Mark G. Raizen Curriculum Vita
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EIT Cavity of D = 500 and Ωc = 2Γ Within 2 Μs
All-optical control of superradiance and matter waves using a dispersive cavity Shih-Wei Su,1 Zhen-Kai Lu,2 Nina Rohringer,3, 4, 5 Shih-Chuan Gou,1 and Wen-Te Liao3, 4, 5, 6, ∗ 1Department of Physics and Graduate Institute of Photonics, National Changhua University of Education, Changhua 50058 Taiwan 2Max Planck Institute for Quantum Optics, D-85748 Garching, Germany 3Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany 4Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany 5Center for Free-Electron Laser Science, 22761 Hamburg, Germany 6Department of Physics, National Central University, 32001 Taoyuan City, Taiwan (Dated: Version of October 1, 2018.) Cavity quantum electrodynamics (CQED) [1] plays an elegant role of studying strong coupling between light and matter. However, a non-mechanical, direct and dynamical control of the used mirrors is still unavailable. Here we theoretically investigate a novel type of dynamically controllable cavity composed of two atomic mir- rors. Based on the electromagnetically induced transparency (EIT) [2,3], the reflectance of atomic mirror is highly controllable through its dispersive properties by varying the intensity of applied coupling fields or the optical depth of atomic media. To demonstrate the uniqueness of the present cavity, we further show the pos- sibility of manipulating vacuum-induced diffraction of a binary Bose-Einstein condensate (BEC) [4,5] when loading it into a dispersive cavity and experiencing superradiant scatterings [6]. Our results may provide a novel all-optical element for atom optics [7] and shine new light on controlling light-matter interaction. For decades, CQED has served as an elegant model for a backward probe field with Rabi frequency Ω− [13], and vise demonstrating atom-light interaction and fundamental princi- versa. -
Nonlinear Atom Optics
Nonlinear atom optics Brian P. Anderson and Pierre Meystre Optical Sciences Center, The University of Arizona Tucson, Arizona 85721 I. INTRODUCTION are however notable exceptions, such as the use of ma- terial gratings in atomic and molecular beam diffraction The idea that light carries momentum and can modify and interference experiments [3], and the use of magnetic the trajectories of massive objects can be traced back to fields for trapping of cold atoms and the realization of Kepler, who offered it as an explanation for the direction Bose-Einstein condensates. of the tail of comets being always directed away from Very much like conventional optics can be organized the Sun. More rigorously, the force exerted by light on into ray, wave, nonlinear, and quantum optics, matter- atoms is implicit in Maxwell’s equations. For example, wave optics has recently witnessed parallel developments. it is readily derived from the classical Lorentz model of Ray atom optics is concerned with those aspects of atom atom and radiation interaction, where the force of light optics where the wave nature of the atoms doesn’t play on atoms is found to be a central role, and the atoms can be treated as point particles. Wave atom optics deals with topics such F(r, t) = −∇rV (x, r, t), as matter-wave diffraction and interferences. Nonlinear atom optics considers the mixing of matter-wave fields, where r is the center-of-mass coordinate of the atom, x such as in atomic four-wave mixing, and the photoas- the position of the electron relative to the nucleus, and sociation of ultracold atoms — a matter-wave analog of second-harmonic generation. -
Download Abstract Book
Technology Innovation Institute P.O. Box: 9639, Masdar City Abu Dhabi, UAE tii.ae Jean Dalibard Professor at the École Polytechnique Member of the French Academy of Sciences Researcher at the École Normale Supérieure. Talk Title: Solitons in an atomic 2D gas: an illustration of scale invariance Abstract: Solitary waves are encountered in a broad range of fields, including photonics, hydrodynamics, condensed matter and high-energy physics. Most experimental observations are limited to one-dimensional situations, where they are naturally stable. For instance, in 1D cold Bose gases, they exist for any attractive interaction strength g and particle number N. By contrast, in two dimensions, solitons are expected to appear only for discrete values of gN, the so-called Townes soliton being the most celebrated example. In this talk, I will present recent theoretical and experimental results regarding the deterministic preparation of such a soliton. By varying the interaction strength and the atom number, we confirm that the soliton (i) can exist as soon as gN reaches the proper value and (ii) can have an arbitrary size, a hallmark of the scale invariance characteristic of 2D fluids with contact interactions. I will also discuss some initially unexpected findings in these 2D fluids such as the existence of "breathers", i.e., specific initial shapes that undergo a periodic evolution when placed in a harmonic potential. Technology Innovation Institute P.O. Box: 9639, Masdar City Abu Dhabi, UAE tii.ae Gretchen Campbell Co-director Joint Quantum Institute, a joint institute between the National Institute of Standards and Technology and the University of Maryland Talk title: Hubble Friction and Amplification in Expanding Ring Condensates: An expanding (or contracting) universe in the lab Abstract: The massive scale of the universe makes the experimental study of cosmological inflation difficult. -
Experimental Test of Quantum Theory Using Atom Optics
A Proposed Experimental Test of Quantum Theory using the Techniques of Atom Optics Peter J. Riggs Department of Quantum Science, Australian National University, Canberra, ACT 2601, Australia It may be possible to empirically discriminate between the predictions of Orthodox Quantum Theory and the deBroglie-Bohm Theory of Quantum Mechanics. An experiment using the measurement methods of Atom Optics is suggested in which an atom trap having evanescent light ‗mirrors‘ in front of each of its walls is used to determine whether trapped atoms are in motion inside the trap. An absence of detected motion would be contrary to the prediction of Orthodox Quantum Theory and would support the deBroglie-Bohm Theory. 1. Introduction conduct of such an experiment has had to wait until a sufficient level of advancement The interpretation of the quantum in measurement science has been reached – mechanical formalism has a controversial this has now been achieved (e.g. see: [12– history dating back to the theory‘s initial 19]). formulation and remains unresolved to this day. In Orthodox Quantum Theory (OQT), 2. Different Predictions no physical reality is attributed to matter waves (as described by wavefunctions) [1– In order to devise an experiment that 3]. Yet, convincing evidence for the would empirically discriminate these two objective existence of matter waves has theories, there must be at least one been steadily mounting over the last two situation where they make different decades (e.g. [4–9]). In contrast, the predictions. Contrary to a common belief, deBroglie-Bohm (deBB) Theory of it is not correct that deBB Theory produces Quantum Mechanics (also known as the exactly the same theoretical predictions to Causal Theory of Quantum Mechanics) OQT in every conceivable circumstance. -
Classical and Quantum Chaos in Atom Optics
Classical and Quantum Chaos in Atom Optics Farhan Saif Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan. Department of Physics, University of Arizona, Tucson 85721, Arizona, USA. [email protected], [email protected] The interaction of an atom with an electromagnetic field is discussed in the presence of a time periodic external modulating force. It is explained that a control on atom by electromagnetic fields helps to design the quantum analog of classical optical systems. In these atom optical systems chaos may appear at the onset of external fields. The classical and quantum arXiv:quant-ph/0604066v1 10 Apr 2006 chaotic dynamics is discussed, in particular in an atom optics Fermi accelerator. It is found that the quantum dynamics exhibits dynamical localization and quantum recurrences. I Introduction Two hundred years ago, G¨ottingen physicist George Christoph Lichtenberg wrote “I think it is a sad situation in all our chemistry that we are unable to suspend the constituents of matter free”. Today, the possibilities to store atoms and to cool them to temperatures as low as micro kelvin and nano kelvin scale, have made atom optics a fascinating subject. It further provides a playground to study the newer effects of quantum coherence and quantum interference. In atom optics we take into account the internal and external degrees of freedom of an atom. The atom is considered as a de Broglie matter wave and these are optical fields which provide components, such as, mirrors, cavities and traps for the matter waves (Meystre 2001, Dowling and Gea-Banacloche 1996). Thus, we find a beautiful manifestation of quantum duality. -
Frontiers on Matter Wave Optics Book of Abstracts
Frontiers on Matter Wave Optics Crete, April 6-11 Book of Abstracts Organizing Committee: Markus Arndt Wolf von Klitzing Hanns-Christoph N¨agerl Ernst M. Rasel Table Of Contents H. Abele Page 1 Test of gravitation with quantum objects Vasiliki Bolpasi Page 2 A simplified fiber-based high-power diode laser system T. Bourdel Page 3 Diffusion of ultra-cold atoms in an disordered pancake potential A.D. Cronin Page 4 Dispersive phase shifts due to atom-surface interactions A.D. Cronin Page 5 New applications for nano-gratings F. Deuretzbacher Page 6 Parametric amplification of matter waves in dipolar spinor Bose-Einstein con- densates K. Durstberger-Rennhofer Page 7 Entanglement and decoherence within neutron interferometry S. Eibenberger Page 8 Molecular Dynamics and Structure in Interferometry W. Ertmer Page 9 Towards a lattice based neutral magnesium optical frequency standard S. Gerlich Page 10 Matter wave interferometry as a tool for molecule metrology Kurt Gibble Page 11 Decoherence and Collisional Frequency Shifts Elmar Haller Page 12 Quantum phase transitions in 1D systems M. Hamamda Page 13 Atomic Fresnel Biprism M. Hamamda Page 14 Negative refraction of matter waves Yuji Hasegawa Page 15 Optical studies of entanglements in a single-neutron system W. F. Holmgren Page 16 Absolute and ratio measurements of the polarizability of Na, K, and Rb with an atom interferometer B. Holst Page 17 Neutral helium atom microscopy S.A. Hopkins Page 18 Bright matter-wave solitons: formation, dynamics and quantum reflection K. Hornberger Page 19 Probing decoherence and entanglement with molecular systems A. Joyet Page 20 Intermodulation noise in cold atom interferometers C. -
Optics and Interferometry with Atoms and Molecules
Optics and interferometry with atoms and molecules The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Cronin, Alexander D., Jörg Schmiedmayer, and David E. Pritchard. “Optics and interferometry with atoms and molecules.” Reviews of Modern Physics 81.3 (2009): 1051. © 2009 The American Physical Society As Published http://dx.doi.org/10.1103/RevModPhys.81.1051 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/52372 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. REVIEWS OF MODERN PHYSICS, VOLUME 81, JULY–SEPTEMBER 2009 Optics and interferometry with atoms and molecules Alexander D. Cronin* Department of Physics, University of Arizona, Tucson, Arizona 85721, USA Jörg Schmiedmayer† Atominstitut Österreichischen Universitäten, TU-Wien, Austria David E. Pritchard‡ Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ͑Published 28 July 2009͒ Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with many applications in modern science. In this review the basic tools for coherent atom optics are described including diffraction by nanostructures and laser light, three-grating interferometers, and double wells on atom chips. Scientific advances in a broad range of fields that have resulted from the application of atom interferometers are reviewed.