Trophic Behaviour and Functional Morphology of the Feeding Appendages of the Laomediid Shrimp Axianassa Australis (Crustacea: De

Total Page:16

File Type:pdf, Size:1020Kb

Trophic Behaviour and Functional Morphology of the Feeding Appendages of the Laomediid Shrimp Axianassa Australis (Crustacea: De J. Mar. Biol. Ass. U. K. 2001), 81,441^454 Printed in the United Kingdom Trophic behaviour and functional morphology of the feeding appendages of the laomediid shrimp Axianassa australis Crustacea: Decapoda: Thalassinidea) Vaª nia Rodrigues Coelho* and Se¨ rgio de Almeida RodriguesO *Departamento de Zoologia, Instituto de Biocieª ncias, Universidade de Sa¬ o Paulo, CP 11461, CEP 05422-970, Sa¬ o Paulo, SP, Brazil. Present address: Columbia University, Biosphere 2 Center, 32540 Biosphere Road, Oracle, AZ, 85623, USA. ODepartamento de Ecologia Geral, Instituto de Biocieª ncias, Universidade de Sa¬ o Paulo, CP 11461, CEP 05422-970, Sa¬ o Paulo, SP, Brazil. *E-mail: [email protected] The trophic behaviour, stomach contents, and morphology of the feeding appendages, with emphasis on setae, of a species of Laomediidae, Axianassa australis Crustacea: Decapoda: Thalassinidea), were investi- gated. This species is a deposit feeder. The 32 described setal types were clustered in four main categories: plumed, serrate, plumodenticulate and simple. By examining the setae and spatial position of the segments of the appendages, it is possible to infer that the main function of the 1st and 2nd pereiopods, the 3rd pair of maxillipeds, as well as the dactylus, propodus, carpus and merus of the 2nd maxilliped, is to brush particles. The ischium, basis and coxa of the 2nd maxilliped appear to be specialized for particle retention. For the remaining mouthparts, brushing is generally the main function of the basal endites, while the coxal endites retain particles. Patterns of morphological adaptations to feeding habits are proposed for the Thalassinidea based on a review of the literature. Setal diversity, ratio of plumodenticulate to serrate setal types and mandible morphology are linked to ecological adaptations to trophic modes. Conversely, the presence and degree of development of the crista dentata appear to be related to phylogenetic heritage rather than to feeding mechanisms. Stomach contents are also indicative of trophic modes used by the species; while the predominance of small particles can indicate either ¢lter or deposit feeding, stomach contents with high quantities of large particles suggest deposit feeding as the exclusive trophic mechanism. INTRODUCTION scarcity of knowledge on the feeding mechanisms of species of this clan. In the present study, the trophic behaviour, stomach Thalassinidean shrimp are commonly found living in contents, and morphology of the feeding appendages, burrows excavated in sandy or muddy substrates in in- with emphasis on setae, of a species of Laomediidae, tertidal and shallow subtidal areas Dworschak, 1987a; Axianassa australis Rodrigues & Shimizu, 1992, are Swinbanks & Luternauer, 1987; Dworschak & Pervesler, analysed. The results are compared with other thalas- 1988; Gri¤s & Chavez, 1988; Lemaitre & Rodrigues, sinidean species Nickell et al., 1998; Stamhuis et al., 1991). Despite the cosmopolitan nature of the group and 1998; Pinn et al., 1999a; Coelho et al., 2000b; Coelho & its abundance in benthic communities, there is a paucity Rodrigues, in press), and patterns of morphological of information on the trophic behaviour of these adaptations to di¡erent feeding strategies are proposed. crustaceans. The few studies available deal mainly with Callianassidae or Upogebiidae species MacGinitie, 1930, 1934; Pohl, 1946; Devine, 1966; Rodrigues, 1966; MATERIALS AND METHODS Dworschak, 1987b; Scott et al., 1988; Nickell & Atkinson, 1995; Coelho et al., 2000a,b; Coelho & Rodrigues, in Specimens of Axianassa australis were collected with a press), while the feeding habits of other families have yabby pump at Praia do Arac° a¨ ,Sa¬ o Sebastia¬ o, SP, Brazil. remained obscure. In contrast, information on thalassini- A map and detailed information on the study site can be dean burrow morphology has accumulated in the litera- found in Dworschak & Rodrigues 1997). The substrate in ture MacGinitie, 1930; Frey & Howard, 1975; Ott et al., which the burrows of A. australis were found consist of 1976; Pemberton et al., 1976; Swinbanks & Murray, 1981; muddy siliciclastic sediments on the surface and Dworschak, 1983, 1987b; Nash et al., 1984; Scott et al., compacted shells at 30^40 cm depth Dworschak & 1988; Atkinson & Nash, 1990; Dworschak & Ott, 1993; Rodrigues, 1997). Nickell & Atkinson, 1995; Ziebis et al., 1996; Astall et al., Live animals were transported to the laboratory and 1997; Dworschak & Rodrigues, 1997; Bird & Poore, 1999; kept in aquaria for feeding behaviour observations from Coelho et al., 2000a), and some models relating trophic September to December 1996. Nine specimens of modes with burrow architecture have been proposed A. australis were placed in aquaria similar to the one Gri¤s & Suchanek, 1991; Nickell & Atkinson, 1995). The described by Rodrigues & Ho« dl, 1990) ¢lled with validity of such models, however, is compromised by the sediment from the collection site. The aquaria were Journal of the Marine Biological Association of the United Kingdom 2001) 442 V.R. Coelho and S. de A. Rodrigues Functional morphology in Axianassa maintained with fresh running seawater pumped from the nearby bay, at ambient temperature. The animals were fed every two days with a mixture of ¢ne sediment and commercial ¢sh food. Five shrimp were ¢xed in 70% alcohol immediately after capture. In the laboratory, these animals were dissected under a light microscope for observations of feeding appendages and stomach contents. The 1st and 2nd pairs of pereiopods and the mouthparts of three individuals were prepared for SEM analysis following the procedures of Felgenhauer 1987). The appendages were also submitted to treatments for removal of mucus, debris and epibionts Felgenhauer, 1987). The material was then critical-point dried, placed on stubs, sputter-coated with gold-palladium and analysed on the SEM Stereoscan 440, Amray 1810, DSM940 Figure 1. View of the general stomach content of Axianassa Zeiss). The stubs examined in the present study are australis. Scale bar: 100 mm. deposited at the National Museum of Natural History, Smithsonian Institution, Washington, DC 12 stubs, USNM 279044). Setal types The mode of articulation of the setal shaft was not Setal classi¢cation always visible due to the amount of di¡erent setal layers. In the majority of the setae where this feature was The setal types were distinguished according to the observed the socket was infracuticular exceptions are classi¢cation system proposed by Farmer 1974). This mentioned in the descriptions).The approximate measure- system is apparently the most appropriate for categorizing ment of the insertion angle of the setule was noted when setae in studies of feeding mechanisms Coelho et al., considered important in description of the setae i.e. in 2000b). The types were clustered in four main categories: distinguishing one setal type from another). Annulations plumed, serrate, plumodenticulate and simple. Descrip- and pores are reported only when conspicuously present. tions are provided for the external morphology of Long setules bear small spines distributed in an each type of setae, in addition to drawings and photos alternating pattern exceptions are mentioned in the illustrating the main characteristics. These types were descriptions). Setal size corresponds to the approximate identi¢ed by a letter representing the major group in maximum length recorded it can be found between which they are included, and a number Factor, 1978). parenthesis, after the description of the setal type). In the The terminology used in the descriptions follows Watling descriptions, some ¢gures may illustrate characteristics 1989). found in several kinds of seta. Although such ¢gures may correspond to a di¡erent setal type than the one described, the feature being illustrated is shared by both setal types. Descriptions of the setae are given below. RESULTS Feeding behaviour Group A: plumed setae Figure 2); setae bearing only setules on shaft. In the aquarium, Axianassa australis was only observed to Type A1. Pappose setae, with setules loosely arranged deposit feed. No suspension feeding, by ¢ltering or resus- Figure 3A) in an irregular pattern around shaft pending particles, was recorded. Tofeed, the shrimp make 600 mm). Type A2. Plumose setae, with two rows of inward lateral movements with the 2nd pair of pereiopods, setules inserted almost opposite one another 1208)on brushing particles from the burrow £oor during this shaft. This type has a supracuticular socket 936 mm) process. These particles are accumulated in front of the Figure 3B). Type A3. Setae with two dense rows of mouthparts, creating a sediment pile that is laterally smooth setules on one side and setules irregularly distrib- supported by the 1st pair of pereiopods. Next, the 3rd uted on other side of shaft 480 mm) Figure 3C).Type A4. pair of maxillipeds brushes the sediment toward the 2nd Setae with short serrate setules irregularly distributed maxillipeds, either by making inward lateral movements along the distal half of shaft 3 mm) Figure 3D. or stretching the appendages forward and then folding them back. The 2nd pair of maxillipeds collects and trans- ports the particles toward the mouth. During the process of particle handling by the 1st maxillipeds and maxillae, a cloud of ¢ne particles is expelled laterally. Stomach contents The stomach content of the specimens was composed of small sediment particles and detritus Figure 1). The size Figure 2. Types of plumed setae found in Axianassa australis range
Recommended publications
  • High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
    High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H.
    [Show full text]
  • The Role of Neaxius Acanthus
    Wattenmeerstation Sylt The role of Neaxius acanthus (Thalassinidea: Strahlaxiidae) and its burrows in a tropical seagrass meadow, with some remarks on Corallianassa coutierei (Thalassinidea: Callianassidae) Diplomarbeit Institut für Biologie / Zoologie Fachbereich Biologie, Chemie und Pharmazie Freie Universität Berlin vorgelegt von Dominik Kneer Angefertigt an der Wattenmeerstation Sylt des Alfred-Wegener-Instituts für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft In Zusammenarbeit mit dem Center for Coral Reef Research der Hasanuddin University Makassar, Indonesien Sylt, Mai 2006 1. Gutachter: Prof. Dr. Thomas Bartolomaeus Institut für Biologie / Zoologie Freie Universität Berlin Berlin 2. Gutachter: Prof. Dr. Walter Traunspurger Fakultät für Biologie / Tierökologie Universität Bielefeld Bielefeld Meinen Eltern (wem sonst…) Table of contents 4 Abstract ...................................................................................................................................... 6 Zusammenfassung...................................................................................................................... 8 Abstrak ..................................................................................................................................... 10 Abbreviations ........................................................................................................................... 12 1 Introduction ..........................................................................................................................
    [Show full text]
  • Download (8MB)
    https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] ASPECTS OF THE BIOLOGY OF THE SQUAT LOBSTER, MUNIDA RUGOSA (FABRICIUS, 1775). Khadija Abdulla Yousuf Zainal, BSc. (Cairo). A thesis submitted for the degree of Doctor of Philosophy to the Faculty of Science at the University of Glasgow. August 1990 Department of Zoology, University of Glasgow, Glasgow, G12 8QQ. University Marine Biological Station, Millport, Isle of Cumbrae, Scotland KA28 OEG. ProQuest Number: 11007559 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11007559 Published by ProQuest LLC(2018).
    [Show full text]
  • From Ghost and Mud Shrimp
    Zootaxa 4365 (3): 251–301 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4365.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C5AC71E8-2F60-448E-B50D-22B61AC11E6A Parasites (Isopoda: Epicaridea and Nematoda) from ghost and mud shrimp (Decapoda: Axiidea and Gebiidea) with descriptions of a new genus and a new species of bopyrid isopod and clarification of Pseudione Kossmann, 1881 CHRISTOPHER B. BOYKO1,4, JASON D. WILLIAMS2 & JEFFREY D. SHIELDS3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A. E-mail: [email protected] 2Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A. E-mail: [email protected] 3Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, U.S.A. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 252 Introduction . 252 Methods and materials . 253 Taxonomy . 253 Isopoda Latreille, 1817 . 253 Bopyroidea Rafinesque, 1815 . 253 Ionidae H. Milne Edwards, 1840. 253 Ione Latreille, 1818 . 253 Ione cornuta Bate, 1864 . 254 Ione thompsoni Richardson, 1904. 255 Ione thoracica (Montagu, 1808) . 256 Bopyridae Rafinesque, 1815 . 260 Pseudioninae Codreanu, 1967 . 260 Acrobelione Bourdon, 1981. 260 Acrobelione halimedae n. sp. 260 Key to females of species of Acrobelione Bourdon, 1981 . 262 Gyge Cornalia & Panceri, 1861. 262 Gyge branchialis Cornalia & Panceri, 1861 . 262 Gyge ovalis (Shiino, 1939) . 264 Ionella Bonnier, 1900 .
    [Show full text]
  • Upogebia Pugettensis Class: Malacostraca Order: Decapoda Section: Anomura, Paguroidea the Blue Mud Shrimp Family: Upogebiidae
    Phylum: Arthropoda, Crustacea Upogebia pugettensis Class: Malacostraca Order: Decapoda Section: Anomura, Paguroidea The blue mud shrimp Family: Upogebiidae Taxonomy: Dana described Gebia (on either side of the mouth), two pairs of pugettensis in 1852 and this species was later maxillae and three pairs of maxillipeds. The redescribed as Upogebia pugettensis maxillae and maxillipeds attach posterior to (Stevens 1928; Williams 1986). the mouth and extend to cover the mandibles (Ruppert et al. 2004). Description Carapace: Bears two rows of 11–12 Size: The type specimen was 50.8 mm in teeth laterally (Fig. 1) in addition to a small length and the illustrated specimen (ovigerous distal spines (13 distal spines, 20 lateral teeth female from Coos Bay, Fig. 1) was 90 mm in on carapace shoulder, see Wicksten 2011). length. Individuals are often larger and reach Carapace with thalassinidean line extending sizes to 100 mm (range 75–112 mm) and from anterior to posterior margin (Wicksten northern specimens are larger than those in 2011). southern California (MacGinitie and Rostrum: Large, tridentate, obtuse, MacGinitie 1949; Wicksten 2011). rough and hairy (Schmitt 1921), the sides Color: Light blue green to deep olive brown bear 3–5 short conical teeth (Wicksten 2011). with brown fringes on pleopods and pleon. Rostral tip shorter than antennular peduncle. Individual color variable and may depend on Two short processes extending on either side feeding habits (see Fig. 321, Kozloff 1993; each with 0–2 dorsal teeth (Wicksten 2011). Wicksten 2011). Teeth: General Morphology: The body of decapod Pereopods: Two to five simple crustaceans can be divided into the walking legs.
    [Show full text]
  • Systematics, Phylogeny, and Taphonomy of Ghost Shrimps (Decapoda): a Perspective from the Fossil Record
    73 (3): 401 – 437 23.12.2015 © Senckenberg Gesellschaft für Naturforschung, 2015. Systematics, phylogeny, and taphonomy of ghost shrimps (Decapoda): a perspective from the fossil record Matúš Hyžný *, 1, 2 & Adiël A. Klompmaker 3 1 Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria; Matúš Hyžný [hyzny.matus@ gmail.com] — 2 Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, SVK-842 15 Bratislava, Slovakia — 3 Florida Museum of Natural History, University of Florida, 1659 Museum Road, PO Box 117800, Gaines- ville, FL 32611, USA; Adiël A. Klompmaker [[email protected]] — * Correspond ing author Accepted 06.viii.2015. Published online at www.senckenberg.de/arthropod-systematics on 14.xii.2015. Editor in charge: Stefan Richter. Abstract Ghost shrimps of Callianassidae and Ctenochelidae are soft-bodied, usually heterochelous decapods representing major bioturbators of muddy and sandy (sub)marine substrates. Ghost shrimps have a robust fossil record spanning from the Early Cretaceous (~ 133 Ma) to the Holocene and their remains are present in most assemblages of Cenozoic decapod crustaceans. Their taxonomic interpretation is in flux, mainly because the generic assignment is hindered by their insufficient preservation and disagreement in the biological classification. Fur- thermore, numerous taxa are incorrectly classified within the catch-all taxonCallianassa . To show the historical patterns in describing fos- sil ghost shrimps and to evaluate taphonomic aspects influencing the attribution of ghost shrimp remains to higher level taxa, a database of all fossil species treated at some time as belonging to the group has been compiled: 250 / 274 species are considered valid ghost shrimp taxa herein.
    [Show full text]
  • Two New Paleogene Species of Mud Shrimp (Crustacea, Decapoda, Upogebiidae) from Europe and North America
    Bulletin of the Mizunami Fossil Museum, no. 33 (2006), p. 77–85, 2 pls., 1 fig. © 2006, Mizunami Fossil Museum Two new Paleogene species of mud shrimp (Crustacea, Decapoda, Upogebiidae) from Europe and North America Rene H. B. Fraaije1, Barry W. M. van Bakel1, John W. M. Jagt2, and Yvonne Coole3 1Oertijdmuseum De Groene Poort, Bosscheweg 80, NL-5283 WB Boxtel, the Netherlands <[email protected]> 2Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL-6211 KJ Maastricht, the Netherlands <[email protected]> 3St. Maartenslaan 88, NL-6039 BM Stramproy, the Netherlands Abstract Two new species of the mud shrimp genus Upogebia (Callianassoidea, Upogebiidae) are described; U. lambrechtsi sp. nov. from the lower Eocene (Ypresian) of Egem (northwest Belgium), and U. barti sp. nov. from the upper Oligocene (Chattian) of Washington State (USA). Both new species here described have been collected from small, ball-shaped nodules; they are relatively well preserved and add important new data on the palaeobiogeographic distribution of fossil upogebiids. Key words: Crustacea, Decapoda, Upogebiidae, Eocene, Oligocene, Belgium, USA, new species Introduction Jurassic species of Upogebia have been recorded, in stratigraphic order: On modern tidal flats, burrowing upogebiid shrimps constitute the dominant decapod crustacean group. For instance, in the 1 – Upogebia rhacheochir Stenzel, 1945 (p. 432, text-fig. 12; pl. intertidal zone of the northern Adriatic (Mediterranean, southern 42); Britton Formation (Eagle Ford Group), northwest of Dallas Europe) up to 200 individuals per square metre have been recorded (Texas, USA). Stenzel (1945, p. 408) dated the Britton (Dworschak, 1987). Worldwide, several dozens of species of Formation as early Turonian, but a late Cenomanian age is Upogebia and related genera are known, and their number is still more likely (compare Jacobs et al., 2005).
    [Show full text]
  • Axiidea (Micheleidae) and Gebiidea (Laomediidae and Upogebiidae) of Panglao, the Philippines
    Ann. Naturhist. Mus. Wien, B 121 19–32 Wien, Februar 2019 Axiidea (Micheleidae) and Gebiidea (Laomediidae and Upogebiidae) of Panglao, the Philippines P. C. Dworschak* Abstract A summary of species from one axiidean family and two gebiidean families collected during the Panglao Marine Biodiversity Project 2004 is presented. The axiidean family Micheleidae is represented by one damaged specimen, tentatively identified asMichelea sp. The gebiidean family Laomediidae is represented by two species, Naushonia carinata DWORSCHAK, MARIN & ANKER, 2006 and Axianassa heardi ANKER, 2011. The family Upogebiidae is the most diverse and represented by nine species, Acutigebia sp., Neogebicula monochela (SAKAI, 1967) with one specimen each, Gebiacantha ceratophora (DE MAN, 1905) and G. multispinosa NGOC-HO, 1994 with two and three specimens, respectively, G. laurentae NGOC-HO, 1989 with 21 specimens was the most common followed by Upogebia barbata (STRAHL, 1862) and U. holthuisi SAKAI, 1982 with 8 and 6 specimens, respectively. Figures for seven species of Upogebiidae are presented. Except for U. barbata, all upogebiid species and Axianassa heardi are here recorded the first time from the Philippines. Key words: Axiidea, Micheleidae, Gebiidea, Laomediidae, Upogebiidae, Panglao, Philippines, burrowing shrimp Introduction The international Panglao Marine Biodiversity Project in May-July 2004 consisted of an extensive sampling of molluscs and decapod crustaceans around the island of Panglao, southwest of Bohol, Philippines (BOUCHET et al. 2009). The special task of the author during this survey was to collect axiidean and gebiidean shrimp and their associated decapod and mollusc fauna with the aid of a yabby pump. This sampling of axiideans and gebiideans revealed numerous new records and several undescribed species that have been studied in earlier papers (DWORSCHAK 2006, 2007, 2011a, b, 2014, 2018, DWORSCHAK et al.
    [Show full text]
  • Biology of Mediterranean and Caribbean Thalassinidea (Decapoda)
    Biology of Mediterranean and Caribbean Thalassinidea (Decapoda) Peter C. DWORSCHAK Dritte Zoologische Abteilung, Naturhistorisches Museum, Burgring 7, A 1014 Wien, Austria ([email protected]) Abstract Among burrowing organisms, the most complex and extensive burrow systems are found within the Thalassinidea. This group of decapods comprises some 520+ species in currently 11 families and 80+ genera. They live predominantly in very shallow waters, where they often occur in high densities and influence the whole sedimentology and geochemistry of the seabed. In this contribution I present results of studies on the biology of several Mediterranean (Upogebia pusilla, U. tipica, Pestarella tyrrhena, P. candida, Jaxea nocturna) and Caribbean (Axiopsis serratifrons, Neocallichirus grandimana, Glypturus acanthochirus, Corallianassa longiventris) species. Of special interest is the occurrence of debris-filled chambers in the burrows of two callianassid species, Pestarella tyrrhena and Corallianassa longiventris. The possible role of this introduced plant material for the nutrition of the shrimps is discussed. 1. Introduction The Thalassinidea are a group of mainly burrowing decapod shrimps. They have attracted increased attention in recent ecological studies on marine soft-bottom benthos, especially in terms of their influence on the whole sedimentology and geochemistry of the seabed (Ziebis et al., 1996a, b), their bioturbating activities (Rowden & Jones, 1993; Rowden et al., 1998a, b) and consequent effects on benthic community structure (Posey, 1986; Posey et al., 1991; Wynberg & Branch, 1994; Tamaki, 1994). They are of particular interest because they construct very complex and extensive burrow systems (Griffis & Suchanek, 1991; Nickell & Atkinson, 1995). This group of decapods comprises some 520+ species in currently 11 families and 80+ genera.
    [Show full text]
  • (Petagna, 1792) (Thalassinidea, Upogebiidae) from Laboratory-Reared Material
    Invertebrate Reproduction and Development, 43: 1 (2003) 83-90 Balaban, PhiladelphiaRehovot 0168-8170/03/$05.008 2003 Balaban Redescription of the larval stages of Upobebiapusilla (Petagna, 1792) (Thalassinidea, Upogebiidae) from laboratory-reared material ANTONMA DOS SANTOS'. and JOSE PAULA* 'Instituto de InvestigapTo das Pescas e do Mar (IPIUAR), Av. de Brasilia, s/n. 1449-006 Lisboa, Portugal Tel. +351 (21) 302-7194; Fax +351 (21) 302-5948; email: [email protected] 'IMR-Laboratdrio Maritimo da Guia, Faculdade de Cigncias, Universidade de Lisboa, fitrada do Guincho, 2750-642 Cascais, Portugal Received 21 November 2001; Accepted 9 December 2002 Summary The complete larval development of Upogebia pusilla (Petagna, 1792) was reared under laboratory conditions and the development comprised four zoeal stages and a megalop. The morphological features were described, illustrated and compared with other known larvae of Upogebia. Key words: Larval development, Upogebiapusilla, Upogebiidae, Decapoda, zoeal stages, megalopal stage. Introduction 1919 from plankton and reared material [four zoeal Upogebia pusilla (Petagna, 1792) is a common stages and post-larva]; U. pusilla (originally as U. species on estuaries in Portugal and occurs from the littoralis) by Dolgopolskaia, 1954 and 1969 [four zoeal English Channel to Mauritania and the Canary Islands, stages and post-larva] and U.deltaura and U. pusilla the Mediterranean, Black Sea and Suez Canal (as U. littoralis) by Heegaard, 1963 [first stage zoea]. (d'Udekem d'Acoz, 1999). Besides U.pusilla, the Although these studies gave some indication of general Upogebiidae family has five other species occurring in form, appendage morphology and chromatophore European waters: Gebiacantha talismani (Bouvier), patterns, the descriptions do not meet with modem day Upogebia deltaura (Leach), U.
    [Show full text]
  • Synopsis of the Family Callianassidae, with Keys to Subfamilies, Genera and Species, and the Description of New Taxa (Crustacea: Decapoda: Thalassinidea)
    ZV-326 (pp 03-152) 02-01-2007 14:37 Pagina 3 Synopsis of the family Callianassidae, with keys to subfamilies, genera and species, and the description of new taxa (Crustacea: Decapoda: Thalassinidea) K. Sakai Sakai, K. Synopsis of the family Callianassidae, with keys to subfamilies, genera and species, and the description of new taxa (Crustacea: Decapoda: Thalassinidea). Zool. Verh. Leiden 326, 30.vii.1999: 1-152, figs 1-33.— ISSN 0024-1652/ISBN 90-73239-72-9. K. Sakai, Shikoku University, 771-1192 Tokushima, Japan, e-mail: [email protected]. Key words: Crustacea; Decapoda; Thalassinidae; Callianassidae; synopsis. A synopsis of the family Callianassidae is presented. Defenitions are given of the subfamilies and genera. Keys to the sufamilies, genera, as well as seperate keys to the species occurring in certain bio- geographical areas are provided. At least the synonymy, type-locality, and distribution of the species are listed. The following new taxa are described: Calliapaguropinae subfamily nov., Podocallichirus genus nov., Callianassa whitei spec. nov., Callianassa gruneri spec. nov., Callianassa ngochoae spec. nov., Neocallichirus kempi spec. nov. and Calliax doerjesti spec. nov. Contents Introduction ............................................................................................................................. 3 Systematics .............................................................................................................................. 7 Subfamily Calliapaguropinae nov. .....................................................................................
    [Show full text]
  • Shrimp Neotrypaea Californiensis to Intertidal Shell and Mud Habitats
    MARINE ECOLOGY PROGRESS SERIES Published April 30 Mar Ecol Prog Ser l Effects of substrate selection and post-settlement survival on recruitment success of the thalassinidean shrimp Neotrypaea californiensis to intertidal shell and mud habitats Kristine L. Feldmanlr*,David A. ~rmstrongl,David B. ~ggleston'~",Brett R. ~umbauld~ 'School of Fisheries, Box 357980, University of Washington, Seattle, Washington 98195, USA 'Washington State Department of Fish and Wildlife, Willapa Bay Field Station, PO Box 190, Ocean Park, Washington 98640, USA ABSTRACT: We quantified recruitment of young-of-the-year (YOY)burrowing thalassinidean shrimp Neotrypaea californiensis to 2 habitats of differing structural complexity-epibenthic bivalve shell and bare mudflat-and examined how differential settlement and post-settlement predation influence patterns of YOY abundance. Local densities of shrimp were quantified prlor to construction of shell habitat in Grays Harbor estuary, Washington (USA). Subsequent recruitment of YOY shrimp to epiben- thic shell and bare mudflat was measured during a peak settlement pulse and 10 mo post-settlement. In addition, patches of sediment overlying shell within the shell plot ('subsurface shell') were sampled 10 mo post-settlement. Differential settlement in shell and mud habitats was quantified in field and laboratory experiments. We also examined predator-prey interactions between YOY Dungeness crabs Cancer magister and newly settled shrimp in shell habitat in a laboratory experiment in which prey consumption crab-' was quantified as a function of shrimp density. Results of our studies indicate that dense coverage of epibenthic shell applied to the intertidal site reduced recruitment of ghost shrimp. Epibenthic shell habitat had significantly fewer YOY shrimp than bare mudflat at peak settlement and 10 mo post-settlement, and significantly fewer shrimp than 'subsurface shell' at 10 mo post-settlement.
    [Show full text]