PRAYING MANTIS by Lisa Marie Gee
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Genus Metallyticus Reviewed (Insecta: Mantodea)
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228623877 The genus Metallyticus reviewed (Insecta: Mantodea) Article · September 2008 CITATIONS READS 11 353 1 author: Frank Wieland Pfalzmuseum für Naturkunde - POLLICHIA-… 33 PUBLICATIONS 113 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Frank Wieland letting you access and read them immediately. Retrieved on: 24 October 2016 Species, Phylogeny and Evolution 1, 3 (30.9.2008): 147-170. The genus Metallyticus reviewed (Insecta: Mantodea) Frank Wieland Johann-Friedrich-Blumenbach-Institut für Zoologie & Anthropologie und Zoologisches Museum der Georg-August-Universität, Abteilung für Morphologie, Systematik und Evolutionsbiologie, Berliner Str. 28, 37073 Göttingen, Germany [[email protected]] Abstract Metallyticus Westwood, 1835 (Insecta: Dictyoptera: Mantodea) is one of the most fascinating praying mantids but little is known of its biology. Several morphological traits are plesiomorphic, such as the short prothorax, characters of the wing venation and possibly also the lack of discoidal spines on the fore femora. On the other hand, Metallyticus has autapomor- phies which are unique among extant Mantodea, such as the iridescent bluish-green body coloration and the enlargement of the first posteroventral spine of the fore femora. The present publication reviews our knowledge of Metallyticus thus providing a basis for further research. Data on 115 Metallyticus specimens are gathered and interpreted. The Latin original descriptions of the five Metallyticus species known to date, as well as additional descriptions and a key to species level that were originally published by Giglio-Tos (1927) in French, are translated into English. -
Guidelines for Importing Exotic and Non-Florida U.S. Arthropods
Guidelines for importing arthropods and other invertebrates into Florida This list gives guidance for the pet trade, exhibits, field release, and similar uses. The four categories reflect the permit holder’s ability to contain the organisms. Organisms for scientific research inside quarantine laboratories (e.g. exotic pests and disease vectors) are not listed below; they also require permits and are considered case by case. The examples given below are not exhaustive because hundreds of species are traded. These guidelines are advice about what to expect for most permit applications reviewed by FDACS-DPI, but the Permit Conditions may differ as circumstances warrant. No permits are needed for most species that are native to or widely established in Florida if they are collected within Florida or obtained from in-state sources. Permits are required for all regulated organisms brought into Florida from outside of the state. Permits are also required for certain Pests of Limited Distribution as deemed by the DPI and for native endangered or threatened species. Applicants should first inquire whether a USDA-APHIS permit is required; if APHIS does not regulate it, a FDACS 08208 permit is then required. Species that are not identified by scientific names on the application will be automatically prohibited. The permittee must submit voucher specimens if the organisms are imported in quantity. The purpose is to independently verify the identification. Photographs are acceptable if the organisms are easy to identify by photos and if the individuals are few in number (e.g., personal pets not for resale). I. Regular: The permit application usually will be approved without conditions. -
July 2020 Riverside Nature Notes
July 2020 Riverside Nature Notes Dear Members and Friends... by Becky Etzler, Executive Director If you stopped by in the past We are fortunate to have such a wonderful week or so, you will have noticed family of supporters. I have to give a shout out that the Riverside Nature Center to the staff, Riverside Guides, meadow tenders, is fully open and welcoming volunteers, Kerrville Chapter of the Native Plant visitors. There were no banners, Society, Hill Country Master Naturalists, the fireworks, bullhorns or grand Board of Directors and our RNC Members. Each opening celebrations announcing of you have made this difficult time much more our reopening. Let’s call it a “soft bearable, even if we haven’t been able to hug. opening”. Let’s all keep a positive attitude and follow the The staff and I wanted to quietly put to test our example of a wonderfully wise woman, Maggie plans and protocols. Can we control the number Tatum: of people inside? Is our cleaning and sanitizing methods sufficient? Are visitors amenable to our recommendations of mask wearing and physical FRIENDS by Maggie Tatum distancing? Are we aware of all the possible touch points and have we removed potentially Two green plastic chairs hazardous or hard to clean displays? Do we have Underneath the trees, adequate staff and volunteer coverage to keep Seen from my breakfast window. up with cleaning protocols and still provide an They are at ease, engaging experience for our visitors? Framed by soft grey fence. A tranquil composition. Many hours were spent discussing and formulating solutions to all of these questions. -
It's a Big-G-Eat-Bug World UT Soil, Plant and Pest Center
EPP 469 It’s a Bigg-Eatat-Bug World UT Soil,, Plant and Pest Center Ellington Agricultural Center, Nashville, TN Frank A. Hale, Ph.D. Professor Dept. of Entomology & Plant Pathology and David Cook Extension Agent III, Davidson County New Presentations, Publication, Information Follow us on Facebook https://ag.tennessee.edu/spp/Pages/default.aspx https://ag.tennessee.edu/spp/Pages/presentations.aspx Daylilyy Leafminer Daylilyy Leafminer Image of larva courtesy of Gary J. Steck, Florida Dept. of Ag. & Consumer Services, Div. of Plant Industry Control with imidacloprid or spinosad insecticides labeled for use on daylilies Adult fly image courtesy of V. J. Hickey, Louisiana Dept. of Agri. & Forestry An Excellent New Publication Pollinators: Pollination of flowers, vegetables, and fruits. Predators: Feed on other insects and kill them. Parasitoids: Kills host by lay eggs in or on host. Microorganisms: Infecting host with disease or toxin. http://www.extension.umn.edu/garden/insects/docs/protect-pollinators-in-landscape.pdf http://www.fs.usda.gov/Internet/FSE _DOCUMENTS/stelprdb5306468.pdf http://www.fs.usda.gov/Internet/FSE_ DOCUMENTS/stelprdb5306468.pdf Ground Beetles (Predators) Colors: From Shiny Brown to Black to Iridescent and Metallic Nocturnal: Mostly Pursue Prey at Night Food: Caterpillars, Snails, Slugs, and Small Insects. Some species eat weed seeds Tiger Beetles (Predators) Colors: Shiny Metallic Bronze, Blue, Green, Purple, or Orange. Diurnal: Prefer Open Sunny Locations. Facts: Long Legs, Long Antennae, Large Eyes, Large Mandibles. Food: Small Insects and Spiders. Six spotted tiger beetle image courtesy of D. Cook Soldier Beetles (Predaceous Larvae) Color: Mostly Dark Gray, Brown, or Yellow. -
An Insect Community Study of the Morris Arboretum Green Roof Samantha Nestory University of Pennsylvania
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kosmopolis University of Pennsylvania ScholarlyCommons Internship Program Reports Education and Visitor Experience 2018 An Insect Community Study of the Morris Arboretum Green Roof Samantha Nestory University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/morrisarboretum_internreports Part of the Biodiversity Commons, and the Horticulture Commons Recommended Citation Nestory, Samantha, "An Insect Community Study of the Morris Arboretum Green Roof" (2018). Internship Program Reports. 3. https://repository.upenn.edu/morrisarboretum_internreports/3 An independent study project report by The aH y Honey Farm Endowed Natural Lands Intern (2017-2018) This paper is posted at ScholarlyCommons. https://repository.upenn.edu/morrisarboretum_internreports/3 For more information, please contact [email protected]. An Insect Community Study of the Morris Arboretum Green Roof Abstract Green roofs are becoming increasingly popular in cities around the globe because of their numerous benefits to humans. Green roofs can also benefit wildlife, particularly insects, through the creation of habitat. The og al of this study was to evaluate the biodiversity of the insect community on the Morris Arboretum intensive green roof and to identify management strategies to promote more diversity. We vacuum sampled the green roof three times in August and September 2017. Insects in the orders Lepidoptera, Coleoptera, Hemiptera, Hymenoptera, Neuroptera, and Mantodea were sorted, preserved, and identified to the lowest possible taxonomic rank. Overall, 891 insects were collected and identified. Two groups, ants and aphids, accounted for 566 of those insects. There was low diversity and abundance of Coleoptera and Lepidoptera, which could be attributed to the lack of fall-flowering plants, larval host plants, and overwintering sites. -
Factors Affecting Egg Deposition of the European Mantis
e-ISSN 1734-9168 Folia Biologica (Kraków), vol. 68 (2020), No 2 http://www.isez.pan.krakow.pl/en/folia-biologica.html https://doi.org/10.3409/fb_68-2.06 Factors Affecting Egg Deposition of the European Mantis Joanna KAJZER-BONK Accepted May 18, 2020 Published online May 26, 2020 Issue online Short communication KAJZER-BONK J. 2020. Factors affecting egg deposition of the European mantis. Folia Biologica (Kraków) 68: 45-49. In this paper, we studied the egg-case (oothecae) deposition of the European mantis, Mantis religiosa (Linnaeus 1758), a predatory insect. We hypothesized that the height of ootheca deposition on a plant reflects the insolation requirements of the species, and would increase when plant cover is denser. We found that the taller the plants nearby, the greater the height of egg deposition. Oothecae were also oviposited higher in denser vegetation. The observed behavior may ensure the proper insolation of developing offspring. To our knowledge, this is the first description of an egg laying strategy of this species under natural conditions. This finding allows for a better understanding of habitat selection and the overall ecology of the European mantis. It may be also useful in identifying the mechanisms of the range extension of this species and is a potential tool to effectively conserve xerothermic ootheca-laying animals. Further studies are required to assess the flexibility of this behavior under different environmental conditions. Key words: ootheca, oviposition strategy, parental care, praying mantis. * Joanna KAJZER-BONK , Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120 Kraków, Poland; Department of Entomology, Institute of Zoology and Bio- medical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Po- land. -
Insects on Real Christmas Trees
Insects on Real Christmas Trees Most real Christmas trees are free of insects and other arthropods. However, it is possible that some trees may harbor one or more species. Christmas trees have been a tradition for hundreds of years and bring the beauty and amazing scents of the outdoors into our homes for the holidays. They are also an environmentally friendly choice, as Christmas trees are a renewable resource and can be easily recycled, unlike artificial trees. Real Christmas trees are living trees grown outdoors and, like other living outdoor trees, they can harbor overwintering insects and other arthropods. Some of these arthropods can remain on a tree when it is brought indoors and can become active when exposed to warm indoor temperatures. Depending on the species, the arthropods may remain on the tree or may be attracted to nearby light sources such as windows (during the day) or lamps and other artificial lights (at night). However, because they are associated with living coniferous trees, none of the species that might be introduced into a home via a real Christmas tree are dangerous to the home, its contents, or occupants. Arthropods found in Christmas trees generally overwinter as eggs or adults. Mechanical tree shakers, which are available at some retail lots, or vigorously shaking a tree can dislodge some arthropods, particularly adults. Insect egg masses, such as those laid by mantises, gypsy moths, and spotted lanternfly, can be scraped off the tree trunk or branches. Additionally, bird nests, which are considered decorative and good luck by some people, may contain bird parasites such as mites, and should be removed. -
Mantis Study Group Newsletter 16 (May 2000)
ISSN 1364-3193 Mantis Study Group Newsletter 16 May 2000 Newsletter Editor Membership Secretary Phil Bragg Paul Taylor 8 The Lane 24 Forge Road Awsworth Shustoke Nottingham Coleshili NG162QP Birmingham B46 2AU Editorial Those who remember Geoff Hancock's request for information on wing folding in mantids may be interested to see the abstract of Barabas & Hancock's paper in the abstract section of this newsletter. In fact, since no one has written anything for the newsletter, except for the exhibition dates, there is nothing to read except the abstracts! Thanks again to Kieren Pitts for helping with the abstracts section, and for printing and posting out the newsletters. Paul Taylor is organising a joint MSG and PSG meeting on 18th June, details below. Exhibitions We hope to be exhibiting at all of the following events but do not yet have anyone to run a stand at Oldham on 10th June (offers to Paul Taylor or Phil Bragg please). 10th June 2000. Creepy Crawly Show 2000. Queen Elizabeth Hall, Oldham. Open 1200-1700. No MSG stand planned - anyone want to do one? 10th June and 19th November 2000. Creepy Crawly Show, Newton Abbot Racecourse, Devon. Open 1000-1700. Paul Taylor will be running a stand, contact him for details. 18th June 1999. Mantis Study Group & Phasmid Study Group joint meeting and show. This will form part of the "2-4-6-8 Animal Show" at Birmingham Nature Centre, Cannon Hill Park, Pershore Road (the A441), about three miles from the centre of Birmingham. The event is open to the public from 1000-1600, entry £1.50 for adults, children free. -
VKM Rapportmal
VKM Report 2016: 36 Assessment of the risks to Norwegian biodiversity from the import and keeping of terrestrial arachnids and insects Opinion of the Panel on Alien Organisms and Trade in Endangered species of the Norwegian Scientific Committee for Food Safety Report from the Norwegian Scientific Committee for Food Safety (VKM) 2016: Assessment of risks to Norwegian biodiversity from the import and keeping of terrestrial arachnids and insects Opinion of the Panel on Alien Organisms and Trade in Endangered species of the Norwegian Scientific Committee for Food Safety 29.06.2016 ISBN: 978-82-8259-226-0 Norwegian Scientific Committee for Food Safety (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] www.vkm.no www.english.vkm.no Suggested citation: VKM (2016). Assessment of risks to Norwegian biodiversity from the import and keeping of terrestrial arachnids and insects. Scientific Opinion on the Panel on Alien Organisms and Trade in Endangered species of the Norwegian Scientific Committee for Food Safety, ISBN: 978-82-8259-226-0, Oslo, Norway VKM Report 2016: 36 Assessment of risks to Norwegian biodiversity from the import and keeping of terrestrial arachnids and insects Authors preparing the draft opinion Anders Nielsen (chair), Merethe Aasmo Finne (VKM staff), Maria Asmyhr (VKM staff), Jan Ove Gjershaug, Lawrence R. Kirkendall, Vigdis Vandvik, Gaute Velle (Authors in alphabetical order after chair of the working group) Assessed and approved The opinion has been assessed and approved by Panel on Alien Organisms and Trade in Endangered Species (CITES). Members of the panel are: Vigdis Vandvik (chair), Hugo de Boer, Jan Ove Gjershaug, Kjetil Hindar, Lawrence R. -
Carolina Mantis)
UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Stagmomantis carolina (Carolina Mantis) Order: Mantodea (Mantids) Class: Insecta (Insects) Phylum: Arthropoda (Arthropods) Fig. 1. Carolina mantis, Stagmomantis carolina. [http://www.alexanderwild.com/Insects/Insect-Orders/Magnificent-Mantids/i-5Zgzcxw/2/L/Stag momantis7-L.jpg, downloaded 29 March 2015] TRAITS. Medium to large sized mantid averaging 50-65mm in length at adulthood (Harris and Moran, 2000). Large, front-facing eyes (Fig. 1), which are adapted to vision in daylight and allow for the estimation of distance of stationary objects (Kral, 2012). Long and slender legs and antennae with a highly developed pair of large, serrated, spiny forelegs which are held in a “praying” position for the capture of prey (Teyssier, 1997). The head and prothorax are connected with a flexible membrane allowing for almost full rotation of the head (Rau and Rau, 1913). Long thorax which combined with the head length is almost as long as the abdomen. Males have slender long abdomens with wings that are fully functional whereas females’ UWI The Online Guide to the Animals of Trinidad and Tobago Ecology abdomen is shorter and very broad with non-functional wings (Fig. 2). Wings are short especially in females where they do not cover the abdomen (Schulz, 2012). Colour: varies within the range of mottled brown to yellow-green with bright green legs and wing covers (Blatchley, 1920). DISTRIBUTION. Widespread throughout warm, temperate and tropical regions within southern, northern and Central America. They are the most abundant native mantids in North America (Things Biological, 2012). -
Garden Mastery Tips July 2003 from Clark County Master Gardeners
Garden Mastery Tips July 2003 from Clark County Master Gardeners Praying Mantis Look for this strange-looking humongous bug in the yard late summer. There are over 1800 species, mostly tropical. Three are native in North America: the Chinese mantis, Tenodera sinensis, the Carolina mantis, Stagmomantis carolina and the European mantis, Mantis religiosa. The mantis, also known as mantid is most closely related to grasshoppers and cockroaches. The common name comes from the manner in which they hold up the forepart of their body, with the front legs folded as if in prayer. They range from 2 to 6 inches in length and are varying shades of brown and green. It is uncanny how they camouflage themselves in the surrounding foliage. They can resemble leaves, sticks and even flowers. This helps hide them from their potential prey, as well as their enemies. Mantids move rather slowly, swaying back and forth, mimicking foliage in the breeze. They can fly, but not long distances, preferring to move from one perch to another. Mantids tend to fly more at night which brings them to the attention of bats who see them as a source of food. Some mantids have actually learned to hear the sonar used by the bats to navigate and are able to stall their flight literally dropping out of sight of the bats’ perception, thus escaping the meal they were intended to be. Other than bats, birds and spiders are their main predators. The praying mantis is strictly a meat eater who enjoys moths, beetles, horseflies, leaf hoppers, aphids, and other mantises, even animals larger than themselves, such as frogs, lizards, and young snakes. -
Species List for Garey Park-Inverts
Species List for Garey Park-Inverts Category Order Family Scientific Name Common Name Abundance Category Order Family Scientific Name Common Name Abundance Arachnid Araneae Agelenidae Funnel Weaver Common Arachnid Araneae Thomisidae Misumena vatia Goldenrod Crab Spider Common Arachnid Araneae Araneidae Araneus miniatus Black-Spotted Orbweaver Rare Arachnid Araneae Thomisidae Misumessus oblongus American Green Crab Spider Common Arachnid Araneae Araneidae Argiope aurantia Yellow Garden Spider Common Arachnid Araneae Uloboridae Uloborus glomosus Featherlegged Orbweaver Uncommon Arachnid Araneae Araneidae Argiope trifasciata Banded Garden Spider Uncommon Arachnid Endeostigmata Eriophyidae Aceria theospyri Persimmon Leaf Blister Gall Rare Arachnid Araneae Araneidae Gasteracantha cancriformis Spinybacked Orbweaver Common Arachnid Endeostigmata Eriophyidae Aculops rhois Poison Ivy Leaf Mite Common Arachnid Araneae Araneidae Gea heptagon Heptagonal Orbweaver Rare Arachnid Ixodida Ixodidae Amblyomma americanum Lone Star Tick Rare Arachnid Araneae Araneidae Larinioides cornutus Furrow Orbweaver Common Arachnid Ixodida Ixodidae Dermacentor variabilis American Dog Tick Common Arachnid Araneae Araneidae Mangora gibberosa Lined Orbweaver Uncommon Arachnid Opiliones Sclerosomatidae Leiobunum vittatum Eastern Harvestman Uncommon Arachnid Araneae Araneidae Mangora placida Tuft-legged Orbweaver Uncommon Arachnid Trombidiformes Anystidae Whirligig Mite Rare Arachnid Araneae Araneidae Mecynogea lemniscata Basilica Orbweaver Rare Arachnid Eumesosoma roeweri