds in both directions from the origin • Origins move to opposite ends of the cell 7 8 Chromosome Partitioning • Replisome pushes, or condensation of, daughter chromosomes to opposite ends • MreB (murein cluster B) – an actin homolog, plays role in determination of cell shape as spiral inside cell periphery, and chromosome
    [Show full text]
  • Chromochloris Zofingiensis (Chlorophyceae) Divides By
    biology Article Chromochloris zofingiensis (Chlorophyceae) Divides by Consecutive Multiple Fission Cell-Cycle under Batch and Continuous Cultivation Idan Koren, Sammy Boussiba , Inna Khozin-Goldberg and Aliza Zarka * Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Midreshet Ben-Gurion 8499000, Israel; [email protected] (I.K.); [email protected] (S.B.); [email protected] (I.K.-G.) * Correspondence: [email protected] Simple Summary: Microalgae are plant-like micro-organisms naturally found in fresh and marine water environments, inhabiting a vast range of ecosystems. They capture light energy through photosynthesis and convert low energy inorganic compounds (carbon dioxide and water) into high energy complex organic compounds, such as carbohydrates and fats. Chromochloris zofingiensis is a unicellular microalga currently under intensive research, due to its ability to produce high value pharmaceutical and nutritional pigments. Understanding its growth characteristics is crucial for the establishment of an efficient commercial production of those pigments from this alga. Thus, we have developed a method to stain the nucleus of the alga which enabled us to follow the division pattern under commonly used cultivation methods. We found that C. zofingiensis cells conduct consecutive Citation: Koren, I.; Boussiba, S.; DNA synthesis and divisions of the nucleus to produce 8 or 16 nuclei before it divides into 8 or Khozin-Goldberg, I.; Zarka, A. 16 daughter cells, respectively. Under high light illumination, the whole process lasts several days, Chromochloris zofingiensis through which cells grow during the light period and divide during the dark period.
    [Show full text]