Evaluation of Gamma-Linolenic Acid Composition of Evening Primrose

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Gamma-Linolenic Acid Composition of Evening Primrose HORTSCIENCE 38(4):595–598. 2003. regions of Texas. In the spring and early sum- mer, tagging trips were taken to locate evening primrose species while they were in bloom Evaluation of Gamma-linolenic Acid so that identification could be made. Voucher specimens were collected for each species of Composition of Evening Primrose the study. Each collection site was recorded us- ing a hand-held GeoExplorer global positioning (Oenothera) Species Native to Texas unit. In the late summer or fall, plant popula- tions were relocated and ripened seed capsules S.A. Balch1, C.B. McKenney2, and D.L. Auld3 were collected. A threshing machine was used Department of Plant and Soil Science, Texas Tech University, Lubbock, to break open capsules and separate seed from TX 79409-2122 other plant debris. Seed was further cleaned with a seed blower (General Mfg.). Cleaned Additional index words. evening primrose oil, GLA seed was stored in air-tight plastic containers in a refrigeration unit held at 4 °C. Abstract. The oil of evening primrose (Oenothera sp.) is an important source of gamma- Seeds from each collection site were ana- linolenic acid (GLA). GLA [C18:3¨6,9,12] is an unsaturated fatty acid in demand for its lyzed for fatty acid composition (Speed, 1995). nutritional and pharmaceutical application. Oenothera biennis L. is the primary com- A300-mg sample of seed from each accession mercial source of evening primrose oil. A study was conducted to determine if species of was used. Oil was extracted from the seed by Oenothera, adapted to Texas, produce GLA levels comparable to O. biennis. This project grinding whole seeds in 20 mL of hexane us- identified and evaluated the fatty acid composition of eight species of evening primrose ing a Polytron grinder. The oil/hexane mixture native to Texas. GLA levels of 54 accessions evaluated from collected seed ranged from was poured through a Whatman filter into 20- 0.0% to 11.0%. Field experiments were then conducted to determine oil content, fatty mL scintillation vials. Vials were placed into acid composition, seed yield, and potential adaptation to commercial production of a heating block at 50 °C and the hexane was selected accessions. Mean GLA levels of cultivated seed from these accessions ranged evaporated with a continuous flow of nitrogen from 0.0% to 10.1%. Mean seed oil content ranged from 7.3% to 21.7%. Of the spe- gas. Methyl esters of the oil were made by cies examined, O. elata subsp. hirsutissima (A. Gray ex S. Watson) W. Dietrich and O. adding 1 mL of methylation mixture to each jamesii (Torrey & Gray) demonstrated GLA levels and seed yields adequate for com- sample and inverting the capped sample for mercial production. Based on these results, O. elata subsp. hirsutissima and O. jamesii mixing. The methylation mixture was com- demonstrated sufficiently high GLA levels, oil content, and seed yields to be considered posed of 29.1 mL of 14% borontrifluoride in for commercial production. methanol, 20 mL of toluene, and 50.9 mL of methanol. Samples were placed in a heating In recent years, there has been increased Evening primrose (Oenothera biennis L.) block at 100 °C for 20 min. Samples were then interest in plants that produce gamma-linolenic was the first plant used for the isolation of GLA removed from the heating block and allowed to acid (GLA). In humans and other mammals, (Gunstone, 1992), and it is the primary source cool for 10 min. Each sample was rinsed with 2 GLA is an important intermediate in the conver- of GLA used in clinical and pharmaceutical mL of deionized water and 1 mL of hexane and sion of linoleic acid to prostaglandins, throm- applications (Phillips and Huang, 1996). GLA shaken to mix well. The mixture was allowed boxanes, and other long-chain polyunsaturated was extracted from the oil in the seeds of this to separate into two layers and the hexane layer fatty acids (Horrobin, 1992). This compound plant. Hudson (1984) reported that evening was pipetted into vials for gas chromatograph is considered an essential fatty acid, since, like primrose seed contains 24% oil with gamma- analysis. Nitrogen gas was blown into each vitamins, it cannot be synthesized by animals linolenic acid comprising 7% to 14% of the sample vial before it was capped to prevent and must be consumed in the diet from plant fatty acid component. Evening primrose oil is oxidation of the sample. sources (Lehninger, 1982). Prostaglandins available as a nutritional supplement in over Samples were analyzed using a Hewlett and thromboxanes are hormone regulators 30 countries and Oenothera biennis is grown Packard 5890 Series II Gas Chromatograph which affect many cellular functions and commercially in at least 15 countries (Carter, equipped with a Supelco 30 m × 0.53 mm × regulate some blood platelet activities. The 1988). In 1988, Canada and the United States 0.5 µm fused silica capillary column and flame rate-determining step in the bioconversion of produced 300–400 tons of evening primrose ionization detector (Speed, 1995). The initial linoleic acid to arachidonic acid, the precursor seed. Most of the commercial production of oven temperature of 210 °C was increased at of prostaglandins and thromboxanes, is be- evening primrose oil in North America is the rate of 4 °C per minute until a final tem- lieved to be the formation of the double bond located in Canada and in the eastern United perature of 240 °C was reached. The injector at the C-6 carbon by the enzyme ¨6-desaturase States (Brandle et al., 1993; Hall et al., 1988). port was set at 200 °C and the flame ionization (Horrobin, 1992). This enzyme catalyzes the These are areas of high rainfall and moderate detector was set at 250 °C. Output of the flame conversion of linoleic acid to gamma-linolenic temperatures. Little work has been done to ionization detector was recorded on an HP 3396 acid. Although most humans consume suffi - evaluate the fatty acid composition of Oeno- Series II Integrator. Fatty acid composition was cient quantities of linoleic acid, it has been thera species native to semiarid regions of calculated by summing the total area of all shown that certain factors such as stress, aging, the United States. A native evening primrose fatty acids detected and dividing each fatty diabetes, and alcohol consumption can inhibit with commercial levels of GLA would have acid by the total area. Peaks were identified or reduce the activity of the ¨6-desaturase en- potential as a high-value oil crop in areas of by comparing retention times to reference zyme (Horrobin, 1992; Phillips and Huang, high temperatures and low annual rainfall. The standard retention peaks of known composi- 1996). In recent medical research, it has been objectives of this project were to: 1) identify tion (Sigma AOCS No. 3, Sigma AOCS No. found that dietary supplementation of GLA can and collect species of evening primrose native 5, Alltech Methyl Ester Standards). be effective in the treatment of these conditions to the western regions of Texas, 2) analyze the Seeds harvested from cultivated plots were (Carter, 1988). fatty acid composition of the seed oil of these analyzed for percent oil at the Univ. of Idaho, species, and 3) evaluate their adaptability to using a Newport MKIIIA nuclear magnetic commercial field production. Received for publication 13 Nov. 2001. Accepted for resonance instrument (Newport of North publication 23 Aug. 2002. Texas Tech Univ. Paper America, Villanova, Pa.). Analyses were made No. T-4-516. This research was funded in part by Methods and Materials on oven-dried seed, using a canola standard the Texas Dept. of Agriculture. of 36.2% oil. 1Former Graduate Student. The collection area included the Northern Species with high levels GLA were evalu- 2Assistant Professor. High Plains and Southern High Plains, the ated in field studies in 1996, 1997, 1998, and 3Professor. Texas Rolling Plains, and the Edwards Plateau 1999. Seeds were sown in a soilless mix in HORTSCIENCE, VOL. 38(4), JULY 2003 595 24-7116, p595-598 595 6/29/03, 3:56:43 PM BREEDING, CULTIVARS, ROOTSTOCKS, & GERMPLASM RESOURCES the greenhouse in January of each year and in 1996 and 0.0 % in 1997. All accessions of showed a modest correlation in concentration transplanted to the field in May. Plants were O. grandis, O. missouriensis, O. brachycarpa, of GLA levels (r = 0.73**, df = 12). Seeds from grown at the Erskine Research Farm in Lub- and O. laciniata had GLA levels of <0.5%. cultivated plants of O. jamesii had GLA levels bock, Tex., under drip irrigation. The soil at Statistical analyses were not conducted on fatty ranging from 8.3% to 10.5% (data not shown) this site was an Amarillo fine sandy loam. Each acid composition of native collected seed due in 1998 and 6.8% to 10.7% in 1999 compared species was planted in a completely random- to the low numbers of accessions collected to the 1997 native collection with 11% and the ized block design with four replicates. Seeds of some species. Accessions with high levels 1998 native collection with 6.8%. Oenothera were harvested at maturity and threshed and of GLA were included in subsequent field jamesii was collected in a mesic habitat that analyzed for fatty acid composition using the evaluations. may have greater water availability comparable above procedure. Each collected species was grown in to field conditions. In all three years of culti- Data were subjected to analysis of variance the field for a minimum of 2 years. Species vation, Oenothera elata demonstrated greater procedures (SAS Institute, 1998). Mean separa- exhibiting <2.0% GLA levels were not evalu- GLA levels (8.0% to 10.1%) than the original tions were performed using Fisher·s Protected ated in subsequent years.
Recommended publications
  • Oenothera Coronifera, a New Alien Species for the Czech Flora, and Oenothera Stricta, Recorded Again After Nearly Two Centuries
    Preslia, Praha, 75: 263–270, 2003 263 Oenothera coronifera, a new alien species for the Czech flora, and Oenothera stricta, recorded again after nearly two centuries Oenothera coronifera, nový zavlečený druh české flóry, a první nález Oenothera stricta po dvou stoletích Stanislav M i h u l k a1, 2, Petr P y š e k2 & † Antonín P y š e k 1Faculty of Biological Sciences, University of South Bohemia, CZ-370 01 Branišovská 31, České Budějovice, Czech Republic, e-mail: [email protected];, 2Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Repub- lic, e-mail: [email protected] Mihulka S., Pyšek P. & Pyšek A. (2003): Oenothera coronifera, a new alien species for the Czech flora, and Oenothera stricta, recorded again after nearly two centuries. – Preslia, Praha, 75: 263–270. Two species of the North American genus Oenothera are reported as aliens in the Czech Republic. A population of O. coronifera consisting of ca. 30 plants at various phenological stages, from ro- settes to flowering plants, was found in 2001 at the railway station in the town of Zliv, district of České Budějovice, S Bohemia. The species was probably introduced via the railway and is the first record of this species for the Czech Republic. A single plant of O. stricta, previously reported from the bank of the Vltava river in Prague, in 1825, was found as a weed in a private garden in the village of Vroutek, district of Louny, N Bohemia, in 2000. This is the second record of this species from the Czech Republic in 175 years.
    [Show full text]
  • Types of Gene Effects Governing the Inheritance of Oleic and Linoleic Acids in Peanut (Arachis Hypogaea L.)
    African Journal of Biotechnology Vol. 11(67), pp. 13147-13152, 21 August, 2012 Available online at http://www.academicjournals.org/AJB DOI:10.5897/AJB12.1498 ISSN 1684-5315 ©2012 Academic Journals Full Length Research Paper Types of gene effects governing the inheritance of oleic and linoleic acids in peanut (Arachis hypogaea L.) Nattawut Singkham1, Sanun Jogloy1*, Bhalang Suriharn1, Thawan Kesmala1, Prasan Swatsitang2, Prasit Jaisil1, Naveen Puppala3 and Aran Patanothai1 1Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand. 2Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand. 3Agricultural Science Center at Clovis, New Mexico State University, Clovis, New Mexico, 88101, USA. Accepted 3 August, 2012 Oleic and linoleic acids are major fatty acids in peanut determining the quality and shelf-life of peanut products. A better understanding on the inheritance of these characters is an important for high-oleic breeding programs. The objective of this research was to determine the gene actions for oleic acid, linoleic acid, the ratio of oleic to linoleic acids (O/L ratio) and percentage oil (% oil) in peanut. Georgia- 02C, SunOleic 97R (high-oleic genotypes) and KKU 1 (low-oleic genotypes) were used as parents to generate P1, P2, F2, F3, BC11S and BC12S. The entries were planted in a randomized complete block design with four replications in the rainy season (2008) and the dry season (2008/2009). Gas liquid chromatography (GLC) was used to analyze fatty acid compositions. The data were used in generation means analysis to understand gene effects. The differences in season, generation and generation season interactions were significant for oleic acid in the crosses Georgia-02C KKU 1 and SunOleic 97R KKU 1.
    [Show full text]
  • Use of Gamma-Linolenic Acid and Related Compounds for the Manufacture of a Medicament for the Treatment of Endometriosis
    ~" ' MM II II II II I II Ml Ml Ml I II I II J European Patent Office ooo Ats*% n i © Publication number: 0 222 483 B1 Office_„. europeen des brevets © EUROPEAN PATENT SPECIFICATION © Date of publication of patent specification: 18.03.92 © Int. CI.5: A61 K 31/20, A61 K 31/1 6, A61K 31/23 © Application number: 86307533.9 @ Date of filing: 01.10.86 Use of gamma-linolenic acid and related compounds for the manufacture of a medicament for the treatment of endometriosis. © Priority: 02.10.85 GB 8524276 © Proprietor: EFAMOL HOLDINGS PLC Efamol House Woodbridge Meadows @ Date of publication of application: Guildford Surrey GU1 1BA(GB) 20.05.87 Bulletin 87/21 @ Inventor: Horrobin, David Frederick © Publication of the grant of the patent: c/o Efamol Ltd, Efamol House Woodbridge 18.03.92 Bulletin 92/12 Meadows Guildford, Surrey, GU1 1BA(GB) © Designated Contracting States: Inventor: Casper, Robert AT BE CH DE ES FR GB GR IT LI LU NL SE University Hospital 339 Windermere Road London Ontario N6A 5AS(CA) © References cited: EP-A- 0 003 407 EP-A- 0 115 419 © Representative: Miller, Joseph EP-A- 0 132 089 J. MILLER & CO. Lincoln House 296-302 High EP-A- 0 181 689 Holborn London WC1V 7JH(GB) J. GYNECOL. OBSTET. BIOL. REPROD. vol. 10, no. 5, 1981, pages 465-471 Masson, Paris, FR PH. CALLGARIS et al.: "Endometriose de la paroi abdominale" 00 00 CLINICAL OBSTETRICS AND GYNECOLOGY, 00 vol. 23, no. 3, Sept. 1980, pages 895-900 J.C. WEED: "Prostaglandins as related to en- CM dometriosis" CM CM Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Role of Arachidonic Acid and Its Metabolites in the Biological and Clinical Manifestations of Idiopathic Nephrotic Syndrome
    International Journal of Molecular Sciences Review Role of Arachidonic Acid and Its Metabolites in the Biological and Clinical Manifestations of Idiopathic Nephrotic Syndrome Stefano Turolo 1,* , Alberto Edefonti 1 , Alessandra Mazzocchi 2, Marie Louise Syren 2, William Morello 1, Carlo Agostoni 2,3 and Giovanni Montini 1,2 1 Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, Via della Commenda 9, 20122 Milan, Italy; [email protected] (A.E.); [email protected] (W.M.); [email protected] (G.M.) 2 Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; [email protected] (A.M.); [email protected] (M.L.S.); [email protected] (C.A.) 3 Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pediatric Intermediate Care Unit, 20122 Milan, Italy * Correspondence: [email protected] Abstract: Studies concerning the role of arachidonic acid (AA) and its metabolites in kidney disease are scarce, and this applies in particular to idiopathic nephrotic syndrome (INS). INS is one of the most frequent glomerular diseases in childhood; it is characterized by T-lymphocyte dysfunction, alterations of pro- and anti-coagulant factor levels, and increased platelet count and aggregation, leading to thrombophilia. AA and its metabolites are involved in several biological processes. Herein, Citation: Turolo, S.; Edefonti, A.; we describe the main fields where they may play a significant role, particularly as it pertains to their Mazzocchi, A.; Syren, M.L.; effects on the kidney and the mechanisms underlying INS. AA and its metabolites influence cell Morello, W.; Agostoni, C.; Montini, G.
    [Show full text]
  • Rain Garden Plant List
    Rain Garden Plant List This is by no means a complete list of the many plants suitable for your rain garden: Native or Botanical Name Common Name Category Naturalized Wet Zone Acer rubrum var. drummondii Southern Swamp Maple Tree Any Acorus calamus Sweet Flag Grass Any Adiantum capillus-veneris Southern Maidenhair Fern Fern Median Aesculus pavia Scarlet Buckeye Tree Yes Any Alstromeria pulchella Peruvian Lily Perennial Any Amorpha fruticosa False Indigo Wildflower Yes Any Andropogon gerardi Big Bluestem Grass Yes Median Andropogon scoparius Little Bluestem Grass Yes Median Aniscanthus wrightii Flame Acanthus Shrub Yes Median Aquilegia canadensis Columbine, Red Wildflower Yes Median Aquilegia ciliata Texas Blue Star Wildflower Yes Median Aquilegia hinckleyana Columbine, Hinckley's Perennial Median, Margin Aquilegia longissima Columbine, Longspur Wildflower Yes Center Asclepias tuberosa Butterfly Weed Wildflower Yes Margin Asimina triloba Pawpaw Tree Any Betula nigra River Birch Tree Yes Any Bignonia capreolata Crossvine Vine Yes Any Callicarpa americana American Beautyberry Shrub Yes Any Canna spp. Canna Lily Perennial No Any Catalpa bignonioides Catalpa Tree Yes Any Cephalanthus occidentalis Buttonbush Shrub Yes Any Chasmanthus latifolium Inland Sea Oats Grass Yes Median, Margin Cyrilla recemiflora Leatherwood or Titi Tree Tree Yes Median, Margin Clematis pitcheri Leatherflower Vine Yes Any Crataegus reverchonii Hawthorn Tree Yes Any Crinum spp. Crinum Perennial Any Delphinium virescens Prairie Larkspur Wildflower Yes Any Dryoptera normalis
    [Show full text]
  • The Nature of Naming What’S in a Name?
    The Nature of Naming What’s in a Name? • "A rose is a rose," it has been said • And most of us know a rose when we see one • As we know the African marigolds • Maples, elms, cedars, and pines that shade our backyards and line our streets What’s in a Name? • We usually call these plants by their common names • But if we wanted to know more about the cedar tree in our front yard, we would find that "cedar" may refer to: – Eastern red cedar What’s in a Name? • Incense cedar What’s in a Name? • Western red cedar What’s in a Name? • Atlantic white cedar What’s in a Name? • Spanish cedar What’s in a Name? • Biblical Lebanon cedar What’s in a Name? • In fact, we would find that cedars are found in three separate plant families What’s in a Name? • Later, after discovering that our "African" marigolds are in fact from Mexico and our "Spanish" cedar originated in the West Indies, we would realize how misleading the common names of plants can be. What’s in a Name? • The same plant can have many different common names – European white lily has at least 245 – Marsh marigold has at least 280 What’s in a Name? • Clearly, if we use only the common name of a plant, we cannot be sure of understanding very much about that plant Classification • It is for this reason that the scientific community prefers to use a more precise way of naming, or classification • Scientific classification, however, is more than just naming: it is a key to understanding • Botanists name a plant to give it a unique place in the biological world, as well as to clarify its relationships within that world How Are Plants Classified? • Science classifies living things in an orderly system through which they can be easily identified – Categories of increasing size, based upon relationships within those categories How Are Plants Classified? • For example, all plants can be put in order from the more primitive to the more advanced.
    [Show full text]
  • Oenothera Biennis L.)
    1971 Seed oil quality of GA3 induced flowering evening primrose (Oenothera biennis L.) Omid Sohrabi1, Azim Ghasemnezhad1, Ahmad Nadimi1, Manocher Shahbazy2 1. Dep. Plant production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran 2. The center of research and education of Agricultural and Natural Resources, Golestan province, Gorgan, Iran ________________________________________________________________________________ Abstract Gamma-linoleic acid in the seed oil of evening primrose makes it nutritionally and pharmaceutically valuable. If evening primrose wants to be cultivated as an annual plant, sowing time is important. By the late sowing and depends to time most plants do not produce flower stem and stay in rosette stage until next spring. To solve this problem, the present study was performed. Seedling were transplanted to 4 kg plastic pots containing a mixture of leaf compost: local soil: perlite (1:2:1 ratio) and placed in outdoor conditions. Non-vernalized plants were then selected and treated with different temperature regimes (1, 2 and 3 weeks in 4-6ºC) and gibberellic acid (GA3) application in different concentrations of 0, 500, 1000, 2000 ppm, separately. The results showed that although some physiological parameters were affected by low temperature, no flower stem was produced. In contrast, plants that were treated with GA3 produced flower stem. Time of flowering and the number of flowers were significantly affected by the concentrations of applied GA3. Although yield components of GA3 induced plants were higher than that of normal growth plant, the seed yield of them was low. Surprisingly, the gamma linolenic acid (GLA) percentage of seed oil of plants treated with 2000 ppm GA3 was significantly higher than that of non- treated plants.
    [Show full text]
  • Seedimages Species Database List
    Seedimages.com Scientific List (possibly A. cylindrica) Agropyron trachycaulum Ambrosia artemisifolia (R) not Abelmoschus esculentus Agrostemma githago a synonym of A. trifida Abies concolor Agrostis alba Ambrosia confertiflora Abronia villosa Agrostis canina Ambrosia dumosa Abronia villosum Agrostis capillaris Ambrosia grayi Abutilon theophrasti Agrostis exarata Ambrosia psilostachya Acacia mearnsii Agrostis gigantea Ambrosia tomentosa Acaena anserinifolia Agrostis palustris Ambrosia trifida (L) Acaena novae-zelandiae Agrostis stolonifera Ammi majus Acaena sanguisorbae Agrostis tenuis Ammobium alatum Acalypha virginica Aira caryophyllea Amorpha canescens Acamptopappus sphaerocephalus Alcea ficifolia Amsinckia intermedia Acanthospermum hispidum Alcea nigra Amsinckia tessellata Acer rubrum Alcea rosea Anagallis arvensis Achillea millifolium Alchemilla mollis Anagallis monellii Achnatherum brachychaetum Alectra arvensis Anaphalis margaritacea Achnatherum hymenoides Alectra aspera Andropogon bicornis Acmella oleracea Alectra fluminensis Andropogon flexuosus Acroptilon repens Alectra melampyroides Andropogon gerardii Actaea racemosa Alhagi camelorum Andropogon gerardii var. Adenostoma fasciculatum Alhagi maurorum paucipilus Aegilops cylindrica Alhagi pseudalhagi Andropogon hallii Aegilops geniculata subsp. Allium canadense Andropogon ternarius geniculata Allium canadense (bulb) Andropogon virginicus Aegilops ovata Allium cepa Anemone canadensis Aegilops triuncialis Allium cernuum Anemone cylindrica Aeginetia indica Allium fistulosum Anemone
    [Show full text]
  • On Fatty Acid Composition and Shelf Life of Broiler Chicken Meat Hilal Ürüşan1* • Canan Bölükbaşı2
    Alinteri J. of Agr. Sci. (2020) 35(1): 29-35 http://dergipark.gov.tr/alinterizbd e-ISSN: 2587-2249 http://www.alinteridergisi.com/ [email protected] DOI: 10.28955/alinterizbd.737995 RESEARCH ARTICLE The Influence of Turmeric Powder (Curcuma longa) on Fatty Acid Composition and Shelf Life of Broiler Chicken Meat Hilal Ürüşan1* • Canan Bölükbaşı2 1Atatürk University, Erzurum Vocational High School, Department of Plant and Animal Production, Erzurum/Turkey 2Atatürk University, Faculty of Agriculture, Department of Animal Science, Erzurum/Turkey ARTICLE INFO ABSTRACT Article History: The objective of this study was to determine the appropriate concentration of dietary Received: 21.03.2019 supplementation of turmeric powder, and its effect on thiobarbituric acid reactive substance (TBARS) Accepted: 03.02.2020 and fatty acid composition in thigh and breast meat of broiler chickens. Three hundred fifty (175 Available Online: 15.05.2020 male and 175 female), one day old Ross-308 broiler chicks were used in this study. A corn-soybean Keywords: meal based diet containing different levels of turmeric powder (0, 2, 4, 6, 8, 10 g/kg) and a single dose of chlortetracycline (10 mg/kg) was used. The result revealed that dietary supplementation of Broiler 2, 4, 6, 8 and 10 g/kg of turmeric powder decreased TBARS in thigh meat at 5th day when compared Turmeric with control. The addition of 4 g/kg turmeric powder to the basal diet increased DHA, SFA and omega- TBARS 3 in breast meat. DHA and SFA were increased by dietary 2 g/kg turmeric powder in thigh meats. Fatty acid composition Under the conditions of this experiment, it was concluded that turmeric powder may positive effects Antioxidant on tissue fatty acid compositions and shelf life of meat (TBARS).
    [Show full text]
  • Common Evening-Primrose (Oenothera Biennis
    Weed Technology Common evening-primrose (Oenothera www.cambridge.org/wet biennis L.) Lawrence E. Steckel1, Lynn M. Sosnoskie2 and Sandra J. Steckel3 1 2 Intriguing World of Weeds Professor, University of Tennessee, Jackson, TN, USA; Agronomy and Weed Science Advisor, Merced, CA, USA and 3Extension Assistant, University of Tennessee, Jackson, TN, USA Cite this article: Steckel LE, Sosnoskie LM, Steckel SJ (2019) Common evening-primrose Primroses, The spring may love them; Summer knows but little of them. (Oenothera biennis L.). Weed Technol. 33: Foresight. William Wordsworth, 1819 757–760. doi: 10.1017/wet.2019.53 Ring-ting! I wish I were a Primrose Received: 8 March 2019 Revised: 8 May 2019 A bright yellow Primrose, blowing in the Spring! Accepted: 31 May 2019 Wishing. William Allingham First published online: 12 July 2019 “The snowdrop and primrose our woodlands adorn, and violets bathe in the wet o’ the morn.” Associate Editor: Robert Burns Scott McElroy, Auburn University Author for correspondence: Introduction Lawrence E. Steckel, University of Tennessee, 605 Airways Boulevard, Jackson, TN 38301. Common evening-primrose (Oenothera biennis L.) is a member of the Onagraceae, which is (Email: [email protected]) oftenreferredtoasthewillowherborevening-primrose plant family. Modern classification schemes include the Onagraceae in the order Myrtales, with such families as the Myrtaceae, Melastomataceae, and Lythraceae, because they share some characteristics, such as a distinctive hypanthium (i.e., floral cup) and internal phloem (i.e., located to the inside of the primary xylem) (Dahlgren and Thorne 1984). The members of this family are characterized as annual, biennial, or perennial herbs or sometimes shrubs or trees; members are terrestrial or, rarely, aquatic plants (Dahlgren and Thorne 1984;Zomlefer1994).
    [Show full text]
  • List of Plants for Great Sand Dunes National Park and Preserve
    Great Sand Dunes National Park and Preserve Plant Checklist DRAFT as of 29 November 2005 FERNS AND FERN ALLIES Equisetaceae (Horsetail Family) Vascular Plant Equisetales Equisetaceae Equisetum arvense Present in Park Rare Native Field horsetail Vascular Plant Equisetales Equisetaceae Equisetum laevigatum Present in Park Unknown Native Scouring-rush Polypodiaceae (Fern Family) Vascular Plant Polypodiales Dryopteridaceae Cystopteris fragilis Present in Park Uncommon Native Brittle bladderfern Vascular Plant Polypodiales Dryopteridaceae Woodsia oregana Present in Park Uncommon Native Oregon woodsia Pteridaceae (Maidenhair Fern Family) Vascular Plant Polypodiales Pteridaceae Argyrochosma fendleri Present in Park Unknown Native Zigzag fern Vascular Plant Polypodiales Pteridaceae Cheilanthes feei Present in Park Uncommon Native Slender lip fern Vascular Plant Polypodiales Pteridaceae Cryptogramma acrostichoides Present in Park Unknown Native American rockbrake Selaginellaceae (Spikemoss Family) Vascular Plant Selaginellales Selaginellaceae Selaginella densa Present in Park Rare Native Lesser spikemoss Vascular Plant Selaginellales Selaginellaceae Selaginella weatherbiana Present in Park Unknown Native Weatherby's clubmoss CONIFERS Cupressaceae (Cypress family) Vascular Plant Pinales Cupressaceae Juniperus scopulorum Present in Park Unknown Native Rocky Mountain juniper Pinaceae (Pine Family) Vascular Plant Pinales Pinaceae Abies concolor var. concolor Present in Park Rare Native White fir Vascular Plant Pinales Pinaceae Abies lasiocarpa Present
    [Show full text]
  • GARDENERGARDENER® Thethe Magazinemagazine Ofof Thethe Aamericanmerican Horticulturalhorticultural Societysociety July / August 2007
    TheThe AmericanAmerican GARDENERGARDENER® TheThe MagazineMagazine ofof thethe AAmericanmerican HorticulturalHorticultural SocietySociety July / August 2007 pleasures of the Evening Garden HardyHardy PlantsPlants forfor Cold-ClimateCold-Climate RegionsRegions EveningEvening PrimrosesPrimroses DesigningDesigning withwith See-ThroughSee-Through PlantsPlants WIN THE BATTLE OF THE BULB The OXO GOOD GRIPS Quick-Release Bulb Planter features a heavy gauge steel shaft with a soft, comfortable, non-slip handle, large enough to accommodate two hands. The Planter’s patented Quick-Release lever replaces soil with a quick and easy squeeze. Dig in! 1.800.545.4411 www.oxo.com contents Volume 86, Number 4 . July / August 2007 FEATURES DEPARTMENTS 5 NOTES FROM RIVER FARM 6 MEMBERS’ FORUM 7 NEWS FROM AHS AHS award winners honored, President’s Council trip to Charlotte, fall plant and antiques sale at River Farm, America in Bloom Symposium in Arkansas, Eagle Scout project enhances River Farm garden, second AHS page 7 online plant seminar on annuals a success, page 39 Homestead in the Garden Weekend. 14 AHS PARTNERS IN PROFILE YourOutDoors, Inc. 16 PLEASURES OF THE EVENING GARDEN BY PETER LOEWER 44 ONE ON ONE WITH… Enjoy the garden after dark with appropriate design, good lighting, and the addition of fragrant, night-blooming plants. Steve Martino, landscape architect. 46 NATURAL CONNECTIONS 22 THE LEGEND OF HIDDEN Parasitic dodder. HOLLOW BY BOB HILL GARDENER’S NOTEBOOK Working beneath the radar, 48 Harald Neubauer is one of the Groundcovers that control weeds, meadow rues suited for northern gardens, new propagation wizards who online seed and fruit identification guide, keeps wholesale and retail national “Call Before You Dig” number nurseries stocked with the lat- established, saving wild magnolias, Union est woody plant selections.
    [Show full text]