Imagerie Des Exoplanètes : Du Système Optique À La Fréquence Des Géantes Gazeuses Raphaël Galicher

Total Page:16

File Type:pdf, Size:1020Kb

Imagerie Des Exoplanètes : Du Système Optique À La Fréquence Des Géantes Gazeuses Raphaël Galicher Imagerie des exoplanètes : du système optique à la fréquence des géantes gazeuses Raphaël Galicher To cite this version: Raphaël Galicher. Imagerie des exoplanètes : du système optique à la fréquence des géantes gazeuses. Instrumentation et méthodes pour l’astrophysique [astro-ph.IM]. Observatoire de Paris, 2020. tel- 03102022 HAL Id: tel-03102022 https://tel.archives-ouvertes.fr/tel-03102022 Submitted on 7 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Unit´ede formation et d'Enseignement Imagerie des exoplan`etes: du syst`emeoptique `ala fr´equencedes g´eantes gazeuses pr´esent´eeet soutenue publiquement le 18 d´ecembre 2020 pour l'obtention d'une Habilitation `adiriger des recherches par Rapha¨elGalicher Composition du jury Pr´esident: Daniel Rouan Observatoire de Paris-PSL Rapporteurs : Magali Deleuil Universit´eAix-Marseille Dimitri Mawet California institute of technology R´emiSoummer Space telescope science institute Examinateurs : Marc Ferrari Universit´eAix-Marseille Anne-Marie Lagrange Universit´eGrenoble Alpes Laboratoire d'Etudes´ Spatiales et d'Instrumentation en Astrophysique | UMR 8109 Mis en page avec la classe thloria. Remerciements Paragraphe compliqué à écrire que celui des remerciements. Non pas que j’ai du mal à re- mercier mais parce qu’à l’aube de mes quarante ans, je suis sûr d’oublier certaines personnes qui font que j’écris ce document. Un livre ne suffirait pas à lister les raisons pour lesquelles je les remercies alors je me contente d’une seule phrase : merci du fond du cœur à mes parents qui m’ont appris à être curieux, à chercher à comprendre et, quand j’y arrive, à m’adapter à la situation. Ce sont trois forces essentielles quand on exerce le métier d’enseignant-chercheur. Un grand merci à Pierre-Marie, Jean-Baptiste et Antoine-Laurent qui, me croisant au hasard d’un couloir du lycée Masséna à Nice, m’ont suggéré de venir faire une prépa avec eux plutôt que des études de STAPS. Je me serais certainement épanoui en tant que professeur d’EPS mais le sort en a décidé autrement. Je remercie toutes les personnes que j’ai eu la chance de rencontrer depuis mon premier pas dans le monde de l’astronomie professionnelle en 2002, à l’Observatoire de la Côte d’Azur, dans les observatoires hawaiiens, en Île-de-France pendant le master, à l’institut d’astrophysique Herzberg, au VLT, sur le mont Palomar, dans les consortia GPI et Sphere, etc. Échanger avec des collègues aux quatre coins de la planète est une véritable richesse. Et ils ont tous influencé à leur manière ce manuscrit. Depuis que j’ai gravi la côte de Meudon pour la première fois en 2005 (en rollers s’il-vous- plaît), mon chemin a croisé à l’Observatoire de Paris celui de plusieurs belles personnes qui m’ont offert des bouts d’elles tant sur le plan scientifique qu’humain. Il y a les enseignants et les amis du M2 A&A de 2005, les collègues des DU ECU/SU, ceux qui ont partagé les missions au Bénin et au Gabon, et les administratifs dont le travail, indispensable à nos projets de recherche, est souvent oublié. Merci à vous tous ! Je remercie spécialement l’équipe très haute dynamique du Lesia avec qui j’ai la chance de pouvoir travailler sérieusement, rigoureusement et, dans la bonne humeur. C’est un plaisir de mener des études à vos côtés. Merci à Elsa, Anthony, Johan, Olivier, Simone, tous les ingénieurs, et tous les étudiants qui travaillent avec nous, de la licence à la thèse en passant par les écoles ingénieurs et les apprentis. Enfin, le mot merci est trop petit pour exprimer ma reconnaissance envers Pierre. Déjà quinze ans que nous nous sommes rencontrés pour la première fois. J’ai l’impression que c’était hier. Travailler à ses côtés et discuter de tout et de rien avec lui m’enrichit chaque jour un peu plus. Pierre, merci pour tout ! i ii À mes parents, à ma soeur, iii iv Table des matières Partie I Curriculum vitæ 1 Partie II Dossier de synthèse 1 Contexte 11 1.1 Exoplanètes . 11 1.1.1 Diversité . 11 1.1.2 Techniques de détection . 11 1.1.3 Que cherche-t-on à comprendre ? . 12 1.1.3.1 Formation planétaire . 12 1.1.3.2 Atmosphère exoplanétaire . 13 1.1.3.3 Vie extraterrestre . 14 1.2 Imagerie haute dynamique . 15 1.2.1 Pourquoi l’imagerie ? . 15 1.2.2 Une luciole près d’un phare maritime . 15 1.3 Instruments coronographiques en 2020 . 16 1.3.1 Coronographe . 16 1.3.2 Coronographes et aberrations . 16 v Table des matières 1.3.3 Aberrations turbulentes et quasi-statiques . 17 1.3.4 Optique adaptative . 18 1.3.5 Imagerie différentielle . 18 1.3.6 Quelle performance ? . 20 2 L’imagerie d’exoplanètes de demain 21 2.1 Un type d’instrument par objectif scientifique . 21 2.1.1 Caractérisation spectrale fine . 21 2.1.2 Nouvelles détections et caractérisations . 22 2.2 Instruments coronographiques de demain au sol . 22 2.2.1 Coupler deux boucles d’asservissement . 22 2.2.2 Analyseur de surface d’onde en plan focal . 23 2.2.3 Minimisation en plan focal vs optique adaptative . 24 2.2.4 Imagerie différentielle et télémétrie . 25 2.2.5 Coronographes . 25 2.3 Instrument coronographique de demain dans l’espace . 26 3 Projet de recherche 27 3.1 Astrophysique . 27 3.1.1 Fréquence des planètes géantes gazeuses . 27 3.1.2 Études d’objets de masse planétaire . 28 3.1.2.1 Fomalhaut b : une exoplanète ou autre chose ? . 28 3.1.2.2 HR 8799 en bande M . 28 3.1.2.3 HD 95086 . 28 3.1.3 Outil SpeCal pour le consortium Sphere . 29 3.2 Instrumentation . 30 3.2.1 Le banc très haute dynamique . 30 3.2.1.1 Le banc THD . 30 3.2.1.2 Le banc THD2 . 31 3.2.2 Mise en œuvre à Palomar et sur Sphere . 33 3.2.2.1 Self-coherent Camera sur le SDC à Palomar . 34 3.2.2.2 Pair wise/EFC sur Sphere au VLT . 35 3.3 Projets . 36 vi Partie III Note d’accompagnement 1 Encadrement d’étudiants et de jeunes chercheurs 39 1.1 Lucie Leboulleux (post-doc) : Coherence differential imaging . 39 1.2 Garima Singh (post-doc) : Sphere+ et PCS/ELT . 39 1.3 Tobias Schmidt (post-doc) : Astro-photométrie avec Sphere . 39 1.4 Fabien Patru (post-doc) : coronographie en large bande . 40 1.5 J.-R. Delorme (master 2 et thèse) : analyse de surface d’onde en large bande 40 1.6 Axel Potier (thèse) : analyse et contrôle de surface d’onde . 40 1.7 Ben Gerard (thèse) : coronographie et imagerie différentielle . 40 1.8 Coline Lopez (Master 2) : coronographie en large bande . 41 1.9 Tristan Madeleine (Master 1) : fréquence des exoplanètes . 41 1.10 Mona El Morsi (Master 1) : modulation temporelle d’images coronographiques 41 1.11 Sofiane Meziani (Master 1) : coronographie stellaire . 42 1.12 Yusuke Komuro (Master 1) : coronographe à huit octants . 42 1.13 Andréa Capomassi et Benjamin Steir (ingénieurs) : simulation optique d’une OA 42 1.14 Zineb Bouharras (ingénieur) : masque de phase polarisant . 42 2 Répartition du temps de travail 43 Annexes 1 Galicher et al., 2016, AA, 594, A63 47 2 Galicher et al., 2011, ApJL, 739, L41 63 3 Galicher et al., 2014, AA, 565, L4 69 4 Galicher et al., 2018, AA, 615, A92 75 vii Table des matières 5 Delorme et al., 2016 ; AA, 588, A136.pdf 87 Table des figures 103 Liste des tableaux 105 Bibliographie 107 viii Première partie Curriculum vitæ 1 RaphaëlGalicher Born on 1981, no children, Associate Professor (Maître de Conférences) University of Paris, LESIA, UMR8109 Research Responsabilities Since 2020 SPHERE+/VLT, co-I, upgrade of the SPHERE+ instrument for exoplanet imaging. Since 2012 THD2 bench, co-PI ( 10 persons), laboratory R&D for high contrast imaging, compar- ∼ ing, associating and optimizing very high contrast imaging techniques for the exoplanet imagers of future telescopes (space, balloon, and ground). 2012 – 2016 Sphere/VLT pipeline, co-leader, development of the automatic pipeline to reduce all IRDIS/IFS data of the SPHERE 5 year survey: astrometry, spectro-photometry of exoplanets. Instrumentation Since 2010 Broadband coronagraphy, development of broadband phase and amplitude masks. Since 2006 Wavefront control high contrast imaging, from lab to current instruments like SPHERE. 2013 – 2016 Broadband wavefront sensing, development of a focal plane wavefront sensor. 2010 – 2012 Gemini Planet imager, detector linearity, wavefront control for coronagraphy. 2009 – 2010 Spices mission, optical design and science cases for a mission proposed to ESA. Astrophysics Since 2014 Exoplanetary systems, astrometry and spectro-photometry of giant exoplanets and brown dwarfs orbiting HR 8799, Fomalhaut, HD 95086, etc ; and disk imaging. 2012 – 2018 Occurrence of giant exoplanets, 14-year survey (Keck, Gemini Nord et Sud, HST, VLT) to determine the giant planet frequency. Teaching: courses Responsabilities Since 2019 Mechanics, optics, electronics, Licence 1, lecture, lab, 190 students/year. ∼ Since 2014 Optics, Engineering School 1st year, lecture, tutorial, lab, 20 students/year. ∼ 2014 – 2019 Wave and vibration, Licence 2, lab, 150 students/year.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Characterisation of Young Nearby Stars – the Ursa Major Group
    FRIEDRICH-SCHILLER-UNIVERSITAT¨ JENA Physikalisch-Astronomische Fakult¨at Characterisation of young nearby stars – The Ursa Major group Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Physikalischen-Astronomischen Fakult¨at der Friedrich-Schiller-Universit¨at Jena von Dipl.-Phys. Matthias Ammler geboren am 10.01.1977 in Neuburg a. d. Donau Gutachter 1. Prof. Dr. Ralph Neuh¨auser 2. Dr. habil. Matthias H¨unsch 3. Prof. Dr. Artie P. Hatzes Tag der letzten Rigorosumspr¨ufung: 26. Juni 2006 Tag der ¨offentlichen Verteidigung: 11. Juli 2006 Meinen Eltern Contents List of Figures vii List of Tables ix Abstract xi Zusammenfassung xiii Remarks and Acknowledgements xv 1 Introduction 1 1.1 WhatistheUrsaMajorgroup? . 1 1.1.1 Co-movingstarsin the BigDipper constellation . .... 1 1.1.2 Stellarmotionandmovinggroups . 1 1.1.3 Formation and evolution of open clusters and associations ... 6 1.1.4 The nature of the UMa group – cluster or association, or some- thingelse? ............................ 8 1.2 WhyistheUMagroupinteresting?. 8 1.2.1 Asnapshotinstellarevolution . 8 1.2.2 Alaboratoryinfrontofthedoor . 9 1.2.3 Thecensusofthesolarneighbourhood . 10 1.3 ConstrainingtheUMagroup–previousapproaches . ..... 11 1.3.1 Spatialclustering . 11 1.3.2 Kinematic criteria – derived from a “canonical” memberlist . 12 1.3.3 Kinematic parameters – derived from kinematic clustering ... 15 1.3.4 Stellarparametersandabundances . 17 1.3.5 TheageoftheUMagroup–photometriccriteria . 19 1.3.6 Spectroscopicindicatorsforageandactivity . .... 19 1.3.7 Combining kinematic, spectroscopic, and photometric criteria . 21 1.4 Anewhomogeneousspectroscopicstudy . 21 1.4.1 Definingthesample ....................... 22 1.4.2 Howtoobtainprecisestellarparameters? . .. 23 2 Observations,reductionandcalibration 25 2.1 Requireddata ............................... 25 2.2 Instruments ...............................
    [Show full text]
  • Publication List – Beate Stelzer
    PUBLICATION LIST – BEATE STELZER Refereed publications 87. Pizzocaro D., Stelzer B., Paladini R., Tiengo A., Lisini G., Novara G., Vianello G., Belfiore A, Marelli M., Salvetti D., Pillitteri I., Sciortino S., D’Agostino D., Haberl F., Watson M., Wilms J., Salvaterra R., De Luca A. Results from DROXO IV. EXTraS discovery of an X-ray flare from the Class I protostar candidate ISO-Oph 85 2016, A&A 587, A36 86. Antoniucci S., Nucita A.A., Giannini T., Lorenzetti D., Stelzer B., Gerardi D., Delle Rose S., Di Paola A., Giordano M., Manni L., Strafella F. 2015, A&A 584, A21 First X-ray dectection of the young variable V1180 Cas 85. Stelzer B. 2015, AN 336, 493 Variability of young stellar objects: Accretion, disks, outflows, and magnetic activity 84. Osten R., Melis C., Stelzer B., Bannister K.W., Radigan J., Burgasser A.J., Wolszczan A. & Luhman K.L. 2015, ApJ 805, L3 The Deepest Constraints on Radio and X-ray Magnetic Activity in Ultracool Dwarfs from WISE J104915.57-531906.1 83. Borsa F., Scandariato G., Rainer M., ... Stelzer B. 2015, A&A 578A, 64 The GAPS Programme with HARPS-N at TNG. VII. Putting exoplanets in the stellar context: magnetic activity and asteroseismology of τ Bootis A 82. Maldonado J., Affer L., Micela G., Scandariato G., Damasso M., Stelzer B., et al. 2015, A&A 557A, 132 Stellar parameters of early M dwarfs from ratios of spectral features at optical wavelengths 81. Frasca A., Biazzo K., Lanzafame A.C., Alcal´aJ.M., Brugaletta E., Klutsch A., Stelzer B., et al.
    [Show full text]
  • Livre-Ovni.Pdf
    UN MONDE BIZARRE Le livre des étranges Objets Volants Non Identifiés Chapitre 1 Paranormal Le paranormal est un terme utilisé pour qualifier un en- mé n'est pas considéré comme paranormal par les semble de phénomènes dont les causes ou mécanismes neuroscientifiques) ; ne sont apparemment pas explicables par des lois scien- tifiques établies. Le préfixe « para » désignant quelque • Les différents moyens de communication avec les chose qui est à côté de la norme, la norme étant ici le morts : naturels (médiumnité, nécromancie) ou ar- consensus scientifique d'une époque. Un phénomène est tificiels (la transcommunication instrumentale telle qualifié de paranormal lorsqu'il ne semble pas pouvoir que les voix électroniques); être expliqué par les lois naturelles connues, laissant ain- si le champ libre à de nouvelles recherches empiriques, à • Les apparitions de l'au-delà (fantômes, revenants, des interprétations, à des suppositions et à l'imaginaire. ectoplasmes, poltergeists, etc.) ; Les initiateurs de la parapsychologie se sont donné comme objectif d'étudier d'une manière scientifique • la cryptozoologie (qui étudie l'existence d'espèce in- ce qu'ils considèrent comme des perceptions extra- connues) : classification assez injuste, car l'objet de sensorielles et de la psychokinèse. Malgré l'existence de la cryptozoologie est moins de cultiver les mythes laboratoires de parapsychologie dans certaines universi- que de chercher s’il y a ou non une espèce animale tés, notamment en Grande-Bretagne, le paranormal est inconnue réelle derrière une légende ; généralement considéré comme un sujet d'étude peu sé- rieux. Il est en revanche parfois associé a des activités • Le phénomène ovni et ses dérivés (cercle de culture).
    [Show full text]
  • Probing Protoplanetary Disk Upper Atmospheres for Heating and Dust Settling Using Synthetic CO Spectra Josiah Lewis Covenant College
    Clemson University TigerPrints Publications Physics and Astronomy 7-1-2010 Probing Protoplanetary Disk Upper Atmospheres for Heating and Dust Settling using Synthetic CO Spectra Josiah Lewis Covenant College Martin Kronberg University of Washington Sean D. Brittain Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/physastro_pubs Part of the Astrophysics and Astronomy Commons Recommended Citation Please use publisher's recommended citation. This Article is brought to you for free and open access by the Physics and Astronomy at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Journal of the Southeastern Association for Research in Astronomy, 4, 20-25, 2010 July 1 °c 2010. Southeastern Association for Research in Astronomy. All rights reserved. PROBING PROTOPLANETARY DISK UPPER ATMOSPHERES FOR HEATING AND DUST SETTLING USING SYNTHETIC CO SPECTRA Josiah Lewis1 Covenant College, Box 625, 14049 Scenic Highway, GA 30790 Martin Kronberg1 University of Washington, Seattle, C319 Physics/Astronomy Building, Seattle, WA 98195 and Sean Brittain Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 ABSTRACT CO emission is a useful probe of the warm gas distribution in the planet forming regions of disks around Herbig Ae/Be (HAeBe) stars. We model UV fluoresced and thermally excited CO in the circumstellar disks of several HAeBes. We find indications of dust settling in the upper atmospheres of HD 141569 and HD 97048 and a correlation between PAH luminosity and gas heating in these two systems. Subject headings: circumstellar matter—line: profiles—planetary systems: protoplanetary disks— stars: individual (HD 100546, HD 1415469, HD 97048) 1.
    [Show full text]
  • Arxiv:0808.3207V1 [Astro-Ph] 23 Aug 2008 Nfgr .Nwonsaswr Rtdrcl Icvrdi C in Discovered Directly H first Were and Surroun Stars Variability Area Newborn the of 4
    Handbook of Star Forming Regions Vol. II Astronomical Society of the Pacific, 2008 Bo Reipurth, ed. Chamaeleon Kevin L. Luhman Department of Astronomy and Astrophysics The Pennsylvania State University University Park, PA 16802, USA Abstract. The dark clouds in the constellation of Chamaeleon have distances of 160-180pc from the Sun and a total mass of ∼5000 M⊙. The three main clouds, Cha I, II, and III, have angular sizes of a few square degrees and maximum extinctions of AV ∼ 5-10. Most of the star formation in these clouds is occurring in Cha I, with the remainder in Cha II. The current census of Cha I contains 237 known members, 33 of which have spectral types indicative of brown dwarfs (>M6). Approximately 50 members of Cha II have been identified, including a few brown dwarfs. When interpreted with the evolutionary models of Chabrier and Baraffe, the H-R diagram for Cha I exhibits a median age of ∼2 Myr, making it coeval with IC 348 and slightly older than Taurus (∼1 Myr). TheIMF ofChaI reachesa maximumat a massof0.1-0.15 M⊙, and thus closely resembles the IMFs in IC 348 and the Orion Nebula Cluster. The disk fraction in Cha I is roughly constant at ∼ 50% from 0.01 to 0.3 M⊙ and increases to ∼ 65% at higher masses. In comparison, IC 348 has a similar disk fraction at low masses but a much lower disk fraction at M ∼> 1 M⊙, indicating that solar-type stars have longer disk lifetimes in Cha I. 1. Introduction The southern constellation of Chamaeleon contains one of the nearest groups of dark clouds to the Sun (d ∼ 160-180 pc).
    [Show full text]
  • Tetrahedral Hydrocarbon Nanoparticles in Space: X-Ray Spectra
    Mon. Not. R. Astron. Soc. 000, 1–7 (2018) Printed 15 October 2018 (MN LATEX style file v2.2) Tetrahedral hydrocarbon nanoparticles in space: X-ray spectra G. Bilalbegovic´1, A. Maksimovic´2, L. A. Valencic3;4 1Department of Physics, Faculty of Science, University of Zagreb, Bijenickaˇ cesta 32, 10000 Zagreb, Croatia 2Center of Excellence for Advanced Materials and Sensing Devices, Rudjer Boskoviˇ c´ Institute, Bijenickaˇ cesta 54, 10000 Zagreb, Croatia 3NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 4The Johns Hopkins University, Department of Physics & Astronomy, 366 Bloomberg Center, 3400 N. Charles St., Baltimore, MD 21218, USA 15 October 2018 ABSTRACT It has been proposed, or confirmed, that diamond nanoparticles exist in various environ- ments in space: close to active galactic nuclei, in the vicinity of supernovae and pulsars, in the interior of several planets in the Solar system, in carbon planets and other exoplanets, carbon- rich stars, meteorites, in X-ray active Herbig Ae/Be stars, and in the interstellar medium. Using density functional theory methods we calculate the carbon K-edge X-ray absorption spectrum of two large tetrahedral nanodiamonds: C26H32 and C51H52. We also study and test our methods on the astrophysical molecule CH4, the smallest C-H tetrahedral structure. A possible detection of nanodiamonds from X-ray spectra by future telescopes, such as the project Arcus, is proposed. Simulated spectra of the diffuse interstellar medium using Cyg X-2 as a source show that nanodiamonds studied in this work can be detected by Arcus, a high resolution X-ray spectrometer mission selected by NASA for a Phase A concept study.
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • Information Bulletin on Variable Stars
    COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November :::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • HD 97048: a Closer Look at the Disk
    A&A 470, 625–631 (2007) Astronomy DOI: 10.1051/0004-6361:20066610 & c ESO 2007 Astrophysics HD 97048: a closer look at the disk C. Doucet1,2, E. Habart3, E. Pantin1,2,C.Dullemond4,P.O.Lagage1,2,C.Pinte5, G.Duchêne5, and F. Ménard5 1 AIM, Unité Mixte de Recherche CEA – CNRS – Université Paris VII – UMR 7158, France e-mail: [email protected] 2 DSM/DAPNIA/service d’Astrophysique, CEA/Saclay, 91191 Gif-sur-Yvette, France 3 Institut d’Astrophysique Spatiale (IAS), 91405 Orsay Cedex, France 4 Max-Planck-Institut fur Astronomie Heidelberg, Konigstuhl 17, Heidelberg, Germany 5 Laboratoire d’Astrophysique de Grenoble, CNRS/UJF UMR 5571, Grenoble, France Received 20 October 2006 / Accepted 30 April 2007 ABSTRACT Aims. Large ground-based instruments, like VISIR on the VLT, providing diffraction-limited (∼0.3 arcsec) images in the mid-infrared where strong PAH features appear, enable us to see the flaring structure of the disks around Herbig Ae stars. Although progress has been made in modelling the disk with radiative transfer models able to reproduce the spectral energy distribution (SED) of Herbig Ae stars, the constraints brought by images have not been yet fully exploited. We investigate whether these new observational imaging constraints can be accounted for by predictions based on existing models of passive, centrally irradiated hydrostatic disks made to fit the SEDs of the Herbig Ae stars. Methods. The images taken by VISIR in the 8.6 and 11.3 µm aromatic features reveal a large flaring disk around HD 97048 inclined to the line of sight.
    [Show full text]
  • Arxiv:0708.0266V1 [Astro-Ph] 2 Aug 2007 5 H,Cnd;[email protected]
    submitted to ApJ A Comprehensive View of Circumstellar Disks in Chamaeleon I: Infrared Excess, Accretion Signatures and Binarity Ivana Damjanov1, Ray Jayawardhana1, Alexander Scholz2, Mirza Ahmic1, Duy C. Nguyen1, Alexis Brandeker3, Marten H. van Kerkwijk1 ABSTRACT We present a comprehensive study of disks around 81 young low-mass stars and brown dwarfs in the nearby ∼2 Myr-old Chamaeleon I star-forming region. We use mid-infrared photometry from the Spitzer Space Telescope, supplemented by findings from ground-based high-resolution optical spectroscopy and adaptive +6 optics imaging. We derive disk fractions of 52% ± 6% and 58−7% based on 8 µm and 24 µm colour excesses, respectively, consistent with those reported for other clusters of similar age. Within the uncertainties, the disk frequency in our sample of K3–M8 objects in Cha I does not depend on stellar mass. Diskless and disk-bearing objects have similar spatial distributions. There are no obvious transition disks in our sample, implying a rapid timescale for the inner disk clearing process; however, we find two objects with weak excess at 3–8 µm and substantial excess at 24 µm, which may indicate grain growth and dust settling in the inner disk. For a sub-sample of 35 objects with high-resolution spectra, we investigate the connection between accretion signatures and dusty disks: in the arXiv:0708.0266v1 [astro-ph] 2 Aug 2007 vast majority of cases (29/35) the two are well correlated, suggesting that, on average, the timescale for gas dissipation is similar to that for clearing the inner dust disk. The exceptions are six objects for which dust disks appear to persist even though accretion has ceased or dropped below measurable levels.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]