Pulmonary Medicine

Total Page:16

File Type:pdf, Size:1020Kb

Pulmonary Medicine PRINCE GEORGE’S HOSPITAL CENTER INTERNAL MEDICINE RESIDENCY PROGRAM SECTION 17: PULMONARY MEDICINE This section has been reviewed and approved by the Chief, Division of Pulmonary Medicine as well as the Program Director, Internal Medicine Residency Program at Prince George’s Hospital Center. ________________________ ______________________________ Chief, Division Of Pulmonology Program Director, Residency Program I. Overview Pulmonary medicine is the diagnosis and management of disorders of the lungs, upper airways, thoracic cavity, and chest wall. The pulmonary specialist has expertise in neoplastic, inflammatory, and infectious disorders of the lung parenchyma, pleura, and airways; pulmonary vascular disease and its effect on the cardiovascular system; and detection and prevention of occupational and environmental cause of lung disease. Other specialized areas include respiratory failure and sleep-disordered breathing. By the end of their training in internal medicine, residents should be able to evaluate and manage cough, dyspnea, fever with infiltrates, mass or nodule on the chest radiograph, pleurisy, and pleural effusion. He/she should be able to diagnose and manage patients with common respiratory infections: initiate the diagnostic evaluation of respiratory neoplasm; and manage the initial approach to patients with respiratory failure, including those in intensive care units. With more hospitalist jobs requiring interninsts to manage patients on ventilators on medical floors or intensive care units, residents during their rotation should obtain a working knowledge of this subject. The pulmonary specialist will usually assist internist for diagnostic procedures and complicated conditions such as advanced respiratory failure. II. Principle Teaching Methods This consists of frequent encounters with the medicine residents and making that person accountable for performance. It primarily consists of bedside rounds conducted most days of the week, a s well as in radiology. Here most of the teaching will be carried out. The residents will also observe performance of pulmonary function tests in the PFT laboratory and learn interpretation of the results. They will also observe special procedures like bronchoscopies done on the patients that they are following. The residents will also get a working knowledge of mechanical ventilators through rounds and didactics focusing on management of hospitalized patients requiring ventilator support. The resident will have frequent interaction with their supervising attending and rounds will include short 15-30 minute discussions on current medical topics driven by patient encounters, initiated by the residents and completed by the attending physician on most days of the week. Latest information dealing with the topic as provided by literature search and pertinent articles made available to the residents. During the rotation the residents will outpatient Pulmonary office practice three half days a week with Dr. Murthy or Dr. Steinberg. Residents must print out a copy of the ‘Pulmonary Attendance Sheet’ from the end of this section and have it signed for each outpatient day. The residents will also round with Dr. Boyce on hospitalized patients on mechanical ventilation and learn about different ventilator modes and management of patients and acute and chronic ventilation. Residents must have their attendance taken during these rounds. The residents must submit their Attendance Sheet with the program coordinator as a requirement for successful completion of the rotation During the rotation the resident must also analyze a minimum number of diagnostic tests with the staff pulmonologist. The logsheet at the end of this section lists the tests and their minimum number they must interpret for the month. The residents are required to view X Ray and CT films with the attending as well as interpret ABG and PFT results. They are also required to review all Lung biopsy slides with the pulmonary attending physician in pathology irrespective of whether the patient is on staff service or not. This is to allow residents to review pathology report, learn indications for bronchoscopy and lung biopsies as well as learn about the disease process of the particular case. Residents must print a double-sided Pulmonary Logsheet and have it signed by the attending as they complete each requirement. Residents must submit a completed copy to the program coordinator to get credit for the rotation. III. Strengths and Limitations The residents will be exposed to a broad range of clinical problems typical of a community-based practice with emphasis on inpatient illnesses and care. The teaching faculty for the Department of Pulmonology will be committed to teaching and being a strong role model to the residents. They will supervise the residents on consults, interpreting results of radiographic and pulmonary function studies, bedside procedures like thoracentesis, ventilator management and make residents familiar with indication of special procedures like bronchoscopy, VATS. For patients with unusual clinical problems the care may require transfer to tertiary referral center. The residents are encouraged to gain outpatient experience in the subject by shadowing the attending in their private office. Patients in the continuity clinic at Glenridge also offer learning opportunities. The resident can also utilize the opportunity to learn regarding cardiopulmonary rehabilitation from patients who are status post cardiac bypass surgery. IV. Goals and Objectives Legend of Learning Activities Learning Venues: 1. Direct patient care/ consultation 2. Attending rounds 3. Morning report and noon conference 4. Core lecture series 5. Self study Evaluation methods A. Attending rounds on consult patients B. Attending evaluation of PFT, ABG and radiologic interpretation skills C. Direct Observation D. Nurse’s evaluation E. In-training examination Competency: Patient Care Learning Venues Evaluation Methods Interview patients more skillfully, gathers accurate and 1, 2, 3, 4 A, B, C, D essential information with emphasis on pulmonary diseases Examine patients more skillfully with competent and 1, 2, 3, 4 A, B, C, D complete observation of normal and abnormal signs with emphasis on disorders of the pulmonary system Define and prioritize patient’s medical problems 1, 2, 3, 4 A, B, C, D Generate and prioritize differential diagnoses with 1, 2, 3, 4 A, B, C, D appropriate testing and therapeutics Develop rational, evidence-based management 1, 2, 3, 4 A, B, C, D strategies Competency: Medical Knowledge Learning Venues Evaluation Methods Expand clinically applicable knowledge base of the ALL A, B, C, E basic and clinical sciences underlying the care of medical service patients, both out and inpatients with emphasis on pulmonary disorders. Access and critically evaluate current medical ALL A, B, C E information and scientific evidence relevant to patient care Competency: Practice-Based Learning and Learning Venues Evaluation Methods Improvement Identify and acknowledge gaps in personal knowledge ALL A, B, C, E and skills in the care of hospitalized and out patients Develop and implement strategies for filling gaps in ALL, meet with A, B, C, E , attendance knowledge and skills and minimize errors Program Director sheet Competency: Interpersonal Skills and Learning Venues Evaluation Methods Communication Communicate effectively with patients and families, 1,2,3 A, B, C, D with particular emphasis on explanation of complex and multi-system illness and the testing required to confirm diagnostic possibilities Communicate effectively with physician colleagues at 1,2,3 A, C all levels with appropriate consultation when needed Present patient information concisely and clearly, 1, 2 A, C verbally and in writing. Adhere to confidentiality Competency: Professionalism Learning Venues Evaluation Methods Demonstrate respect, compassion, integrity and 1,2,3 A, C, D altruism towards patients, families, colleagues, and all members of the health care team Demonstrate sensitivity to confidentiality, gender, age, 1,2,3 A,C,D cultural differences and disabilities Competency: Systems-Based Practice Learning Venues Evaluation Methods Understand and utilize the multidisciplinary resources ALL A,C,D necessary to care optimally for hospitalized and out patients and the limitations of various practice environments. Collaborate with other members of the health care 1,2 A,C,D team to assure comprehensive patient care Use evidence-based, cost-conscious strategies in the 1,2,3,4 A,C,D care of hospitalized and outpatients V. Educational Content A. Airway Diseases 1) Diagnosis and management of: • Asthma • Bronchiectasis • Bronchitis • Chronic obstructive pulmonary disease • Upper airway obstruction- initiate management 2) Order appropriate tests and interpret results of: • Complete pulmonary function tests (spirometry, measurement of lung volume, diffusing capacity, flow volume loop) • Cardiopulmonary stress test • Pre-operative pulmonary clearance in lung reduction surgery B. Intensive care unit condition 1) Identify and initiate management of • Acute Respiratory Distress Syndrome • Ventilator associated Pneumonia • Tension Pneumothorax • Pulmonary embolism • Pulmonary hypertension 2) Order appropriate tests and interpret results of: • Swan ganz catheter reading • Chest X Ray • CT thorax • Ventilation perfusion scan • Arterial blood gases C. Congenital Lung Disease 1) Understand the diagnostic criteria, long term complications and management of: • Alpha1, antitrypsin deficiency
Recommended publications
  • Diagnostic Direct Laryngoscopy, Bronchoscopy & Esophagoscopy
    Post-Operative Instruction Sheet Diagnostic Direct Laryngoscopy, Bronchoscopy & Esophagoscopy Direct Laryngoscopy: Examination of the voice box or larynx (pronounced “lair-inks”) under general anesthesia. An instrument called a laryngoscope is carefully placed into the mouth and used to visualize the larynx and surrounding structures. Bronchoscopy: Examination of the windpipe below the voice box in the neck and chest under general anesthesia. A long narrow telescope is passed through the larynx and used to carefully inspect the structures of the trachea and bronchi. Esophagoscopy: Examination of the swallowing pipe in the neck and chest under general anesthesia. An instrument called an esophagoscope is passed into the esophagus (just behind the larynx and trachea) and used to visualize the mucus membranes and surrounding structures of the esophagus. Frequently a small biopsy is taken to evaluate for signs of esophageal inflammation (esophagitis). What to Expect: Diagnostic airway endoscopy procedures generally take about 45 minutes to complete. Usually the procedure is well-tolerated and the child is back-to-normal the next day. Mild throat or tongue discomfort may persist for a few days after the procedure and is usually well-controlled with over-the-counter acetaminophen (Tylenol) or ibuprofen (Motrin). Warning Signs: Contact the office immediately at (603) 650-4399 if any of the following develop: • Worsening harsh, high-pitched noisy-breathing (stridor) • Labored breathing with chest retractions or flaring of the nostrils • Bluish discoloration of the lips or fingernails (cyanosis) • Persistent fever above 102°F that does not respond to Tylenol or Motrin • Excessive coughing or respiratory distress during feeding • Coughing or throwing up bright red blood • Excessive drowsiness or unresponsiveness Diet: Resume baseline diet (no special postoperative diet restrictions).
    [Show full text]
  • A Clinical Prediction Rule for Pulmonary Complications After Thoracic Surgery for Primary Lung Cancer
    A Clinical Prediction Rule for Pulmonary Complications After Thoracic Surgery for Primary Lung Cancer David Amar, MD,* Daisy Munoz, MD,* Weiji Shi, MS,† Hao Zhang, MD,* and Howard T. Thaler, PhD† BACKGROUND: There is controversy surrounding the value of the predicted postoperative diffusing capacity of lung for carbon monoxide (DLCOppo) in comparison to the forced expired volume in 1 s for prediction of pulmonary complications (PCs) after thoracic surgery. METHODS: Using a prospective database, we performed an analysis of 956 patients who had resection for lung cancer at a single institution. PC was defined as the occurrence of any of the following: atelectasis, pneumonia, pulmonary embolism, respiratory failure, and need for supplemental oxygen at hospital discharge. RESULTS: PCs occurred in 121 of 956 patients (12.7%). Preoperative chemotherapy (odds ratio 1.64, 95% confidence interval 1.06–2.55, P ϭ 0.02, point score 2) and a lower DLCOppo (odds ratio per each 5% decrement 1.13, 95% confidence interval 1.06–1.19, P Ͻ 0.0001, point score 1 per each 5% decrement of DLCOppo less than 100%) were independent risk factors for PCs. We defined 3 overall risk categories for PCs: low Յ10 points, 39 of 448 patients (9%); intermediate 11–13 points, 37 of 256 patients (14%); and high Ն14 points, 42 of 159 patients (26%). The median (range) length of hospital stay was significantly greater for patients who developed PCs than for those who did not: 12 (3–113) days vs 6 (2–39) days, P Ͻ 0.0001, respectively. Similarly, 30-day mortality was significantly more frequent for patients who developed PCs than for those who did not: 16 of 121 (13.2%) vs 6 of 835 (0.7%), P Ͻ 0.0001.
    [Show full text]
  • Airway Versus Transbronchial Biopsy and BAL in Lung Transplant Recipients: Different but Complementary
    Eur Respir J 1997; 10: 2876–2880 Copyright ERS Journals Ltd 1997 DOI: 10.1183/09031936.97.10122876 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 Airway versus transbronchial biopsy and BAL in lung transplant recipients: different but complementary C. Ward, G.I. Snell, B. Orsida, L. Zheng, T.J. Williams, E.H. Walters Airway versus transbronchial biopsy and BAL in lung transplant recipients: different Dept of Respiratory Medicine, Alfred but complementary. C. Ward, G.I. Snell, B. Orsida, L. Zheng, T.J. Williams, E.H. Walters. Hospital and Monash University Medical ©ERS Journals Ltd 1997. School, Melbourne, Australia. ABSTRACT: Lung transplantation is now an established therapeutic intervention Correspondence: E.H Walters for end-stage cardiopulmonary disease in humans. Chronic rejection, in the form Dept of Respiratory Medicine of bronchiolitis obliterans syndrome (BOS), remains the commonest cause of mor- Alfred Hospital bidity and mortality in those surviving more than 3 months. The pathology of BOS Prahran involves airway changes. We have evaluated the potential for endobronchial biop- Melbourne sies (EBB) to complement existing sampling methods used in allograft monitoring Victoria 3181 and have compared the results of EBB findings with those of bronchoalveolar Australia lavage (BAL) and transbronchial biopsy (TBB) in 18 clinically stable patients. Keywords: Bronchoalveolar lavage We found that all the EBB had inflammatory cells present but that only five endobronchial biopsy TBB specimens had evidence of inflammation, with airway material being present lung transplant in 78% of the TBB. Paired BAL and EBB yielded different results, with no cor- transbronchial biopsy relations between total macrophages, lymphocytes, CD4+ cells or CD8+ cells.
    [Show full text]
  • A Late Complication of a Diagnostic Mediastinoscopy
    Thorax: first published as 10.1136/thx.33.1.115 on 1 February 1978. Downloaded from Thorax, 1978, 33, 115-116 A late complication of a diagnostic mediastinoscopy H. F. W. HOITSMA1, E. T. T. TJHO2, AND M. A. CUESTA' From the Departments of General Surgery' and Thoracic Medicine2, Het Academisch Ziekenhuis der Vrije Universiteit, Amsterdam, The Netherlands Hoitsma, H. F. W., Tjho, E. T. T., and Cuesta, M. A. (1978). Thorax, 33, 115-116. A late complication of a diagnostic mediastinoscopy. A 69-year-old man with a moderately well differentiated squamous-cell carcinoma of the lung, underwent a mediastinoscopy. All histological examinations of the mediastinal nodes were negative. The patient was treated with a curative left pneumonectomy. Three months after this negative mediastinoscopy the patient developed a metastasis in the mediastinoscopy scar. A report of this case and a review of the literature are presented. In 1959, Carlens wrote the article, which has since all of them at biopsy. Histological investigation of become famous, entitled 'Mediastinoscopy: a the biopsy specimens showed fragmented and com- method for inspection and tissue biopsy in the plete lymph nodes with an intact structure. Besides superior mediastinum'. He described a method anthracotic infiltration there was a firm, histiocytic which he had developed in order to assess the reaction. No tumour cells were found. copyright. stage of lymphatic metastasis of carcinoma of the Ten days later the patient underwent a left lung. Since its introduction it has become a much pneumonectomy. All visible nodes in the hilus and used method to avoid unnecessary thoracotomies.
    [Show full text]
  • Coding Billing
    Coding&Billing Quarterly JANUARY 2018 Welcome to the January issue of the ATS Coding and Billing Quarterly. This issue covers a lot of new Medicare EDITOR payment policies that will impact ATS members and their ALAN L. PLUMMER, MD ATS RUC Advisor practices starting Jan. 1, 2018. ADVISORY BOARD MEMBERS: Medicare released the final rules for both the 2018 Medicare KEVIN KOVITZ, MD Chair, ATS Clinical Practice Committee Physician Fee Schedule – which covers payment and coverage KATINA NICOLACAKIS, MD policies for physicians and other Medicare Part B providers Member, ATS Clinical Practice Committee – and the Medicare Hospital Outpatient Prospective ATS Alternate RUC Advisorr Payment Rule – which deals with reimbursement STEPHEN P. HOFFMANN, MD Member, ATS Clinical Practice Committee for hospital outpatients services. While neither rule includes any major ATS CPT Advisor policy shifts that will directly impact ATS members, there are a number of MICHAEL NELSON, MD reimbursement changes (positive and negative) that will affect procedure code Member, ATS Clinical Practice Committee ATS Alternate CPT Advisor families of interest to ATS members. This issue will both alert you to these STEVE G. PETERS, MD payment changes and provide some background on why these reimbursement Member, ATS Clinical Practice Committee changes are happening. The New Year will bring in some revised CPT codes of interest to the ATS In This Issue community. This issue explains these revised CPT codes. Also covered in Revised CPT Codes for 2018, page 2 this edition is news about the revised ICD-10-CM codes for pulmonary hypertension. While the revised family of codes was in use starting Oct.
    [Show full text]
  • Icd-9-Cm (2010)
    ICD-9-CM (2010) PROCEDURE CODE LONG DESCRIPTION SHORT DESCRIPTION 0001 Therapeutic ultrasound of vessels of head and neck Ther ult head & neck ves 0002 Therapeutic ultrasound of heart Ther ultrasound of heart 0003 Therapeutic ultrasound of peripheral vascular vessels Ther ult peripheral ves 0009 Other therapeutic ultrasound Other therapeutic ultsnd 0010 Implantation of chemotherapeutic agent Implant chemothera agent 0011 Infusion of drotrecogin alfa (activated) Infus drotrecogin alfa 0012 Administration of inhaled nitric oxide Adm inhal nitric oxide 0013 Injection or infusion of nesiritide Inject/infus nesiritide 0014 Injection or infusion of oxazolidinone class of antibiotics Injection oxazolidinone 0015 High-dose infusion interleukin-2 [IL-2] High-dose infusion IL-2 0016 Pressurized treatment of venous bypass graft [conduit] with pharmaceutical substance Pressurized treat graft 0017 Infusion of vasopressor agent Infusion of vasopressor 0018 Infusion of immunosuppressive antibody therapy Infus immunosup antibody 0019 Disruption of blood brain barrier via infusion [BBBD] BBBD via infusion 0021 Intravascular imaging of extracranial cerebral vessels IVUS extracran cereb ves 0022 Intravascular imaging of intrathoracic vessels IVUS intrathoracic ves 0023 Intravascular imaging of peripheral vessels IVUS peripheral vessels 0024 Intravascular imaging of coronary vessels IVUS coronary vessels 0025 Intravascular imaging of renal vessels IVUS renal vessels 0028 Intravascular imaging, other specified vessel(s) Intravascul imaging NEC 0029 Intravascular
    [Show full text]
  • Assessment and Retrieval of Aspirated Tracheoesophageal Prosthesis in the Ambulatory Setting
    UCLA UCLA Previously Published Works Title Assessment and Retrieval of Aspirated Tracheoesophageal Prosthesis in the Ambulatory Setting. Permalink https://escholarship.org/uc/item/7pv2g71t Authors Dewan, Karuna Erman, Andrew Long, Jennifer L et al. Publication Date 2018 DOI 10.1155/2018/9369602 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Hindawi Case Reports in Otolaryngology Volume 2018, Article ID 9369602, 4 pages https://doi.org/10.1155/2018/9369602 Case Report Assessment and Retrieval of Aspirated Tracheoesophageal Prosthesis in the Ambulatory Setting Karuna Dewan , Andrew Erman, Jennifer L. Long, and Dinesh K. Chhetri Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA Correspondence should be addressed to Karuna Dewan; [email protected] Received 14 June 2018; Accepted 26 August 2018; Published 13 September 2018 Academic Editor: Marco Berlucchi Copyright © 2018 Karuna Dewan et al. *is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Tracheoesophageal prosthesis (TEP) is the most common voice restoration method following total laryngectomy. Prosthesis extrusion and aspiration occurs in 3.9% to 6.7% and causes dyspnea. Emergency centers are unfamiliar with management of the aspirated TEP. Prior studies report removal of aspirated TEP prostheses under general anesthesia. Laryngectomees commonly have poor pulmonary function, posing increased risks for complications of general anesthesia. We present a straightforward approach to three cases of aspirated TEP prosthesis removed in the ambulatory setting. In each case, aspirated TEP was diagnosed with flexible bronchoscopy under local anesthesia at the time of consultation, and all prostheses were retrieved atraumatically using a biopsy grasper forceps inserted via the side channel of the bronchoscope.
    [Show full text]
  • FY 2009 Final Addenda ICD-9-CM Volume 3, Procedures Effective October 1, 2008
    FY 2009 Final Addenda ICD-9-CM Volume 3, Procedures Effective October 1, 2008 Tabular 00.3 Computer assisted surgery [CAS] Add inclusion term That without the use of robotic(s) technology Add exclusion term Excludes: robotic assisted procedures (17.41-17.49) New code 00.49 SuperSaturated oxygen therapy Aqueous oxygen (AO) therapy SSO2 SuperOxygenation infusion therapy Code also any: injection or infusion of thrombolytic agent (99.10) insertion of coronary artery stent(s) (36.06-36.07) intracoronary artery thrombolytic infusion (36.04) number of vascular stents inserted (00.45-00.48) number of vessels treated (00.40-00.43) open chest coronary artery angioplasty (36.03) other removal of coronary obstruction (36.09) percutaneous transluminal coronary angioplasty [PTCA] (00.66) procedure on vessel bifurcation (00.44) Excludes: other oxygen enrichment (93.96) other perfusion (39.97) New Code 00.58 Insertion of intra-aneurysm sac pressure monitoring device (intraoperative) Insertion of pressure sensor during endovascular repair of abdominal or thoracic aortic aneurysm(s) New code 00.59 Intravascular pressure measurement of coronary arteries Includes: fractional flow reserve (FFR) Code also any synchronous diagnostic or therapeutic procedures Excludes: intravascular pressure measurement of intrathoracic arteries (00.67) 00.66 Percutaneous transluminal coronary angioplasty [PTCA] or coronary atherectomy Add code also note Code also any: SuperSaturated oxygen therapy (00.49) 1 New code 00.67 Intravascular pressure measurement of intrathoracic
    [Show full text]
  • Rigid Laryngoscopy, Oesophagoscopy and Bronchoscopy in Adults
    OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY RIGID LARYNGOSCOPY, OESOPHAGOSCOPY & BRONCHOSCOPY IN ADULTS Johan Fagan, Mark De Groot Adult bronchoscopy, rigid oesophagoscopy teeth (Figure 3). Ask a dentist to make a and laryngoscopy for both diagnostic and customised guard for patients with therapeutic reasons are generally done abnormal teeth (Figure 4) or fashion one in under general anaesthesia. Panendoscopy the operating room from thermoplastic (all 3 procedures) is commonly performed sheeting (Figures 5a, b). to rule out synchronous primaries with squamous cell cancer of the upper aerodi- gestive tract. This chapter covers the tech- niques, pitfalls and safety measures of these 3 procedures. Morbidity of rigid endoscopy Sharing the airway with an anaesthetist requires close communication and a good understanding between surgeon and anaes- thetist. Figure 1: Protecting the lips with the fingers of the non-dominant hand It is surprising how often rigid endoscopy causes minor extralaryngeal and extra- oesophageal trauma. It is extremely easy to tear or perforate the delicate tissues that line the upper aerodigestive tract; this can lead to deep cervical sepsis, mediastinitis and death. Consequently it is important that a surgeon exercises extreme caution and knows when to abandon e.g. a difficult oesophagoscopy procedure. Mucosal injury occurs in up to 75% of cases and commonly involves the lips or Figure 2: Endoscopes exert excessive 1 angles of the mouth . To protect especially lateral pressure on the teeth to either side the lower lip one should advance the scope of a gap between the front teeth over the fingers of the non-dominant hand (Figure 1).
    [Show full text]
  • Bronchoscopy Assisting
    AARC GUIDELINE: BRONCHOSCOPY ASSISTING AARC Clinical Practice Guideline Bronchoscopy Assisting—2007 Revision & Update BA 1.0 PROCEDURE properties of the upper airway1,2,4,6,8 The role of the assistant in Bronchoscopy Assisting 4.3 The need to investigate hemoptysis, persis- (BA) tent unexplained cough, dyspnea, localized wheeze, or stridor1,2,4-8,10 BA 2.0 DESCRIPTION/DEFINITION 4.4 Suspicious or positive sputum cytology re- Bronchoscopy, fiberoptic or rigid, is an invasive sults1,2,4-6 procedure for visualization of the upper and lower 4.5 The need to obtain lower respiratory tract respiratory tract for the diagnosis and management secretions, cell washings, and biopsies for cyto- of a spectrum of inflammatory, infectious, and ma- logic, histologic, and microbiologic evalua- lignant diseases of the airway and lungs.1,2 Bron- tion1,2,4,7,9,11,12 choscopy may include retrieval of tissue specimens 4.6 The need to determine the location and ex- (bronchial brush, forceps, and needle), cell wash- tent of injury from toxic inhalation or aspira- ings, bronchoalveolar lavage, coagulation, or re- tion1,2,4,6 moval of abnormal tissue by laser. Bronchoscopy is 4.7 The need to evaluate problems associated widely used as a diagnostic and therapeutic tool for with endotracheal or tracheostomy tubes (tra- management of the airway.3 Bronchoscopy is per- cheal damage, airway obstruction, or tube formed by a specially trained physician broncho- placement)1,2,4-7 scopist and is assisted by a specially trained health- 4.8 The need for aid in performing difficult in- care professional (HCP).
    [Show full text]
  • Videolaryngoscope Assisted Fiberoptic Bronchoscopy for Difficult Intubation in Upper Airway Cancer
    Global Journal of Otolaryngology ISSN 2474-7556 Research Article Glob J Otolaryngol Volume 14 Issue 3 - March 2018 Copyright © All rights are reserved by Cecil B Rhodes DOI: 10.19080/GJO.2018.14.555888 Videolaryngoscope Assisted Fiberoptic Bronchoscopy for Difficult Intubation in Upper Airway Cancer Francisco OM Vieira1, Cecil B Rhodes2, Aaron Smith2 and Shannan Case CRNA3 1Assistant Professor of Otolaryngology - Head and Neck Surgery, University of Tennessee Health Science Center at Memphis, USA 2Department of Otolaryngology - Head and Neck Surgery, University of Tennessee Health Science Center, USA 3Certified Registered Nurse Anesthetist, University of Tennessee Health Science Center, USA Submission: March 20, 2018; Published: April 06, 2018 *Corresponding author: Cecil B Rhodes, Department of Otolaryngology - Head and Neck Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA, Email: Abstract Objectives: neck cancer patients presenting with upper airway obstruction who would otherwise undergo initial awake tracheostomy. Methods: We present a combined method of videolaryngoscope assisted fiber optic bronchoscopic intubation “VLS/FOBI” for head and 16 patients presenting with stage III and IV laryngeal, hypopharyngeal and thyroid tumors who were anticipated to be difficult intubations are studied. A combined use of broad view from videolaryngoscope (VLS) assisted by fiber optic bronchoscopic intubation (FOBI) is described.Results: Exposing In this cohortavailable 16 supraglotticout of 38 patients landmarks with head allows and for neck proper cancers positioning met the ofinclusion fiberoptic criteria, flexible 5 (31%) bronchoscope patients althoughto be advanced considered through for the vocal cords and confirmed visually. the techniqueConclusion: were Advanced not attempted. head and The neck remaining cancer 9patients (69%) patientscan require underwent expedited the awake VLS/FOBI surgical procedure procedures and resulteddue to the in successfulinability to intubations secure the at first pass without any complication.
    [Show full text]
  • A Prediction Model for Lung Cancer Diagnosis That Integrates Genomic and Clinical Features
    Published OnlineFirst March 31, 2008; DOI: 10.1158/1940-6207.CAPR-08-0011 Cancer Prevention Research A Prediction Model for Lung Cancer Diagnosis that Integrates Genomic and Clinical Features Jennifer Beane,1,2 Paola Sebastiani,3 Theodore H. Whitfield,4 Katrina Steiling,1 Yves-Martine Dumas,1 Marc E. Lenburg1,2,5 and Avrum Spira1,2 Abstract Lung cancer is the leading cause of cancer death due, in part, to lack of early diagnostic tools. Bronchoscopy represents a relatively noninvasive initial diagnostic test in smokers with suspect disease, but it has low sensitivity. We have reported a gene expression profile in cytologically normal large airway epithelium obtained via bronchoscopic brushings, which is a sensitive and specific biomarker for lung cancer. Here, we evaluate the independence of the biomarker from other clinical risk factors and determine the performance of a clinicoge- nomic model that combines clinical factors and gene expression. Training (n = 76) and test (n = 62) sets consisted of smokers undergoing bronchoscopy for suspicion of lung cancer at five medical centers. Logistic regression models describ- ing the likelihood of having lung cancer using the biomarker, clinical factors, and these data combined were tested using the independent set of patients with nondiagnostic bronchoscopies. The model predictions were also compared with physicians' clinical assessment. The gene expression biomarker is associated with cancer status in the combined clinico- genomic model (P < 0.005). There is a significant difference in performance of the clinico- genomic relative to the clinical model (P < 0.05). In the test set, the clinicogenomic model increases sensitivity and negative predictive value to 100% and results in higher specificity (91%) and positive predictive value (81%) compared with other models.
    [Show full text]