FERTIG Diplomarbeit 2 12 10

Total Page:16

File Type:pdf, Size:1020Kb

FERTIG Diplomarbeit 2 12 10 Beate Übelleitner Morphological and genetic analysis of moss-dwelling tardigrades Masterarbeit zur Erlangung des akademischen Grades einer Magistra an der Naturwissenschaftlichen Fakultät der Karl-Franzens-Universität Graz Associate Professor Dr. Steven Weiss Institut für Zoologie 2010 1 Thanks, to Steven Weiss and Kathrin Winkler for their supervision and help and Theodora Kopun, Adriana Atanassova and Maria Unterberger for their time. I would also like to thank my family and friends for their support. 2 Deutsche Zusammenfassung/German Summary Tardigraden sind mikroskopisch kleine Invertebraten, die marine und terrestrische Ökosysteme, sowie Süßwasser-Ökosysteme bewohnen und auf einen Wasserfilm um ihren Körper angewiesen sind um zu leben. Das Phylum Tardigrada besteht aus zwei Klassen: Heterotardigrada und Eutardigrada. Von verschiedenen Habitaten in der Steiermark wurden Moosproben genommen und nach Tardigraden untersucht. Aus einigen Proben wurden Dauerpräparate hergestellt, andere wurden für die genetische Analyse verwendet, wobei die mtDNA COI Region analysiert wurde. Insgesamt wurden 104 Tardigraden, 92 Eutardigraden und 12 Heterotardigraden, anhand von morphologischen Merkmalen bestimmt. Fast alle Präparate ( N = 103) wurden auf Gattungsniveau zugeordnet, 59 Individuen konnten einer von sechs Arten zugeordnet werden. Zusätzlich konnten vier weitere Arten mit Hilfe von mtDNA Sequenzen (COI Gen) bestimmt werden. Die erlangten Sequenzen wurden mit 55 Sequenzen aus der GenBank vervollständigt und einer phylogenetischen Analyse unterzogen, welche die Monophylie von Heterotardigraden und Eutardigraden zeigte. Einzelne Sequenzen von vermeintlichen Echiniscus blumi , Macrobiotus richersi und Richtersius coronifer erschienen in entfernten Positionen innerhalb des Stammbaumes. Die P-distances einzelner Exemplare dieser Taxa umfassten Werte von unter einem halben Prozent bis über 22%. Solch große Distanzen wären atypisch für intraspezifische Diversität. Aus unserer phylogenetischen Rekonstruktion aus verfügbaren GenBank Sequenzen geht hervor, dass die systematische und taxonomische Zuordnung von Tardigraden einer umfangreichen Überarbeitung bedarf. 3 Abstract Tardigrades, or water bears, are considered a phylum subdivided in two classes: Heterotardigrada and Eutardigrada. These microscopic invertebrates depend on water to maintain an active life and they inhabit marine, freshwater and terrestrial ecosystems. Moss samples were collected from various habitats in Styria and searched for tardigrades. Permanent slides were made of some samples whereby others were used for genetic analysis of the cytochrome subunit I (COI) mtDNA gene. A total of 104 tardigrades, 92 Eutardigrada and 12 Heterotardigrada, were identified on the basis of morphological characteristics. Nearly all preparations ( N = 103) could be assigned to the genus level, whereby 59 individuals were assigned to one of six species. An additional four species were determined with the aid of an mtDNA sequence (COI gene). The obtained sequences were aligned with 55 sequences downloaded from GenBank. A phylogenetic analysis based upon Bayesian inference showed the monophyly of both Heterotardigrades and Eutardigrades. Individual sequences of putative Echiniscus blumi , Macrobiotus richtersi and Richtersius coronifer appear in distant positions of the tree. The pairwise distances (p-distances) among individual specimens assigned to these taxa display a wide range of distances from less than a half of percent to over 22%. Such high distances would be highly atypical for intraspecfic diversity, therefore it is clear that based on our own phylogenetic reconstruction of available GenBank sequences the current systematic and taxonomic assignment of tardigrades requires substantial revision. 4 TABLE OF CONTENTS 1 INTRODUCTION .............................................................................................................. 7 1.1 Systematic and morphology of Tardigrades ................................................................ 7 1.2 The distribution of Tardigrades ................................................................................. 10 1.3 Cryptobiosis ............................................................................................................... 12 1.3.1 Anhydrobiosis .................................................................................................... 12 1.3.2 Cryobiosis ........................................................................................................... 13 1.3.3 Encystment ......................................................................................................... 13 1.4 Identification of tardigrades ....................................................................................... 13 2 MATERIAL AND METHODS ....................................................................................... 15 2.1 Sampling .................................................................................................................... 15 2.1.1 Moss identification ............................................................................................. 17 2.1.2 Preparation of permanent slides ......................................................................... 17 2.1.3 Taking photos of the permanent slides for further determination ...................... 17 2.1.4 Identification ...................................................................................................... 18 2.2 DNA extraction .......................................................................................................... 19 2.2.1 PCR - Polymerase chain reaction ....................................................................... 19 2.2.2 Gel electrophoresis ............................................................................................. 20 2.2.3 PCR product purification ................................................................................... 20 2.2.4 DNA Sequencing ............................................................................................... 20 2.2.5 Data Analysis ..................................................................................................... 21 2.2.6 MrBayes ............................................................................................................. 21 3 RESULTS ......................................................................................................................... 22 3.1 Morphological identification ..................................................................................... 22 3.2 Molecular identification ............................................................................................ 39 5 4 DISCUSSION .................................................................................................................. 45 5 REFERENCES ................................................................................................................. 49 6 APPENDIX ...................................................................................................................... 55 6 Introduction 1 INTRODUCTION 1.1 Systematic and morphology of Tardigrades Tardigrades, or water bears, are microscopic invertebrates closely related to arthropods and onychophorans (Garey et al., 1996; Giribet et al., 1996; Mallatt et al., 2004). In 1773, the German parish priest J.A.E. Goeze was the first to write about the "kleiner WasserBär" (little water bear). The name tardigrade has been used since the 18th century; it means slow walker (tardi = slow, grade = walker) and describes the animals lumbering gait. At the end of the 19th century only 25 tardigrada species were known (Greven, 1980). Over the last few decades the number of newly described tardigrades has increased to more than 940 (Guidetti and Bertolani, 2005). Today there are two classes, four orders, 21 families and 104 genera known (Guidetti et. al, 2009). The phylum tardigrada comprises two main classes: Heterotardigrada and Eutardigrada. Heterotardigrada are subdivided in two orders: Arthotardigrada and Echiniscoidea, while Eutardigrada are subdivided in Apochela and Parachela (Guidetti and Bertolani, 2005). The armored tardigrades, or Heterotardigrades, have morphological characteristics such as cephalic appendages, cuticular extensions, claws and the pattern of dorsal cuticular plates, whereas the main characteristics of the naked tardigrades (Eutardigrade) are claws, the buccopharyngeal apparatus and a cuticle structure, which can be smooth, granulated or bearing tubercles. The phrase "naked" refers to the absence of cuticular dorsal plates, which are present in Heterotardigrada (Romano, 2003). Different species of tardigrades from the two classes are shown in Figure 1. 7 Introduction Figure 1: Different tardigrades. a) Tanarctus velatus (Heterotardigrada, about 120 µm), b) Stygarctus abornatus (Heterotardigrada, about 95 µm), c) Echiniscus trisetosus (Heterotardigrada, about 375 µm), d) Hypsibius oberhaeuseri (Eutardigrada, about 500 µm), e) Milnesium tardigradum (Eutardigrada, about 600 µm). The measurements represent the average length of the particular species. a,b after McKirdy et al. 1976; c,d,e after Marcus 1936. 8 Introduction Tardigrades range in size from less than 100 µm to 500 µm and they depend on water to permit gas exchange and locomotion to maintain an active life (Kinchin, 1994). Their bilaterally symmetrical body has four pairs of lobopodous legs and is separated into five segments: a first cephalic segment
Recommended publications
  • BURSA İLİ LİMNOKARASAL TARDIGRADA FAUNASI Tufan ÇALIK
    BURSA İLİ LİMNOKARASAL TARDIGRADA FAUNASI Tufan ÇALIK T.C. ULUDA Ğ ÜN İVERS İTES İ FEN B İLİMLER İ ENST İTÜSÜ BURSA İLİ LİMNOKARASAL TARDIGRADA FAUNASI Tufan ÇALIK Yrd. Doç. Dr. Rah şen S. KAYA (Danı şman) YÜKSEK L İSANS TEZ İ BİYOLOJ İ ANAB İLİM DALI BURSA-2017 ÖZET Yüksek Lisans Tezi BURSA İLİ LİMNOKARASAL TARDIGRADA FAUNASI Tufan ÇALIK Uluda ğ Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı Danı şman: Yrd. Doç. Dr. Rah şen S. KAYA Bu çalı şmada, Bursa ili limnokarasal Tardigrada faunası ara ştırılmı ş, 6 familyaya ait 9 cins içerisinde yer alan 12 takson tespit edilmi ştir. Arazi çalı şmaları 09.06.2016 ile 22.02.2017 tarihleri arasında gerçekle ştirilmi ştir. Arazi çalı şmaları sonucunda 35 lokaliteden toplanan kara yosunu ve liken materyallerinden toplam 606 örnek elde edilmi ştir. Çalı şma sonucunda tespit edilen Cornechiniscus sp., Echiniscus testudo (Doyere, 1840), Echiniscus trisetosus Cuenot, 1932, Milnesium sp., Isohypsibius prosostomus prosostomus Thulin, 1928, Macrobiotus sp., Paramacrobiotus areolatus (Murray, 1907), Paramacrobiotus richtersi (Murray, 1911), Ramazzottius oberhaeuseri (Doyere, 1840) ve Richtersius coronifer (Richters, 1903) Bursa ilinden ilk kez kayıt edilmi ştir. Anahtar kelimeler: Tardigrada, Sistematik, Fauna, Bursa, Türkiye 2017, ix+ 85 sayfa i ABSTRACT MSc Thesis THE LIMNO-TERRESTRIAL TARDIGRADA FAUNA OF BURSA PROVINCE Tufan ÇALIK Uludag University Graduate School of Natural andAppliedSciences Department of Biology Supervisor: Asst. Prof. Dr. Rah şen S. KAYA In this study, the limno-terrestrial Tardigrada fauna of Bursa province was studied and 12 taxa in 9 genera which belongs to 6 families were identified. Field trips were conducted between 09.06.2016 and 22.02.2017.
    [Show full text]
  • Tardigrades Colonise Antarctica?
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Short, Katherine A Title: Life in the extreme when did tardigrades colonise Antarctica? General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. 1 Life in the Extreme: when did 2 Tardigrades Colonise Antarctica? 3 4 5 6 7 8 9 Katherine Short 10 11 12 13 14 15 A dissertation submitted to the University of Bristol in accordance with the 16 requirements for award of the degree of Geology in the Faculty of Earth 17 Sciences, September 2020.
    [Show full text]
  • Tardigrada, Heterotardigrada)
    bs_bs_banner Zoological Journal of the Linnean Society, 2013. With 6 figures Congruence between molecular phylogeny and cuticular design in Echiniscoidea (Tardigrada, Heterotardigrada) NOEMÍ GUIL1*, ASLAK JØRGENSEN2, GONZALO GIRIBET FLS3 and REINHARDT MØBJERG KRISTENSEN2 1Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales de Madrid (CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain 2Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark 3Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA Received 21 November 2012; revised 2 September 2013; accepted for publication 9 September 2013 Although morphological characters distinguishing echiniscid genera and species are well understood, the phylogenetic relationships of these taxa are not well established. We thus investigated the phylogeny of Echiniscidae, assessed the monophyly of Echiniscus, and explored the value of cuticular ornamentation as a phylogenetic character within Echiniscus. To do this, DNA was extracted from single individuals for multiple Echiniscus species, and 18S and 28S rRNA gene fragments were sequenced. Each specimen was photographed, and published in an open database prior to DNA extraction, to make morphological evidence available for future inquiries. An updated phylogeny of the class Heterotardigrada is provided, and conflict between the obtained molecular trees and the distribution of dorsal plates among echiniscid genera is highlighted. The monophyly of Echiniscus was corroborated by the data, with the recent genus Diploechiniscus inferred as its sister group, and Testechiniscus as the sister group of this assemblage. Three groups that closely correspond to specific types of cuticular design in Echiniscus have been found with a parsimony network constructed with 18S rRNA data.
    [Show full text]
  • Tardigrades: an Imaging Approach, a Record of Occurrence, and A
    TARDIGRADES: AN IMAGING APPROACH, A RECORD OF OCCURRENCE, AND A BIODIVERSITY INVENTORY By STEVEN LOUIS SCHULZE A thesis submitted to the Graduate School-Camden Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Master of Science Graduate Program in Biology Written under the direction of Dr. John Dighton And approved by ____________________________ Dr. John Dighton ____________________________ Dr. William Saidel ____________________________ Dr. Emma Perry ____________________________ Dr. Jennifer Oberle Camden, New Jersey May 2020 THESIS ABSTRACT Tardigrades: An Imaging Approach, A Record of Occurrence, and a Biodiversity Inventory by STEVEN LOUIS SCHULZE Thesis Director: Dr. John Dighton Three unrelated studies that address several aspects of the biology of tardigrades— morphology, records of occurrence, and local biodiversity—are herein described. Chapter 1 is a collaborative effort and meant to provide supplementary scanning electron micrographs for a forthcoming description of a genus of tardigrade. Three micrographs illustrate the structures that will be used to distinguish this genus from its confamilials. An In toto lateral view presents the external structures relative to one another. A second micrograph shows a dentate collar at the distal end of each of the fourth pair of legs, a posterior sensory organ (cirrus E), basal spurs at the base of two of four claws on each leg, and a ventral plate. The third micrograph illustrates an appendage on the second leg (p2) of the animal and a lateral appendage (C′) at the posterior sinistral margin of the first paired plate (II). This image also reveals patterning on the plate margin and the leg.
    [Show full text]
  • Contribution to the Knowledge on Distribution of Tardigrada in Turkey
    diversity Article Contribution to the Knowledge on Distribution of Tardigrada in Turkey Duygu Berdi * and Ahmet Altında˘g Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey; [email protected] * Correspondence: [email protected] Received: 28 December 2019; Accepted: 4 March 2020; Published: 6 March 2020 Abstract: Tardigrades have been occasionally studied in Turkey since 1973. However, species number and distribution remain poorly known. In this study, distribution of Tardigrades in the province of Karabük, which is located in northern coast (West Black Sea Region) of Turkey, was carried out. Two moss samples were collected from the entrance of the Bulak (Mencilis) Cave. A total of 30 specimens and 14 eggs were extracted. Among the specimens; Echiniscus granulatus (Doyère, 1840) and Diaforobiotus islandicus islandicus (Richters, 1904) are new records for Karabük. Furthermore, this study also provides a current checklist of tardigrade species reported from Turkey, indicating their localities, geographic distribution and taxonomical comments. Keywords: cave; Diaforobiotus islandicus islandicus; Echiniscus granulatus; Karabük; Tardigrades; Turkey 1. Introduction Caves are not only one of the most important forms of karst, but also one of the most unique forms of karst topography in terms of both size and formation characteristics, which are formed by mechanical melting and partly chemical erosion of water [1]. Most of the caves in Turkey were developed within the Cretaceous and Tertiary limestone, metamorphic limestone [2], and up to now ca. 40 000 karst caves have been recorded in Turkey. Although, most of these caves are found in the karstic plateaus zone in the Toros System, important caves, such as Kızılelma, Sofular, Gökgöl and Mencilis, have also formed in the Western Black Sea [3].
    [Show full text]
  • An Integrative Redescription of Hypsibius Dujardini (Doyère, 1840), the Nominal Taxon for Hypsibioidea (Tardigrada: Eutardigrada)
    Zootaxa 4415 (1): 045–075 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4415.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:AA49DFFC-31EB-4FDF-90AC-971D2205CA9C An integrative redescription of Hypsibius dujardini (Doyère, 1840), the nominal taxon for Hypsibioidea (Tardigrada: Eutardigrada) PIOTR GĄSIOREK, DANIEL STEC, WITOLD MOREK & ŁUKASZ MICHALCZYK* Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland *Corresponding author. E-mail: [email protected] Abstract A laboratory strain identified as “Hypsibius dujardini” is one of the best studied tardigrade strains: it is widely used as a model organism in a variety of research projects, ranging from developmental and evolutionary biology through physiol- ogy and anatomy to astrobiology. Hypsibius dujardini, originally described from the Île-de-France by Doyère in the first half of the 19th century, is now the nominal species for the superfamily Hypsibioidea. The species was traditionally con- sidered cosmopolitan despite the fact that insufficient, old and sometimes contradictory descriptions and records prevent- ed adequate delineations of similar Hypsibius species. As a consequence, H. dujardini appeared to occur globally, from Norway to Samoa. In this paper, we provide the first integrated taxonomic redescription of H. dujardini. In addition to classic imaging by light microscopy and a comprehensive morphometric dataset, we present scanning electron photomi- crographs, and DNA sequences for three nuclear markers (18S rRNA, 28S rRNA, ITS-2) and one mitochondrial marker (COI) that are characterised by various mutation rates.
    [Show full text]
  • A Contribution to the Tardigrade Fauna of Georgia, USA Juliana G
    Georgia Journal of Science Volume 74 No. 2 Scholarly Contributions from the Article 14 Membership and Others 2016 A Contribution to the Tardigrade Fauna of Georgia, USA Juliana G. Hinton McNeese State University, [email protected] Harry A. Meyer Brad Peet Follow this and additional works at: https://digitalcommons.gaacademy.org/gjs Part of the Biodiversity Commons, Biology Commons, and the Zoology Commons Recommended Citation Hinton, Juliana G.; Meyer, Harry A.; and Peet, Brad (2016) "A Contribution to the Tardigrade Fauna of Georgia, USA," Georgia Journal of Science, Vol. 74, No. 2, Article 14. Available at: https://digitalcommons.gaacademy.org/gjs/vol74/iss2/14 This Research Articles is brought to you for free and open access by Digital Commons @ the Georgia Academy of Science. It has been accepted for inclusion in Georgia Journal of Science by an authorized editor of Digital Commons @ the Georgia Academy of Science. A Contribution to the Tardigrade Fauna of Georgia, USA Acknowledgements Sharon Phillips and Kathleen, Daniel, and Shiloh-Rose Jones helped with logistics and sample collection. This research articles is available in Georgia Journal of Science: https://digitalcommons.gaacademy.org/gjs/vol74/iss2/14 Hinton et al.: A Contribution to the Tardigrade Fauna of Georgia A CONTRIBUTION TO THE TARDIGRADE FAUNA OF GEORGIA, USA Juliana G. Hinton*, Harry A. Meyer, and Brad Peet Department of Biology, McNeese State University Lake Charles, Louisiana, 70609 *Corresponding author, [email protected] ABSTRACT Tardigrada (water bears) is a phylum of microscopic animals commonly found in mosses, lichens, leaf litter, and freshwater. There are no published records of marine tardigrades from Georgia.
    [Show full text]
  • Deceptive Conservatism of Claws: Distinct Phyletic Lineages Concealed Within Isohypsibioidea (Eutardigrada) Revealed by Molecular and Morphological Evidence
    Contributions to Zoology 88 (2019) 78-132 CTOZ brill.com/ctoz Deceptive conservatism of claws: distinct phyletic lineages concealed within Isohypsibioidea (Eutardigrada) revealed by molecular and morphological evidence Piotr Gąsiorek Department of Entomology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland Daniel Stec Department of Entomology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland Witold Morek Department of Entomology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland Łukasz Michalczyk Department of Entomology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland [email protected] Abstract Isohypsibioidea are most likely the most basally branching evolutionary lineage of eutardigrades. Despite being second largest eutardigrade order, phylogenetic relationships and systematics within this group remain largely unresolved. Broad taxon sampling, especially within one of the most speciose tardigrade genera, Isohypsibius Thulin, 1928, and application of both comparative morphological methods (light contrast and scanning electron microscopy imaging of external morphology and buccal apparatuses) and phylogenetic framework (18S + 28S rRNA sequences) resulted in the most comprehensive study de- voted to this order so far. Two new families are erected from the currently recognised family Isohypsibi- idae: Doryphoribiidae fam. nov., comprising all aquatic isohypsibioids and some terrestrial isohypsibioid taxa equipped with the ventral lamina; and Halobiotidae fam. nov., secondarily marine eutardigrades with unique adaptations to sea environment. We also split Isohypsibius into four genera to accommo- date phylogenetic, morphological and ecological variation within the genus: terrestrial Isohypsibius s.s. (Isohypsibiidae), with smooth or sculptured cuticle but without gibbosities; terrestrial Dianea gen.
    [Show full text]
  • Meplitumen Aluna Gen. Nov., Sp. Nov. an Interesting Eutardigrade (Hypsibiidae, Itaquasconinae) from the Sierra Nevada De Santa Marta, Colombia
    A peer-reviewed open-access journal ZooKeys 865: 1–20 (2019) New Itaquasconinae from Colombia 1 doi: 10.3897/zookeys.865.30705 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Meplitumen aluna gen. nov., sp. nov. an interesting eutardigrade (Hypsibiidae, Itaquasconinae) from the Sierra Nevada de Santa Marta, Colombia Oscar Lisi1,2, Anisbeth Daza2, Rosana Londoño2, Sigmer Quiroga2,3, Giovanni Pilato1 1 Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Catania, Via Androne 81, 95124 Catania, Italy 2 Grupo de Investigación MIKU, Universidad del Magdalena, Carrera 32 # 22-08, Santa Marta DTCH, Colombia 3 Facultad de Ciencias Básicas, Programa de Biología, Universidad del Mag- dalena, Carrera 32 # 22-08, Santa Marta DTCH, Colombia Corresponding author: Oscar Lisi ([email protected]) Academic editor: Sandra McInnes | Received 23 October 2018 | Accepted 11 June 2019 | Published 22 July 2019 http://zoobank.org/DF6A9937-7897-48DD-9CA7-3B866A2892AF Citation: Lisi O, Daza A, Londoño R, Quiroga S, Pilato G (2019) Meplitumen aluna gen. nov., sp. nov. an interesting eutardigrade (Hypsibiidae, Itaquasconinae) from the Sierra Nevada de Santa Marta, Colombia. ZooKeys 865: 1–20. https://doi.org/10.3897/zookeys.865.30705 Abstract A new genus of Itaquasconinae, Meplitumen gen. nov., and a new species, Meplitumen aluna sp. nov., are described. The new genus has characters present in other genera of Itaquasconinae but in a unique combina- tion. The spiral thickening of the bucco-pharyngeal tube is also present anteriorly to the insertion point of the stylet supports, excluding only the short portion where the apophyses for the insertion of the stylet muscles (AISM) are present.
    [Show full text]
  • Tardigrade Ecology
    Glime, J. M. 2017. Tardigrade Ecology. Chapt. 5-6. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological Interaction. 5-6-1 Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 9 April 2021 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 5-6 TARDIGRADE ECOLOGY TABLE OF CONTENTS Dispersal.............................................................................................................................................................. 5-6-2 Peninsula Effect........................................................................................................................................... 5-6-3 Distribution ......................................................................................................................................................... 5-6-4 Common Species................................................................................................................................................. 5-6-6 Communities ....................................................................................................................................................... 5-6-7 Unique Partnerships? .......................................................................................................................................... 5-6-8 Bryophyte Dangers – Fungal Parasites ............................................................................................................... 5-6-9 Role of Bryophytes
    [Show full text]
  • Tardigrade Densities and Richness
    Glime, J. M. 2017. Tardigrade Densities and Richness. Chapt. 5-5. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 5-5-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 5-5 TARDIGRADE DENSITIES AND RICHNESS TABLE OF CONTENTS Densities and Richness ........................................................................................................................................ 5-5-2 Europe .......................................................................................................................................................... 5-5-4 North America ........................................................................................................................................... 5-5-10 South America and Neotropics .................................................................................................................. 5-5-12 Asia ............................................................................................................................................................ 5-5-12 Africa ......................................................................................................................................................... 5-5-13 Antarctic and Arctic ................................................................................................................................... 5-5-13 Seasonal Variation
    [Show full text]
  • Volume 2, Chapter 5-3: Tardigrade Habitats
    Glime, J. M. 2017. Tardigrade Habitats. Chapt. 5-3. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological Interaction. 5-3-1 Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 18 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 5-3 TARDIGRADE HABITATS TABLE OF CONTENTS Bryophyte Habitats .............................................................................................................................................. 5-3-2 Specificity ........................................................................................................................................................... 5-3-3 Habitat Differences ............................................................................................................................................. 5-3-3 Acid or Alkaline? ......................................................................................................................................... 5-3-3 Altitude ........................................................................................................................................................ 5-3-4 Polar Bryophytes .......................................................................................................................................... 5-3-6 Forest Bryophytes ........................................................................................................................................ 5-3-9 Epiphytes ....................................................................................................................................................
    [Show full text]