A Study of the Relationship Between Microstructure and Photophysics in Organic Semiconductor Blends for Solar Cell Applications
Total Page:16
File Type:pdf, Size:1020Kb
A Study of the Relationship Between Microstructure and Photophysics in Organic Semiconductor Blends for Solar Cell Applications Toby A. M. Ferenczi Adviser: Prof. Donal D.C. Bradley FRS Experimental Solid State Physics Group, Department of Physics Imperial College London — 2008 — A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy of Imperial College London Acknowledgements I am indebted to many people who have helped me throughout this thesis. From ETH Zurich and Queen Mary, University of London, I would like to thank Christian M¨uller (now at University of Link¨oping, Sweden) Paul Smith, Natalie Stingelin (now at Imperial College) and Mohammed Baklar. From Imperial College I would like to give my sincere thanks to Mariano Campoy- Quiles (now at ICMAB, Barcelona), Marc Sims (now at DuPont, Santa Barbara, USA) and Amy Ballantyne for their invaluable time, help and kindness. I would also like to thank Colin Belton, Justin Dane and all of the the other people in EXSS for their support. I would also like to thank Jenny Nelson for her never ending advice and encouragement. Finally I would like to thank my supervisor Donal Bradley for providing me with strong support and mentorship whilst allowing me the freedom to pursue ideas independently and develop as a scientist. ii Declaration of Origniality “Except where specific reference is made to the work of others, this work is original and has not been already submitted either wholly or in part to satisfy any degree requirement at this or any other university.” iii Abstract This thesis is a study of material blends involving organic semiconductors and their applica- tion to opto-electronic devices, particularly photovoltaic diodes. Its principal aim is to examine the microstructure of the blend, where microstructure is defined as molecular ordering and spatial arrangement on the nanometer to micrometer scale. In general, each chapter of the thesis presents a novel means by which to influence the microstructure of organic semiconductor blends. These techniques are used as a means to understand how the photophysics of opto- electronic devices is influenced by microstructure. We establish some general principles of how microstructure relates to device performance and also find high performance in some entirely novel device structures and architectures. It is hoped that understanding developed here will lead to improvements in the performance of organic photovoltaic devices. The following publications include work presented in this thesis: • On the nature of the fluorenone-based emission in oxidized poly(dialkyl-fluorene)s, T. A. M. Ferenczi, M. Sims and D. D. C. Bradley, J. Phys. Condens. Matter 20 (2008) 045220 • Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends, M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley and J. Nelson, Nature Materials 7 (2008) 158 • Binary organic photovoltaic blends: A simple rationale for optimum compositions C. Mlle and T. A. M. Ferenczi and M. Campoy-Quiles and J. M. Frost and D. D. C. Bradley and P. Smith and N. Stingelin-Stutzmann and J. Nelson, Adv. Mater 20 (2008) 3510 • Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process, T. iv A. M. Ferenczi, J. Nelson, C. Belton, A. M. Ballantyne, M. Campoy-Quiles, F. M Braun and D. D C Bradley, J. Phys. Condens. Matter 20 (2008) 475203 • Robust Photovoltaic Devices via Blends of Poly(3-hexylthiopehene): Fullerene and Poly- ethylene, in preparation • The influence of 1,8 octanedithiol on polymer:fullerene blend microstructure and photo- voltaic device performance, in preparation v Contents 1 Introduction 1 2 Concepts 7 2.1 PolymerDynamics ................................. 7 2.1.1 Background................................... 7 2.1.2 PolymerPhaseTransitions . ... 9 2.1.3 crystallisationKinetics. ...... 12 2.1.4 Polymer motion; Reptation Theory . ..... 13 2.1.5 PolymerBlendPhaseseparation . 14 2.2 ConjugatedMolecules ............................. 17 2.2.1 CarbonBonding ................................ 17 2.2.2 ExcitedStates ................................. 19 2.2.3 Absorption and Emission Spectra . ..... 22 2.2.4 Energy Transfer, Charge Separation and Charge Transport ........ 24 2.2.5 Photo-oxidation ................................ 25 2.2.6 The influence of microstructure on the optoelectronic properties of conju- gatedmolecules................................. 25 2.3 OrganicPhotovoltaics . ..... 27 2.3.1 Background .................................. 27 2.3.2 Types of Organic Photovoltaic Devices . ....... 30 2.3.3 Organic-Organic Photovoltaic Device Structures and Materials . 32 2.3.4 Bulk-heterojunction microstructure . ........ 34 2.3.5 Electrodes in organic-organic devices . ........ 35 vi 2.3.6 Performance Characterisation . ...... 35 3 Experimental Methods 46 3.1 Spectroscopy .................................... 46 3.1.1 Absorption ................................... 46 3.1.2 Photoluminescence . 47 3.2 Ellipsometry .................................... 47 3.2.1 Theory ..................................... 47 3.2.2 Apparatus.................................... 50 3.3 DifferentialScanningCalorimetry. ......... 50 3.4 FilmandDeviceFabrication. ...... 51 3.4.1 Solutionpreparation . 51 3.4.2 FilmDeposition ................................ 52 3.4.3 SolarCellPreparation . 53 3.5 DeviceCharacterisation . ...... 54 3.5.1 Current-Voltage Characteristics . ....... 55 3.5.2 ExternalQuantumEfficiency . 55 4 Vapour Annealing of Organic Semiconductor Blends 57 4.1 Introduction.................................... 57 4.2 Use of vapour annealing to study fluorenone-based emission in oxidised poly(dialkylfluorene)s 58 4.2.1 Summary .................................... 58 4.2.2 Background................................... 59 4.2.3 Experimentaldetails . 64 4.2.4 ResultsandDiscussion. 65 4.2.5 Conclusions................................... 75 4.3 The Effect of Vapour Annealing on Polymer:Fullerene Blends ........... 76 4.3.1 Summary .................................... 76 4.3.2 Introduction .................................. 76 4.3.3 The influence of vapour annealing on microstructure and device perfor- manceinP3HT:PCBMblendfilms . 77 vii 4.3.4 Variable Angle Spectroscopic Ellipsometry as a means to study the influ- ence of annealing and the PEDOT:PSS layer on vertical phase segregation inP3HT:PCBMfilms. ............................ 80 4.3.5 Time-resolved ellipsometric measurements of the annealing process. 85 4.3.6 Conclusions................................... 87 5 Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process. 98 5.1 Abstract........................................ 98 5.2 Introduction.................................... 99 5.3 Experimentaldetails . 101 5.4 Theeffectofthermalannealing . 103 5.5 Optical modelling of the external quantum efficiency and determination of the excitondiffusionlength .............................. 107 5.6 Comparison of planar heterojunction and bulk heterojunction organic photo- voltaicdevices ..................................... 110 5.7 Inverted planar heterojunction devices . ........... 110 5.8 Planar heterojunction devices comprising PCPDTBT and PC71BM........ 113 5.9 Conclusions ..................................... 114 6 Microstructure and Composition in Bulk Heterojunction OPVs 121 6.1 Abstract........................................ 121 6.2 Introduction.................................... 122 6.3 Experimental .................................... 123 6.4 Phase diagram for the P3HT:PCBM binary system . ....... 124 6.5 Optimum composition for P3HT:PCBM photovoltaic devices ........... 128 6.6 Phase behaviour and composition dependence of other polythiophene:fullerene blends .......................................... 132 6.7 Non-eutectic donor-acceptor BHJ blends . ........ 134 6.7.1 P3HT:Vinazene................................. 134 6.7.2 P3HT:BisPCBM ................................ 137 6.8 Nonpolymer:smallmoleculeblends . ........ 139 viii 6.9 Conclusions ..................................... 140 7 Tri-Component Blends Incorporating Inert Commodity Homopolymers for OPVs. 145 7.1 Abstract........................................ 145 7.2 Introduction.................................... 145 7.3 Experimentaldetails . 147 7.4 Photovoltaic devices based on blends of P3HT, PCBM and amorphous or isotactic polystyrene........................................ 148 7.5 Photovoltaic devices based on blends of P3HT, PCBM and high density poly- ethylene.......................................... 150 7.6 Photovoltaic devices based on blends of PCPDTBT, PC71BM and HDPE . 152 7.7 Environmental stability and mechanical robustness of ternary blends. 153 7.8 Discussion ...................................... 154 7.9 Conclusions ..................................... 156 8 The use of alkanedithiols as solvent additives in polymer:fullerene blend process- ing 160 8.1 Abstract........................................ 160 8.2 Introduction.................................... 161 8.3 ExperimentalDetails. 162 8.4 PCPDTBTcrystallinityandtheeffectofODT . ....... 163 8.5 Effect of ODT on PCPDTBT:fullerene blend micro-structure ........... 166 8.6 PCPDTBT:fullerene phase behaviour and the effect of ODT on optimum compo- sitionforphotovoltaicdevices . 166 8.7 Conclusions ..................................... 169 9 Conclusions 173 9.1 Keyfindings...................................... 173 9.2 FutureWork