Constrained Optimization on Manifolds

Total Page:16

File Type:pdf, Size:1020Kb

Constrained Optimization on Manifolds Constrained Optimization on Manifolds Von der Universit¨atBayreuth zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung von Juli´anOrtiz aus Bogot´a 1. Gutachter: Prof. Dr. Anton Schiela 2. Gutachter: Prof. Dr. Oliver Sander 3. Gutachter: Prof. Dr. Lars Gr¨une Tag der Einreichung: 23.07.2020 Tag des Kolloquiums: 26.11.2020 Zusammenfassung Optimierungsprobleme sind Bestandteil vieler mathematischer Anwendungen. Die herausfordernd- sten Optimierungsprobleme ergeben sich dabei, wenn hoch nichtlineare Probleme gel¨ostwerden m¨ussen. Daher ist es von Vorteil, gegebene nichtlineare Strukturen zu nutzen, wof¨urdie Op- timierung auf nichtlinearen Mannigfaltigkeiten einen geeigneten Rahmen bietet. Es ergeben sich zahlreiche Anwendungsf¨alle,zum Beispiel bei nichtlinearen Problemen der Linearen Algebra, bei der nichtlinearen Mechanik etc. Im Fall der nichtlinearen Mechanik ist es das Ziel, Spezifika der Struktur zu erhalten, wie beispielsweise Orientierung, Inkompressibilit¨atoder Nicht-Ausdehnbarkeit, wie es bei elastischen St¨aben der Fall ist. Außerdem k¨onnensich zus¨atzliche Nebenbedingungen ergeben, wie im wichtigen Fall der Optimalsteuerungsprobleme. Daher sind f¨urdie L¨osungsolcher Probleme neue geometrische Tools und Algorithmen n¨otig. In dieser Arbeit werden Optimierungsprobleme auf Mannigfaltigkeiten und die Konstruktion von Algorithmen f¨urihre numerische L¨osungbehandelt. In einer abstrakten Formulierung soll eine reelle Funktion auf einer Mannigfaltigkeit minimiert werden, mit der Nebenbedingung einer C2- Submersionsabbildung zwischen zwei differenzierbaren Mannigfaltigkeiten. F¨urAnwendungen der Optimalsteuerung wird diese Formulierung auf Vektorb¨undelerweitert. In der Literatur finden sich bereits Optimierungsalgorithmen auf Mannigfaltigkeiten, meist ohne Ber¨ucksichtigung von Nebenbedingungen [AMS09]. Dabei ist der Einsatz von Retraktionen maßgeblich. Retraktio- nen, die eine bedeutende Rolle bei der Schrittberechnung von Optimierungsalgorithmen spielen, erlauben es, die involvierten Abbildungen auf lineare R¨aumezur¨uckzuziehen, und machen somit einige Ergebnisse aus dem linearen Fall nutzbar. Insbesondere sind ¨uber Retraktionen die KKT- Bedingungen und Optimalit¨atsbedingungen zweiter Ordnung erreichbar. In dieser Arbeit wird das Konzept der Retraktionen auf Vektorb¨undel erweitert, auf denen Konsistenzbedingungen erster und zweiter Ordnung definiert sind. Andererseits ergibt sich auf jedem Punkt der Mannigfaltigkeit ein 1-Form Lagrange-Multiplikator als L¨osungdes Sattelpunktproblems. Wir beweisen, dass die Ex- istenz einer Potentialfunktion f¨urden Lagrange-Multiplikator von der Integrierbarkeit (im Sinne von Frobenius) der horizontalen Verteilung, d.h. der orthogonalen Komponente der linearisierten Nebenbedingung, abh¨angt. F¨urdie algorithmische L¨osungbeschr¨ankter Optimierungsprobleme auf Mannigfaltigkeiten wird die affine kovariante Composite-Step-Methode, wie dargestellt in [LSW17], auf diese R¨aumeerweitert und somit lokale superlineare Konvergenz des Algorithmus f¨ur Retraktionen erster Ordnung er- reicht. Zuerst wird der Algorithmus an einem beschr¨anktenEigenwert-Problem getestet. Dann i ii werden numerische Experimente in der Mechanik von elastischen nicht dehnbaren St¨aben betra- chtet. In letzterem Fall wird der Gleichgewichtszustand eines elastischen nicht dehnbaren Stabes unter Eigengewicht berechnet. Der Fall, dass der Stab in Kontakt mit einer oder mehreren Fl¨achen kommt, wird in Betracht gezogen. Dabei wird die Riemannsche Struktur des positiven Kegels 3 + im R , wie in [NT 02] dargestellt genutzt. Zus¨atzlich wird ein Optimalsteuerungsproblem eines elastischen nichtdehnbaren Stabs gel¨ostals Anwendungsfall beschr¨ankter Optimierungsprobleme auf Vektorb¨undeln.Schließlich werden Retraktionen auf dem Raum von Orientierung erhaltenden Tetraedern f¨urfinite Elastizit¨atsproblemegenutzt. Abstract Optimization problems are present in many mathematical applications, and those that are partic- ularly challenging arise when it comes to solving highly nonlinear problems. Hence, it is of benefit exploiting available nonlinear structure, and optimization on nonlinear manifolds provides a general and convenient framework for this task. Applications arise, for instance, in nonlinear problems for linear algebra, nonlinear mechanics, and many more. For the case of nonlinear mechanics, the aim is to preserve some specific structure, such as orientability, incompressibility or inextensibility, as in the case of elastic rods. Moreover, additional constraints can occur, as in the important case of optimal control problems. Therefore, for the solution of such problems, new geometrical tools and algorithms are needed. This thesis deals with the setting of constrained optimization problems on manifolds and with the construction of algorithms for their numerical solution. In the abstract formulation, we seek to minimize a real function on a manifold, where the constraint is given by a submersion that is a C2-map between two differentiable manifolds. Furthermore, for optimal control applications, we extend this formulation to vector bundles. Optimization algorithms on manifolds are available in the literature, mostly for the unconstrained case [AMS09], and the usage of retraction maps is an indispensable tool for this purpose. Retractions, which play a fundamental role in the updating of the iterates in optimization algorithms, also allow us to pullback the involved maps to linear spaces, making possible the use of tools and results from the linear setting. In particular, KKT-theory and second-order optimality conditions are tractable thanks to such maps. In this work, we extend the concept of retraction to vector bundles, where first and second-order consistency conditions are also defined. On the other hand, at each point in the manifold, a 1-form Lagrange multiplier arises as a solution of a saddle point problem. We prove that the existence of a potential function for this Lagrange multiplier depends on the integrability, in the sense of Frobenius, of the horizontal distribution, i.e., the orthogonal complement of the linearized constraint map. For the algorithmic solution of constrained optimization problems on manifolds, we generalize the affine covariant composite step method presented in [LSW17] to these spaces, and local superlinear convergence of the algorithm for first-order retractions is obtained. First, we test the algorithm in a constrained eigenvalue problem. Then, we consider numerical experiments on the mechanics of elastic inextensible rods. There, we compute the final configuration of an elastic inextensible rod under dead load. The case in which the rod enters in contact with one, or several planes, is 3 considered. Hence, we exploit the Riemannian structure of the positive cone in R , as pointed out iv v in [NT+02]. In addition, we solve an optimal control problem of an elastic inextensible rod, as an application to constrained optimization problems on vector bundles. Finally, we use retractions on the space of orientation preserving tetrahedra for finite elasticity problems. Acknowledgments Firstly, I would like to thank my supervisor Prof. Dr. Anton Schiela, not only for giving me the opportunity of working on this exciting and challenging topic but also for his consistent support and guidance throughout the project. All my gratitude and admiration for him. I thank Prof. Dr. Oliver Sander for agreeing to review the present work. I also want to thank Prof. Dr. Lars Gr¨uneand Prof. Dr. Thomas Kriecherbauer for being members of the examination committee. Likewise, I would like to thank all the people from the chair of Applied Mathematics of the Uni- versity of Bayreuth with whom I had the opportunity to share time. Special thanks to Dr. Robert Baier, Sigrid Kinder, Dr. Philipp Braun, Dr. Marleen Stieler, Dr. Georg M¨uller, Arthur Fleig, Tobias Sproll, Manuel Schaller, Dr. Simon Pirkelmann, Matthias St¨ocklein - I will never forget the days spent in this place with such wonderful people. Finally, I thank my family: Flor, Javier, and Cristian, for always being there even in the distance. To Isadora, thanks for all your support, care, love and for filling my days with joy. vii Contents Zusammenfassung i Abstract iv Acknowledgments vii 1 Introduction 1 1.1 Outline . .4 2 Concepts of Differential Geometry 9 2.1 Manifolds . .9 2.2 Examples of Manifolds . 13 2.3 Vector Bundles . 17 2.4 Immersions, Submersions and Submanifolds . 22 2.5 Transversality . 24 2.6 Vector Fields, Differential Forms and Integrability . 25 2.7 Sprays, Exponential Map and Covariant Derivatives on the Tangent Bundle . 29 2.8 Connections and Covariant Derivatives on General Vector Bundles . 36 2.9 Derivative Along A Curve . 40 3 Optimization on Manifolds and Retractions 43 3.1 Unconstrained Optimization on Manifolds . 43 3.2 Retractions and their Consistency . 46 3.3 Vector Bundle Retractions . 58 4 Equality Constrained Optimization on Manifolds 75 4.1 Problem Formulation . 75 4.2 KKT-Conditions . 79 4.3 Second Order Optimality Conditions . 82 4.4 The Lagrange Multiplier on Manifolds . 83 4.5 Constrained Optimization on Vector Bundles . 88 ix x CONTENTS 5 An SQP-Method on Manifolds 95 5.1 An Affine Invariant Composite Step Method . 96 5.2 Composite Step Method on Manifolds . 99 5.3 Globalization Scheme . 106 5.4 Local Convergence Analysis . 108 5.5 Extension to Vector Bundles . 115 6 Applications 125 6.1 Constrained Eigenvalue Problem . 125 6.2 Inextensible Rod . 130 6.3 Inextensible Rod, the Case
Recommended publications
  • On the Projective Geometry of Sprays
    Differential Geometry and its Applications 12 (2000) 185–206 185 North-Holland View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector On the projective geometry of sprays J. Szilasi1 and Sz. Vattam´any Institute of Mathematics and Informatics, Lajos Kossuth University, H-4010 Debrecen, P.O.B. 12, Hungary Communicated by M. Modugno Received 8 March 1999 Abstract: After a careful study of the mixed curvatures of the Berwald-type (in particular, Berwald) connec- tions, we present an axiomatic description of the so-called Yano-type Finsler connections. Using the Yano connection, we derive an intrinsic expression of Douglas’ famous projective curvature tensor and we also represent it in terms of the Berwald connection. Utilizing a clever observation of Z. Shen, we show in a coordinate-free manner that a “spray manifold” is projectively equivalent to an affinely connected manifold iff its Douglas tensor vanishes. From this result we infer immediately that the vanishing of the Douglas tensor implies that the projective Weyl tensor of the Berwald connection “depends only on the position”. Keywords: Horizontal endomorphisms, Berwald endomorphisms, sprays, Finsler connections, Berwald-type connections, Yano-type connections, Douglas tensor, projective Weyl tensor. MS classification: 53C05, 53C60. Introduction In the context of affinely connected manifolds, i.e., in manifolds endowed with a linear con- nection, a “projective curvature tensor” with zero trace has already been constructed by H. Weyl [18]. The vanishing of this famous tensor, called Weyl tensor, characterizes the “projec- tively flat manifolds”. The nonlinear generalizations of the affinely connected manifolds, i.e., manifolds endowed with a nonlinear connection, have also been playing an increasing role in differential geometry and its applications since the twenties.
    [Show full text]
  • Bibliography
    Bibliography [AK98] V. I. Arnold and B. A. Khesin, Topological methods in hydrodynamics, Springer- Verlag, New York, 1998. [AL65] Holt Ashley and Marten Landahl, Aerodynamics of wings and bodies, Addison- Wesley, Reading, MA, 1965, Section 2-7. [Alt55] M. Altman, A generalization of Newton's method, Bulletin de l'academie Polonaise des sciences III (1955), no. 4, 189{193, Cl.III. [Arm83] M.A. Armstrong, Basic topology, Springer-Verlag, New York, 1983. [Bat10] H. Bateman, The transformation of the electrodynamical equations, Proc. Lond. Math. Soc., II, vol. 8, 1910, pp. 223{264. [BB69] N. Balabanian and T.A. Bickart, Electrical network theory, John Wiley, New York, 1969. [BLG70] N. N. Balasubramanian, J. W. Lynn, and D. P. Sen Gupta, Differential forms on electromagnetic networks, Butterworths, London, 1970. [Bos81] A. Bossavit, On the numerical analysis of eddy-current problems, Computer Methods in Applied Mechanics and Engineering 27 (1981), 303{318. [Bos82] A. Bossavit, On finite elements for the electricity equation, The Mathematics of Fi- nite Elements and Applications IV (MAFELAP 81) (J.R. Whiteman, ed.), Academic Press, 1982, pp. 85{91. [Bos98] , Computational electromagnetism: Variational formulations, complementar- ity, edge elements, Academic Press, San Diego, 1998. [Bra66] F.H. Branin, The algebraic-topological basis for network analogies and the vector cal- culus, Proc. Symp. Generalised Networks, Microwave Research, Institute Symposium Series, vol. 16, Polytechnic Institute of Brooklyn, April 1966, pp. 453{491. [Bra77] , The network concept as a unifying principle in engineering and physical sciences, Problem Analysis in Science and Engineering (K. Husseyin F.H. Branin Jr., ed.), Academic Press, New York, 1977.
    [Show full text]
  • Landsberg Curvature, S-Curvature and Riemann Curvature
    Riemann{Finsler Geometry MSRI Publications Volume 50, 2004 Landsberg Curvature, S-Curvature and Riemann Curvature ZHONGMIN SHEN Contents 1. Introduction 303 2. Finsler Metrics 304 3. Cartan Torsion and Matsumoto Torsion 311 4. Geodesics and Sprays 313 5. Berwald Metrics 315 6. Gradient, Divergence and Laplacian 317 7. S-Curvature 319 8. Landsberg Curvature 321 9. Randers Metrics with Isotropic S-Curvature 323 10. Randers Metrics with Relatively Isotropic L-Curvature 325 11. Riemann Curvature 327 12. Projectively Flat Metrics 330 13. The Chern Connection and Some Identities 333 14. Nonpositively Curved Finsler Manifolds 337 15. Flag Curvature and Isotropic S-Curvature 341 16. Projectively Flat Metrics with Isotropic S-Curvature 342 17. Flag Curvature and Relatively Isotropic L-Curvature 348 References 351 1. Introduction Roughly speaking, Finsler metrics on a manifold are regular, but not neces- sarily reversible, distance functions. In 1854, B. Riemann attempted to study a special class of Finsler metrics | Riemannian metrics | and introduced what is now called the Riemann curvature. This infinitesimal quantity faithfully reveals the local geometry of a Riemannian manifold and becomes the central concept of Riemannian geometry. It is a natural problem to understand general regu- lar distance functions by introducing suitable infinitesimal quantities. For more than half a century, there had been no essential progress until P. Finsler studied the variational problem in a Finsler manifold. However, it was L. Berwald who 303 304 ZHONGMIN SHEN first successfully extended the notion of Riemann curvature to Finsler metrics by introducing what is now called the Berwald connection. He also introduced some non-Riemannian quantities via his connection [Berwald 1926; 1928].
    [Show full text]
  • The Scientific Life and Influence of Clifford Ambrose Truesdell
    Arch. Rational Mech. Anal. 161 (2002) 1–26 Digital Object Identifier (DOI) 10.1007/s002050100178 The Scientific Life and Influence of Clifford Ambrose Truesdell III J. M. Ball & R. D. James Editors 1. Introduction Clifford Truesdell was an extraordinary figure of 20th century science. Through his own contributions and an unparalleled ability to absorb and organize the work of previous generations, he became pre-eminent in the development of continuum mechanics in the decades following the Second World War. A prolific and scholarly writer, whose lucid and pungent style attracted many talented young people to the field, he forcefully articulated a view of the importance and philosophy of ‘rational mechanics’ that became identified with his name. He was born on 18 February 1919 in Los Angeles, graduating from Polytechnic High School in 1936. Before going to university he spent two years at Oxford and traveling elsewhere in Europe. There he improved his knowledge of Latin and Ancient Greek and became proficient in German, French and Italian.These language skills would later prove valuable in his mathematical and historical research. Truesdell was an undergraduate at the California Institute of Technology, where he obtained B.S. degrees in Physics and Mathematics in 1941 and an M.S. in Math- ematics in 1942. He obtained a Certificate in Mechanics from Brown University in 1942, and a Ph.D. in Mathematics from Princeton in 1943. From 1944–1946 he was a Staff Member of the Radiation Laboratory at MIT, moving to become Chief of the Theoretical Mechanics Subdivision of the U.S. Naval Ordnance Labo- ratory in White Oak, Maryland, from 1946–1948, and then Head of the Theoretical Mechanics Section of the U.S.
    [Show full text]
  • Quelques Souvenirs Des Années 1925-1950 Cahiers Du Séminaire D’Histoire Des Mathématiques 1Re Série, Tome 1 (1980), P
    CAHIERS DU SÉMINAIRE D’HISTOIRE DES MATHÉMATIQUES GEORGES DE RHAM Quelques souvenirs des années 1925-1950 Cahiers du séminaire d’histoire des mathématiques 1re série, tome 1 (1980), p. 19-36 <http://www.numdam.org/item?id=CSHM_1980__1__19_0> © Cahiers du séminaire d’histoire des mathématiques, 1980, tous droits réservés. L’accès aux archives de la revue « Cahiers du séminaire d’histoire des mathématiques » im- plique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pé- nale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ - 19 - QUELQUES SOUVENIRS DES ANNEES 1925-1950 par Georges de RHAM Arrivé à la fin de ma carrière, je pense à son début. C’est dans ma année 1. en 1924, que j’ai décidé de me lancer dans les mathématiques. En 1921, ayant le bachot classique, avec latin et grec, attiré par la philosophie, j’hésitais d’entrer à la Facul- té des Lettres. Mais finalement je me décidai pour la Faculté des Sciences, avec à mon programme l’étude de la Chimie, de la Physique et surtout, pour finir, la Biologie. Je ne songeais pas aux Mathématiques, qui me semblaient un domaine fermé où je ne pourrais rien faire. Pourtant, pour comprendre des questions de Physique, je suis amené à ouvrir des livres de Mathématiques supérieures. J’entrevois qu’il y a là un domaine immense, qui ex- cité ma curiosité et m’intéresse à tel point qu’après cinq semestres à l’Université, j’ abandonne la Biologie pour aborder résolument les Mathématiques.
    [Show full text]
  • MG Agnesi, R. Rampinelli and the Riccati Family
    Historia Mathematica 42 (2015): 296-314 DOI 10.1016/j.hm.2014.12.001 __________________________________________________________________________________ M.G. Agnesi, R. Rampinelli and the Riccati Family: A Cultural Fellowship Formed for an Important Scientific Purpose, the Instituzioni analitiche CLARA SILVIA ROERO Department of Mathematics G. Peano, University of Torino, Italy1 Not every learned man makes a good teacher, nor is he able to transmit to others what he knows. Rampinelli, however, was marvellously endowed with this talent. [Brognoli, 1785, 85]2 1. Introduction “Shortly after I arrived in Milan I had the pleasure of meeting Signora Countess Donna Maria Agnesi who was well versed in the Latin and Greek languages, and even Hebrew, as well as other more familiar tongues; moreover, she was well educated in the most important Metaphysics, the Physics of the day and Geometry, and she knew enough of Mechanics for the purposes of Physics; she had a little knowledge of Cartesian algebra, but all self-acquired as there was no one here who could enlighten her. Therefore she asked me to assist her in that study, to which I agreed, and in a short time she had, with extraordinary strength and depth of talent, wonderfully mastered Cartesian algebra and the two infinitesimal Calculi,3 to which she added the application of these to the most lofty physical matters. I assure you that I have always been and still am amazed by seeing such talent and such depth of knowledge in a woman as would be remarkable in a man, and in particular by seeing this accompanied by quite remarkable Christian virtue.”4 On 9 June 1745, Ramiro Rampinelli (1697-1759) thus presented to his main scientific interlocutor of the time, Giordano Riccati (1709-1790), the talents of his Milanese pupil 1 Financial support of MIUR, PRIN 2009 “Mathematical Schools and National Identity in Modern and Contemporary Italy”, unit of Torino.
    [Show full text]
  • An Brief Introduction to Finsler Geometry
    An brief introduction to Finsler geometry Matias Dahl July 12, 2006 Abstract This work contains a short introduction to Finsler geometry. Special em- phasis is put on the Legendre transformation that connects Finsler geometry with symplectic geometry. Contents 1 Finsler geometry 3 1.1 Minkowski norms . 4 1.2 Legendre transformation . 6 2 Finsler geometry 9 2.1 The global Legendre transforms . 9 3 Geodesics 15 4 Horizontal and vertical decompositions 19 4.1 Applications . 22 5 Finsler connections 25 5.1 Finsler connections . 25 5.2 Covariant derivative . 26 5.3 Some properties of basic Finsler quantities . 27 6 Curvature 29 7 Symplectic geometry 31 7.1 Symplectic structure on T ∗M n f0g . 33 7.2 Symplectic structure on T M n f0g . 34 1 Table of symbols in Finsler geometry For easy reference, the below table lists the basic symbols in Finsler ge- ometry, their definitions (when short enough to list), and their homogene- ity (see p. 3). However, it should be pointed out that the quantities and notation in Finsler geometry is far from standardized. Some references (e.g. [Run59]) work with normalized quantities. The present work follows [She01b, She01a]. Name Notation Homogeneity (co-)Finsler norm F; H; h 1 1 @2F 2 gij = 2 @yi @yj 0 ij g = inverse of gij 0 1 @gij 1 @3F 2 Cartan tensor Cijk = 2 @yk = 4 @yi @yj @yk −1 i is Cjk = g Csjk −1 @Cijk Cijkl = @yl −2 Geodesic coefficients Gi 2 G i @ i @ Geodesic spray = y @xi − 2G @yi no i @Gi Non-linear connection Nj = @yj 1 δ @ s @ Horizontal basis vectors δxi = @xi − Ni @ys no i i @Nj @2Gi Berwald connection Gjk = @yk = @yj @yk 0 Chern-Rund connection Γijk 0 i is Γjk = g Γsjk 0 Landsberg coefficients Lijk m Curvature coefficients Rijk 0 m Rij 1 m kL −1 Rij = Rijky m 2 i ij Legendre transformation L = h ξj 1 L ∗ L −1 j : T M ! T M i = gijy 1 2 1 Finsler geometry Essentially, a Finsler manifold is a manifold M where each tangent space is equipped with a Minkowski norm, that is, a norm that is not necessarily induced by an inner product.
    [Show full text]
  • Who, Where and When: the History & Constitution of the University of Glasgow
    Who, Where and When: The History & Constitution of the University of Glasgow Compiled by Michael Moss, Moira Rankin and Lesley Richmond © University of Glasgow, Michael Moss, Moira Rankin and Lesley Richmond, 2001 Published by University of Glasgow, G12 8QQ Typeset by Media Services, University of Glasgow Printed by 21 Colour, Queenslie Industrial Estate, Glasgow, G33 4DB CIP Data for this book is available from the British Library ISBN: 0 85261 734 8 All rights reserved. Contents Introduction 7 A Brief History 9 The University of Glasgow 9 Predecessor Institutions 12 Anderson’s College of Medicine 12 Glasgow Dental Hospital and School 13 Glasgow Veterinary College 13 Queen Margaret College 14 Royal Scottish Academy of Music and Drama 15 St Andrew’s College of Education 16 St Mungo’s College of Medicine 16 Trinity College 17 The Constitution 19 The Papal Bull 19 The Coat of Arms 22 Management 25 Chancellor 25 Rector 26 Principal and Vice-Chancellor 29 Vice-Principals 31 Dean of Faculties 32 University Court 34 Senatus Academicus 35 Management Group 37 General Council 38 Students’ Representative Council 40 Faculties 43 Arts 43 Biomedical and Life Sciences 44 Computing Science, Mathematics and Statistics 45 Divinity 45 Education 46 Engineering 47 Law and Financial Studies 48 Medicine 49 Physical Sciences 51 Science (1893-2000) 51 Social Sciences 52 Veterinary Medicine 53 History and Constitution Administration 55 Archive Services 55 Bedellus 57 Chaplaincies 58 Hunterian Museum and Art Gallery 60 Library 66 Registry 69 Affiliated Institutions
    [Show full text]
  • Maria Gaetana Agnesi)
    Available online at www.sciencedirect.com Historia Mathematica 38 (2011) 248–291 www.elsevier.com/locate/yhmat Calculations of faith: mathematics, philosophy, and sanctity in 18th-century Italy (new work on Maria Gaetana Agnesi) Paula Findlen Department of History, Stanford University, Stanford, CA 94305-2024, USA Available online 28 September 2010 Abstract The recent publication of three books on Maria Gaetana Agnesi (1718–1799) offers an opportunity to reflect on how we have understood and misunderstood her legacy to the history of mathematics, as the author of an important vernacular textbook, Instituzioni analitiche ad uso della gioventú italiana (Milan, 1748), and one of the best-known women natural philosophers and mathematicians of her generation. This article discusses the work of Antonella Cupillari, Franco Minonzio, and Massimo Mazzotti in relation to earlier studies of Agnesi and reflects on the current state of this subject in light of the author’s own research on Agnesi. Ó 2010 Elsevier Inc. All rights reserved. Riassunto La recente pubblicazione di tre libri dedicati a Maria Gaetana Agnesi (1718-99) è un’occasione per riflettere su come abbiamo compreso e frainteso l’eredità nella storia della matematica di un’autrice di un importante testo in volgare, le Instituzioni analitiche ad uso della gioventù italiana (Milano, 1748), e una fra le donne della sua gener- azione più conosciute per aver coltivato la filosofia naturale e la matematica. Questo articolo discute i lavori di Antonella Cupillari, Franco Minonzio, e Massimo Mazzotti in relazione a studi precedenti, e riflette sullo stato corrente degli studi su questo argomento alla luce della ricerca sull’Agnesi che l’autrice stessa sta conducendo.
    [Show full text]
  • PDF (Chapter 2)
    2. Hamiltonian Systems. This lecture contains some of the basic facts about Hamiltonian systems. Some additional material will be brought in later as it is needed. Motivation. To motivate the development, let us briefly consider Hamilton's equations. The starting point is Newton's second law which states that a particle of mass m > 0 moving in a potential V(x) , x E R~ moves along a curve x(t) such that = -grad V(x) . If we introduce the momentum p = m& and the energy H(x, p) = 1 then Newton's law becomes Hamilton's Equations -2m /p12 + V(n) One now is interested in studying this system of first order equations for given H . To do this, we introduce the matrix J = - @ where I is the n x n identity and note that the equations become 5 = J grad H(5) where 5 = (x, p) . (In complex notation, setting z = x + ip , they may be written as = 2iaHfa;). Suppose we make a change of coordinates w = f(1) where 2n 2n f : R R is smooth. If <(t) satisfies Hamilton's equations, the equations satisfied by w(t) are 25 = AP = AJ grad H(<) = 5 ki*tgradw~(S(w)) where A = (awi/aE') is the Jacobian of f . The equations for w will be Hamiltonian with energy K(w) = H(?(w)) if -1. MA'' = J . A transformation satisfying this condition is called canonical or symp lec tic. 3 The space R x R3 of the 5's is called the phase space. For a system of N particles we would use R3N X R3N .
    [Show full text]
  • Affine Vector Fields on Finsle Manifolds
    AFFINE VECTOR FIELDS ON FINSLER MANIFOLDS LIBING HUANG AND QIONG XUE Abstract. We give characterizations of affine transformations and affine vec- tor fields in terms of the spray. By utilizing the Jacobi type equation that characterizes affine vector fields, we prove some rigidity theorems of affine vec- tor fields on compact or forward complete non-compact Finsler manifolds with non-positive total Ricci curvature. 1. Introduction It is well kown that every affine vector field on a compact orientable Riemannian manifold is a Killing vector field [5]. In the noncompact case, Junichi Hano proved that if the length of an affine vector field in a complete Riemannian manifold is bounded, then its affine vector field is a Killing vector field [4]. This result was generalized later by Shinuke Yorozu, who proved that every affine vector field with finite norm on a complete noncompact Riemannian manifold is a Killing vector field. Moreover, if the Riemannian manifold has non-positive Ricci curvature, then every affine vector field with finite global norm on it is a parallel vector field [9]. We generalize this result to Finsler manifolds. We investigate affine vector fields on Finsler manifolds and prove some rigidity theorems of affine vector fields on compact and forward complete non-compact Finsler manifolds with non-positive total Ricci curvature. Theorem 1.1. Let (M, F ) be an n-dimensional compact Finsler manifold with non-positive total Ricci curvature. Then every affine vector field V on M is a linearly parallel vector field. Theorem 1.2. Let (M, F ) be an n-dimensional forward complete non-compact Finsler manifold with non-positive total Ricci curvature and bounded reversibility.
    [Show full text]
  • Newton's Generalized Form of Second Law Gives F
    IOSR Journal Of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861.Volume 13, Issue 2 Ser. I (Mar. – Apr. 2021), PP 61-138 www.Iosrjournals.Org Newton’s generalized form of second law gives F =ma Ajay Sharma Fundamental Physics Society. His Mercy Enclave, Post Box 107 GPO Shimla 171001 HP India Abstract Isaac Newton never wrote equation F =ma, it was clearly derived by Euler in 1775 ( E479 http://eulerarchive.maa.org/ ). Also, Newton ignored acceleration throughout his scientific career. It must be noted that acceleration was explained, defined and demonstrated by Galileo in 1638 (four years before birth of Newton) in his book Dialogue Concerning Two New Sciences at pages 133-134 and 146. Galileo defined uniform velocity in the same book at page 128 and applied it in Law of Inertia at page 195 in section The Motion of projectile. Descartes in book Principles of Philosophy (1644) and Huygens in his book Horologium (1673) used uniform velocity in defining their laws. Huygens also applied gravity in 1673 i.e. 13 years before Newton. Newton also defined first law of motion in the Principia (1686,1713,1726) in terms of unform velocity. Galileo, Descartes and Huygens did not use acceleration at all, as uniform velocity is used in law of inertia. Likewise, Newton ignored acceleration completely, even it was present in literature during his lifetime. So, it is distant point that Newton gave F=ma. The geometrical methods were the earliest method to interpret scientific phenomena. Now there are three main points for understanding of second law. Firstly, genuine equation based on second 2 2 law of motion F =kdV (it is obtained like F =Gm1m2/r or F m1m2, F 1/r or F dV) .
    [Show full text]