A Proof of De Rham's Theorem

Total Page:16

File Type:pdf, Size:1020Kb

A Proof of De Rham's Theorem APPENDIX A A Proof of De Rham's Theorem §1. Introduction In Chapter VI we mentioned that some of the motivating ideas for the development of homology theory in the nineteenth century arose in con­ nection with such topics as Stokes's theorem, Green's theorem, Gauss's di­ vergence theorem, and the Cauchy integral theorem. DeRham's theorem may be looked on as the modern culmination of this particular line of thought. It relates the homology and cohomology of a differentiable manifold to the exterior differential forms on the manifold. Exterior differential forms are objects which can serve as integrands of line integrals, surface integrals, etc., such as occur in the statement of the classical Green's theorem and Stokes's theorem. DeRham's theorem is of obvious importance because it is a connect­ ing link between analysis on manifolds and the topological properties of manifolds. In this appendix we will assume that the reader is familiar with the basic properties of differentiable manifolds, differential forms on manifolds, and the integration of differential forms over (differentiable) singular cubes. These topics are explained in many current textbooks, and there would be little point in our repeating such an exposition here. As examples of such texts, we list the following: M. Spivak [6], Flanders [3], Warner [9], and Whitney [10]. The first part of this chapter is devoted to using differentiable singular cubes to define the homology and cohomology groups of a differentiable manifold. We prove that in studying the homology and cohomology groups of such a manifold, it suffices to consider only differentiable singular cubes; the non­ differentiable ones can be ignored. Next, we introduce what may be called the De Rham cochain complex of a differentiable manifold. This cochain complex consists of the exterior differ- 408 Appendix A. A Proof of De Rham's Theorem entia! forms, with the exterior derivative serving as the co boundary operator. There is a natural homomorphism from this De Rham complex to the cochain complex (with coefficient group R, the real numbers) based on differentiable singular cubes. This homomorphism is defined on any exterior differential form of degree p by integrating that form over differentiable singular p-cubes. The general form of Stokes's theorem is precisely the assertion that this natural homomorphism is a cochain map. DeRham's theorem asserts that this natural cochain map induces an isomorphism on cohomology. The proof we give of De Rham's theorem is modeled on Milnor's proof of the Poincare duality theorem in Chapter XIV. The reader who has worked through that proof should have no trouble grasping the structure of our proof of De Rham's theorem. Curtis and Dugundji [11] have also given a proof of De Rham's theorem along somewhat similar lines. §2. Differentiable Singular Chains Let M be an n-dimensional differentiable manifold of class C"' (we assume the reader is familiar with this concept). In order to define a differentiable singular cube, we must make use of the fact that the standard unit p-cube, I"= {(x 1, ... , x,) e R"IO :s; X; :s; 1, i = 1, 2, ... , p} is a subset of Euclidean spaceR". For p > 0, a singular p-cube T: 1"--+ M will be called differentiable if there exists an open neighborhood U of 1" in R" and an extension T': U--+ M ofT such that T' is differentiable (of class C00 ). We complete this definition by defining any singular 0-cube to be differentiable. Remark: If a singular p-cube T: 1"--+ M is differentiable, there will, in general, be many different choices for the open neighborhood U and the extension T': U--+ M. We now introduce the following notation: = subgroup of Q,(M) generated by the differentiable singular p-cubes, D!(M) = D,(M) n Q!(M), C!(M) = Q!(M)/D!(M). The superscript S in the above notation is intended to suggest the word "smooth." We will refer to C!(M) as the group of differentiable or smooth p-chains of M. Note that cg(M) = = Q0 (M) = C0 (M). Next, observe that if T: I" --+ M is a differentiable singular p-cube, then the faces Ai T and BiT. l :s; i :s; p, are all obviously differentiable singular (p - I)­ cubes. It follows that o,(T) E Q!-1 (M). Thus, Q5(M) = { o,} is a sub­ complex of Q(M), and C5 (M) = {C!(M)} is a subcomplex of C(M). We will §2. Differentiable Singular Chains 409 also introduce the following notation: for any abelian group G, C5 (M; G)= C5 (M) ® G, Ct(M; G)= Hom(C5 (M), G), H:(M; G)= H,(C5 (M; G)), HJ(M; G)= H"(Ct(M; G)). We can now state the main theorem of this section: Theorem 2.1. Let M be a differentiable manifold. The inclusion map of chain complexes, C5 (M) -+ C(M), induces an isomorphism of homology groups, H:(M) H,(M). Corollary 2.2. For any abelian group G, we have the following isomorphisms of homology and cohomology groups: H:(M; H,(M; G), Hl(M; H"(M; G). The corollary follows from the theorem by use of standard techniques (cf. Theorem X.2.8). Before we can prove the theorem, it is necessary to discuss to what extent the methods and results of Chapters VII and VIII on homology theory carry over to the homology groups H:(M; G) for any differentiable manifold M. We will now do this in a brief but systematic fashion. (a) Let M 1 and M 2 be differentiable manifolds, and let f: M 1 -+ M 2 be a differentiable map of class coo. If T: I"-+ M 1 is a differentiable singular p cube, in M 1 , thenfT: I" -+ M 2 is also differentiable. Hence, we get an induced chain map f#: cs(Md-+ Cs(M2 ) with all the usual properties. (b) Two differentiable maps f 0 , f 1 : M 1 -+ M 2 will be called differentiably homotopic if there exists a map f: I x M 1 -+ M 2 such that f 0 (x) = f(O, x) and f 1 (x) = f(I, x) for any x E M 1 , and in addition, there exists an open neighbor­ hood U of I x M 1 in R x M 1 and a map f': U-+ M 2 which is an extension off, and is differentiable of class c•'. The technique of §VII.4 can now be 5 applied verbatim to prove that the induced chain maps fo#• f 1 #: C (Md-+ C5 (M2 ) are chain homotopic. This has all the usual consequences; in par­ ticular, the induced homomorphisms on homology and cohomology groups are the same. (c) An open, convex subset of R" is differentiably contractible to a point; in fact, the standard formulas for proving that such a subset is contractible are 410 Appendix A. A Proof of DeRham's Theorem differentiable homotopies in the sense of the preceding definition. From this it follows that if U is an open, convex subset of R", then Hs(U; G)= {G for p = 0 P 0 for p "I' 0, with similar formulas for Hf(U; G). (d) Let M be a differentiable manifold, and let A be a subspace of M which is a differentiable submanifold. For example, A could be an arbitrary open subset of M, or A could be a closed submanifold of M. Then we can consider C5 (A) as a subcomplex of C5(M); hence, we can consider the quotient complex C5 (M)/C5(A) = C5(M, A) and we obtain exact homology and cohomology sequences for the pair (M, A) using differentiable singular cubes. (e) If T: I" -+ M is a differentiable singular cube, the subdivision of T, Sd"(T) as defined in §VII.7, is readily seen to be a linear combination of differentiable singular cubes. Hence, the subdivision operator defines a chain map sd : C5 (M)-+ C5 (M) just as in §VII.7. Unfortunately, the chain homotopy lfJn: Cn(M)-+ Cn+l (M) defined in §VII.7 does not map C!(M) into C!+1 (M). This is because the function 'It : 12 -+ [f, l] is not differentiable (the function 'lo: 12 -+ I is differ­ entiable). However, it is not difficult to get around this obstacle. Consider the real-valued function defined by , ( ) _ l + X 1 - X1X2 'It XI> X2 - 2 . - x2 It is readily verified that 'l't maps / 2 into the interval n. l], and that 'It and q'1 are equal along the boundary of the square / 2• Obviously, q'1 is differentiable in a neighborhood of 12• Thus, if we substitute for q1 in the formula for Ge(T) in §VII.7, then Ge(T) will be a linear combination of differentiable singular cubes whenever Tis a differentiable singular cube. Moreover, the operator Ge will continue to satisfy identities (f.l) to (f.4) of §VII.7. Thus, we can define a chain homotopy lfJn : C!(M) -+ C!+t (M) using the modified defi­ nition of Ge. From this point on, everything proceeds exactly as in §VII. 7. The net result is that we can prove an analog of Theorem VII.6.3 for singular homology based on differentiable singular cubes, and the excision property (Theorem VII.6.2) holds for this kind of homology theory. (0 Suppose that the differentiable manifold M is the union of two open subsets, M = Uu V. Then we can obtain an exact Mayer-Vietoris sequence for this situation by the method described in §VIII.5. (g) Finally, we note that an analog of Proposition VIII.6.1 must hold for homology groups based on differentiable singular cubes; this is practically obvious.
Recommended publications
  • Categories of Sets with a Group Action
    Categories of sets with a group action Bachelor Thesis of Joris Weimar under supervision of Professor S.J. Edixhoven Mathematisch Instituut, Universiteit Leiden Leiden, 13 June 2008 Contents 1 Introduction 1 1.1 Abstract . .1 1.2 Working method . .1 1.2.1 Notation . .1 2 Categories 3 2.1 Basics . .3 2.1.1 Functors . .4 2.1.2 Natural transformations . .5 2.2 Categorical constructions . .6 2.2.1 Products and coproducts . .6 2.2.2 Fibered products and fibered coproducts . .9 3 An equivalence of categories 13 3.1 G-sets . 13 3.2 Covering spaces . 15 3.2.1 The fundamental group . 15 3.2.2 Covering spaces and the homotopy lifting property . 16 3.2.3 Induced homomorphisms . 18 3.2.4 Classifying covering spaces through the fundamental group . 19 3.3 The equivalence . 24 3.3.1 The functors . 25 4 Applications and examples 31 4.1 Automorphisms and recovering the fundamental group . 31 4.2 The Seifert-van Kampen theorem . 32 4.2.1 The categories C1, C2, and πP -Set ................... 33 4.2.2 The functors . 34 4.2.3 Example . 36 Bibliography 38 Index 40 iii 1 Introduction 1.1 Abstract In the 40s, Mac Lane and Eilenberg introduced categories. Although by some referred to as abstract nonsense, the idea of categories allows one to talk about mathematical objects and their relationions in a general setting. Its origins lie in the field of algebraic topology, one of the topics that will be explored in this thesis. First, a concise introduction to categories will be given.
    [Show full text]
  • Arxiv:2002.06802V3 [Math.AT] 1 Apr 2021 Aao3082,Jpne-Mail: Japan 390-8621, Nagano E Od N Phrases
    A COMPARISON BETWEEN TWO DE RHAM COMPLEXES IN DIFFEOLOGY KATSUHIKO KURIBAYASHI Abstract. There are two de Rham complexes in diffeology. The original one is due to Souriau and the other one is the singular de Rham complex defined by a simplicial differential graded algebra. We compare the first de Rham cohomology groups of the two complexes within the Cech–deˇ Rham spectral sequence by making use of the factor map which connects the two de Rham complexes. As a consequence, it follows that the singular de Rham cohomology algebra of the irrational torus Tθ is isomorphic to the tensor product of the original de Rham cohomology and the exterior algebra generated by a non- trivial flow bundle over Tθ. 1. Introduction The de Rham complex introduced by Souriau [13] is very beneficial in the study of diffeology; see [6, Chapters 6,7,8 and 9]. In fact, the de Rham calculus is applicable to not only diffeological path spaces but also more general mapping spaces. It is worth mentioning that the de Rham complex is a variant of the codomain of Chen’s iterated integral map [3]. While the complex is isomorphic to the usual de Rham complex if the input diffeological space is a manifold, the de Rham theorem does not hold in general. In [11], we introduced another cochain algebra called the singular de Rham com- plex via the context of simplicial sets. It is regarded as a variant of the cubic de Rham complex introduced by Iwase and Izumida in [9] and a diffeological counter- part of the singular de Rham complex in [1, 15, 16].
    [Show full text]
  • Lecture 15. De Rham Cohomology
    Lecture 15. de Rham cohomology In this lecture we will show how differential forms can be used to define topo- logical invariants of manifolds. This is closely related to other constructions in algebraic topology such as simplicial homology and cohomology, singular homology and cohomology, and Cechˇ cohomology. 15.1 Cocycles and coboundaries Let us first note some applications of Stokes’ theorem: Let ω be a k-form on a differentiable manifold M.For any oriented k-dimensional compact sub- manifold Σ of M, this gives us a real number by integration: " ω : Σ → ω. Σ (Here we really mean the integral over Σ of the form obtained by pulling back ω under the inclusion map). Now suppose we have two such submanifolds, Σ0 and Σ1, which are (smoothly) homotopic. That is, we have a smooth map F : Σ × [0, 1] → M with F |Σ×{i} an immersion describing Σi for i =0, 1. Then d(F∗ω)isa (k + 1)-form on the (k + 1)-dimensional oriented manifold with boundary Σ × [0, 1], and Stokes’ theorem gives " " " d(F∗ω)= ω − ω. Σ×[0,1] Σ1 Σ1 In particular, if dω =0,then d(F∗ω)=F∗(dω)=0, and we deduce that ω = ω. Σ1 Σ0 This says that k-forms with exterior derivative zero give a well-defined functional on homotopy classes of compact oriented k-dimensional submani- folds of M. We know some examples of k-forms with exterior derivative zero, namely those of the form ω = dη for some (k − 1)-form η. But Stokes’ theorem then gives that Σ ω = Σ dη =0,sointhese cases the functional we defined on homotopy classes of submanifolds is trivial.
    [Show full text]
  • Homological Mirror Symmetry for the Genus 2 Curve in an Abelian Variety and Its Generalized Strominger-Yau-Zaslow Mirror by Cath
    Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Denis Auroux, Chair Professor David Nadler Professor Marjorie Shapiro Spring 2019 Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror Copyright 2019 by Catherine Kendall Asaro Cannizzo 1 Abstract Homological mirror symmetry for the genus 2 curve in an abelian variety and its generalized Strominger-Yau-Zaslow mirror by Catherine Kendall Asaro Cannizzo Doctor of Philosophy in Mathematics University of California, Berkeley Professor Denis Auroux, Chair Motivated by observations in physics, mirror symmetry is the concept that certain mani- folds come in pairs X and Y such that the complex geometry on X mirrors the symplectic geometry on Y . It allows one to deduce information about Y from known properties of X. Strominger-Yau-Zaslow (1996) described how such pairs arise geometrically as torus fibra- tions with the same base and related fibers, known as SYZ mirror symmetry. Kontsevich (1994) conjectured that a complex invariant on X (the bounded derived category of coherent sheaves) should be equivalent to a symplectic invariant of Y (the Fukaya category). This is known as homological mirror symmetry. In this project, we first use the construction of SYZ mirrors for hypersurfaces in abelian varieties following Abouzaid-Auroux-Katzarkov, in order to obtain X and Y as manifolds.
    [Show full text]
  • Bibliography
    Bibliography [AK98] V. I. Arnold and B. A. Khesin, Topological methods in hydrodynamics, Springer- Verlag, New York, 1998. [AL65] Holt Ashley and Marten Landahl, Aerodynamics of wings and bodies, Addison- Wesley, Reading, MA, 1965, Section 2-7. [Alt55] M. Altman, A generalization of Newton's method, Bulletin de l'academie Polonaise des sciences III (1955), no. 4, 189{193, Cl.III. [Arm83] M.A. Armstrong, Basic topology, Springer-Verlag, New York, 1983. [Bat10] H. Bateman, The transformation of the electrodynamical equations, Proc. Lond. Math. Soc., II, vol. 8, 1910, pp. 223{264. [BB69] N. Balabanian and T.A. Bickart, Electrical network theory, John Wiley, New York, 1969. [BLG70] N. N. Balasubramanian, J. W. Lynn, and D. P. Sen Gupta, Differential forms on electromagnetic networks, Butterworths, London, 1970. [Bos81] A. Bossavit, On the numerical analysis of eddy-current problems, Computer Methods in Applied Mechanics and Engineering 27 (1981), 303{318. [Bos82] A. Bossavit, On finite elements for the electricity equation, The Mathematics of Fi- nite Elements and Applications IV (MAFELAP 81) (J.R. Whiteman, ed.), Academic Press, 1982, pp. 85{91. [Bos98] , Computational electromagnetism: Variational formulations, complementar- ity, edge elements, Academic Press, San Diego, 1998. [Bra66] F.H. Branin, The algebraic-topological basis for network analogies and the vector cal- culus, Proc. Symp. Generalised Networks, Microwave Research, Institute Symposium Series, vol. 16, Polytechnic Institute of Brooklyn, April 1966, pp. 453{491. [Bra77] , The network concept as a unifying principle in engineering and physical sciences, Problem Analysis in Science and Engineering (K. Husseyin F.H. Branin Jr., ed.), Academic Press, New York, 1977.
    [Show full text]
  • Some Notes About Simplicial Complexes and Homology II
    Some notes about simplicial complexes and homology II J´onathanHeras J. Heras Some notes about simplicial homology II 1/19 Table of Contents 1 Simplicial Complexes 2 Chain Complexes 3 Differential matrices 4 Computing homology groups from Smith Normal Form J. Heras Some notes about simplicial homology II 2/19 Simplicial Complexes Table of Contents 1 Simplicial Complexes 2 Chain Complexes 3 Differential matrices 4 Computing homology groups from Smith Normal Form J. Heras Some notes about simplicial homology II 3/19 Simplicial Complexes Simplicial Complexes Definition Let V be an ordered set, called the vertex set. A simplex over V is any finite subset of V . Definition Let α and β be simplices over V , we say α is a face of β if α is a subset of β. Definition An ordered (abstract) simplicial complex over V is a set of simplices K over V satisfying the property: 8α 2 K; if β ⊆ α ) β 2 K Let K be a simplicial complex. Then the set Sn(K) of n-simplices of K is the set made of the simplices of cardinality n + 1. J. Heras Some notes about simplicial homology II 4/19 Simplicial Complexes Simplicial Complexes 2 5 3 4 0 6 1 V = (0; 1; 2; 3; 4; 5; 6) K = f;; (0); (1); (2); (3); (4); (5); (6); (0; 1); (0; 2); (0; 3); (1; 2); (1; 3); (2; 3); (3; 4); (4; 5); (4; 6); (5; 6); (0; 1; 2); (4; 5; 6)g J. Heras Some notes about simplicial homology II 5/19 Chain Complexes Table of Contents 1 Simplicial Complexes 2 Chain Complexes 3 Differential matrices 4 Computing homology groups from Smith Normal Form J.
    [Show full text]
  • Homology Homomorphism
    || Computations Induced (Co)homology homomorphism Daher Al Baydli Department of Mathematics National University of Ireland,Galway Feberuary, 2017 Daher Al Baydli (NUIGalway) Computations Induced (Co)homology homomorphism Feberuary, 2017 1 / 11 Overview Resolution Chain and cochain complex homology cohomology Induce (Co)homology homomorphism Daher Al Baydli (NUIGalway) Computations Induced (Co)homology homomorphism Feberuary, 2017 2 / 11 Resolution Definition Let G be a group and Z be the group of integers considered as a trivial ZG-module. The map : ZG −! Z from the integral group ring to Z, given by Σmg g 7−! Σmg , is called the augmentation. Definition Let G be a group. A free ZG-resolution of Z is an exact sequence of free G G @n+1 G @n G @n−1 @2 G @1 ZG-modules R∗ : · · · −! Rn+1 −! Rn −! Rn−1 −! · · · −! R1 −! G G R0 −! R−1 = Z −! 0 G with each Ri a free ZG-module for all i ≥ 0. Daher Al Baydli (NUIGalway) Computations Induced (Co)homology homomorphism Feberuary, 2017 3 / 11 Definition Let C = (Cn;@n)n2Z be a chain complex of Z-modules. For each n 2 Z, the nth homology module of C is defined to be the quotient module Ker@n Hn(C) = Im@n+1 G We can also construct an induced cochain complex HomZG (R∗ ; A) of abelian groups: G G δn G δn−1 HomZG (R∗ ; A): · · · − HomZG (Rn+1; A) − HomZG (Rn ; A) − G δn−2 δ1 G δ0 G HomZG (Rn−1; A) − · · · − HomZG (R1 ; A) − HomZG (R0 ; A) Chain and cochain complex G Given a ZG-resolution R∗ of Z and any ZG-module A we can use the G tensor product to construct an induced chain complex R∗ ⊗ZG A of G G @n+1 G @n abelian groups: R∗ ⊗ZG A : · · · −! Rn+1 ⊗ZG A −! Rn ⊗ZG A −! G @n−1 @2 G @1 G Rn−1 ⊗ZG A −! · · · −! R1 ⊗ZG A −! R0 ⊗ZG A Daher Al Baydli (NUIGalway) Computations Induced (Co)homology homomorphism Feberuary, 2017 4 / 11 Definition Let C = (Cn;@n)n2Z be a chain complex of Z-modules.
    [Show full text]
  • Homology Groups of Homeomorphic Topological Spaces
    An Introduction to Homology Prerna Nadathur August 16, 2007 Abstract This paper explores the basic ideas of simplicial structures that lead to simplicial homology theory, and introduces singular homology in order to demonstrate the equivalence of homology groups of homeomorphic topological spaces. It concludes with a proof of the equivalence of simplicial and singular homology groups. Contents 1 Simplices and Simplicial Complexes 1 2 Homology Groups 2 3 Singular Homology 8 4 Chain Complexes, Exact Sequences, and Relative Homology Groups 9 ∆ 5 The Equivalence of H n and Hn 13 1 Simplices and Simplicial Complexes Definition 1.1. The n-simplex, ∆n, is the simplest geometric figure determined by a collection of n n + 1 points in Euclidean space R . Geometrically, it can be thought of as the complete graph on (n + 1) vertices, which is solid in n dimensions. Figure 1: Some simplices Extrapolating from Figure 1, we see that the 3-simplex is a tetrahedron. Note: The n-simplex is topologically equivalent to Dn, the n-ball. Definition 1.2. An n-face of a simplex is a subset of the set of vertices of the simplex with order n + 1. The faces of an n-simplex with dimension less than n are called its proper faces. 1 Two simplices are said to be properly situated if their intersection is either empty or a face of both simplices (i.e., a simplex itself). By \gluing" (identifying) simplices along entire faces, we get what are known as simplicial complexes. More formally: Definition 1.3. A simplicial complex K is a finite set of simplices satisfying the following condi- tions: 1 For all simplices A 2 K with α a face of A, we have α 2 K.
    [Show full text]
  • Algebraic Topology
    Algebraic Topology Len Evens Rob Thompson Northwestern University City University of New York Contents Chapter 1. Introduction 5 1. Introduction 5 2. Point Set Topology, Brief Review 7 Chapter 2. Homotopy and the Fundamental Group 11 1. Homotopy 11 2. The Fundamental Group 12 3. Homotopy Equivalence 18 4. Categories and Functors 20 5. The fundamental group of S1 22 6. Some Applications 25 Chapter 3. Quotient Spaces and Covering Spaces 33 1. The Quotient Topology 33 2. Covering Spaces 40 3. Action of the Fundamental Group on Covering Spaces 44 4. Existence of Coverings and the Covering Group 48 5. Covering Groups 56 Chapter 4. Group Theory and the Seifert{Van Kampen Theorem 59 1. Some Group Theory 59 2. The Seifert{Van Kampen Theorem 66 Chapter 5. Manifolds and Surfaces 73 1. Manifolds and Surfaces 73 2. Outline of the Proof of the Classification Theorem 80 3. Some Remarks about Higher Dimensional Manifolds 83 4. An Introduction to Knot Theory 84 Chapter 6. Singular Homology 91 1. Homology, Introduction 91 2. Singular Homology 94 3. Properties of Singular Homology 100 4. The Exact Homology Sequence{ the Jill Clayburgh Lemma 109 5. Excision and Applications 116 6. Proof of the Excision Axiom 120 3 4 CONTENTS 7. Relation between π1 and H1 126 8. The Mayer-Vietoris Sequence 128 9. Some Important Applications 131 Chapter 7. Simplicial Complexes 137 1. Simplicial Complexes 137 2. Abstract Simplicial Complexes 141 3. Homology of Simplicial Complexes 143 4. The Relation of Simplicial to Singular Homology 147 5. Some Algebra. The Tensor Product 152 6.
    [Show full text]
  • Homology and Homological Algebra, D. Chan
    HOMOLOGY AND HOMOLOGICAL ALGEBRA, D. CHAN 1. Simplicial complexes Motivating question for algebraic topology: how to tell apart two topological spaces? One possible solution is to find distinguishing features, or invariants. These will be homology groups. How do we build topological spaces and record on computer (that is, finite set of data)? N Definition 1.1. Let a0, . , an ∈ R . The span of a0, . , an is ( n ) X a0 . an := λiai | λi > 0, λ1 + ... + λn = 1 i=0 = convex hull of {a0, . , an}. The points a0, . , an are geometrically independent if a1 − a0, . , an − a0 is a linearly independent set over R. Note that this is independent of the order of a0, . , an. In this case, we say that the simplex Pn a0 . an is n -dimensional, or an n -simplex. Given a point i=1 λiai belonging to an n-simplex, we say it has barycentric coordinates (λ0, . , λn). One can use geometric independence to show that this is well defined. A (proper) face of a simplex σ = a0 . an is a simplex spanned by a (proper) subset of {a0, . , an}. Example 1.2. (1) A 1-simplex, a0a1, is a line segment, a 2-simplex, a0a1a2, is a triangle, a 3-simplex, a0a1a2a3 is a tetrahedron, etc. (2) The points a0, a1, a2 are geometrically independent if they are distinct and not collinear. (3) Midpoint of a0a1 has barycentric coordinates (1/2, 1/2). (4) Let a0 . a3 be a 3-simplex, then the proper faces are the simplexes ai1 ai2 ai3 , ai4 ai5 , ai6 where 0 6 i1, .
    [Show full text]
  • Quelques Souvenirs Des Années 1925-1950 Cahiers Du Séminaire D’Histoire Des Mathématiques 1Re Série, Tome 1 (1980), P
    CAHIERS DU SÉMINAIRE D’HISTOIRE DES MATHÉMATIQUES GEORGES DE RHAM Quelques souvenirs des années 1925-1950 Cahiers du séminaire d’histoire des mathématiques 1re série, tome 1 (1980), p. 19-36 <http://www.numdam.org/item?id=CSHM_1980__1__19_0> © Cahiers du séminaire d’histoire des mathématiques, 1980, tous droits réservés. L’accès aux archives de la revue « Cahiers du séminaire d’histoire des mathématiques » im- plique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pé- nale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ - 19 - QUELQUES SOUVENIRS DES ANNEES 1925-1950 par Georges de RHAM Arrivé à la fin de ma carrière, je pense à son début. C’est dans ma année 1. en 1924, que j’ai décidé de me lancer dans les mathématiques. En 1921, ayant le bachot classique, avec latin et grec, attiré par la philosophie, j’hésitais d’entrer à la Facul- té des Lettres. Mais finalement je me décidai pour la Faculté des Sciences, avec à mon programme l’étude de la Chimie, de la Physique et surtout, pour finir, la Biologie. Je ne songeais pas aux Mathématiques, qui me semblaient un domaine fermé où je ne pourrais rien faire. Pourtant, pour comprendre des questions de Physique, je suis amené à ouvrir des livres de Mathématiques supérieures. J’entrevois qu’il y a là un domaine immense, qui ex- cité ma curiosité et m’intéresse à tel point qu’après cinq semestres à l’Université, j’ abandonne la Biologie pour aborder résolument les Mathématiques.
    [Show full text]
  • Arxiv:2101.10594V1 [Hep-Th] 26 Jan 2021 Rpsda H Mrec Fti Dai Re Ormf H S the Ramify to Order in Gravity
    [math-ph] ⋆-Cohomology, Connes-Chern Characters, and Anomalies in General Translation-Invariant Noncommutative Yang-Mills Amir Abbass Varshovi∗ Department of Mathematics, University of Isfahan, Isfahan, IRAN. School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, IRAN. Abstract: Topological structure of translation-invariant noncommutative Yang-Mills theoris are studied by means of a cohomology theory, so called ⋆-cohomology, which plays an intermediate role between de Rham and cyclic (co)homology theory for noncommutative algebras and gives rise to a cohomological formulation comparable to Seiberg-Witten map. Keywords: Translation-Invariant Star Product, Noncommutative Yang-Mills, Spectral Triple, Chern Character, Connes-Chern Character, Family Index Theory, Topological Anomaly, BRST. I. INTRODUCTION Noncommutative geometry is one of the most prominent topics in theoretical physics. Through with last three decades it was extensively believed that the fundamental forces of the nature could be interpreted with more success via the machinery of noncommutative geometry and its different viewpoints [1–4]. Moyal noncommutative fields, inspired by fascinating formulations of strings, were proposed as the emergence of this idea in order to ramify the singular behaviors of quantum field theories, especially the quantum gravity.1 Appearing UV/IR mixing as a pathological feature of the Moyal quantum fields led to a concrete generalization of Moyal product as general translation-invariant noncommutative star products.2 arXiv:2101.10594v1 [hep-th] 26 Jan 2021 However, the topology and the geometry of noncommutative field theories with general translation- invariant star products have not been studied thoroughly yet. Actually, on the one hand it is a problem in noncommutative geometry, and on the other hand it is a physical behavior correlated to the topology and the geometry of the underlying spacetime and corresponding fiber bundles.
    [Show full text]