Engineering Guidelines for Private Siding Design and Construction

Total Page:16

File Type:pdf, Size:1020Kb

Engineering Guidelines for Private Siding Design and Construction Engineering Guidelines for Private Siding Design and Construction Revised June 2017 1 Guidelines for Private Siding Design and Construction Table of Contents Foreword... ..................................................................................................................... ..2 Building Private Track and Facilities ............................................................................... ...3 Design Standards ........................................................................................................... ..6 Drawing Standards ......................................................................................................... 10 Material Standards ......................................................................................................... 13 Construction Standards… ............................................................................................... 17 Flagging Requirements… ............................................................................................. ..19 Appendices Minimum Safety Requirements for Contractors Working on Railway Property Industrial Track Drawings 2 Foreword The initial contact for industries requiring a private siding is the Canadian Pacific (CP) Industrial Development group. Industrial Development leads a private siding project from concept to completion and is the main point of contact for the customer. The CP Engineering department is responsible to approve the engineering design for a private siding. CP may also build a portion of the private siding as required and in accordance with a construction agreement. The CP generally follows the "Manual of Recommended Practice" of the American Railway Engineering Association (AREMA) unless otherwise specified. All materials for the track work shall comply with applicable specifications and standards of AREMA and CP. The purpose of this document is to layout the minimum requirements for a private siding design which will allow CP to approve the plan. The document also provides general information about the construction process with CP. CP requires all contractors to adhere to our “Minimum Safety Requirements for Contractor working on Railway Property” policy which is included in the appendices. Highlighted within the policy is the need for flag protection if work (including survey, construction, etc.) is required on/around CP tracks. 3 Building Private Trackage and Facilities Development of detailed design Once a conceptual review has been completed with Industrial Development, the customer arranges for an engineering consultant to develop a detailed design for their private siding. These drawings are to be signed by a Professional Engineer. Submission of detailed design to CP The detailed design drawings prepared by the industry’s consultant are to be submitted to Industrial Development for review. The proposed design will be evaluated against CP and AREMA Standards, some of which are outlined in this document. The drawings required for submission are outlined below. Plan submittals should be in PDF format with 11” x 17” sheet size. A CADD submission may be required depending on the size and complexity of the project. Review ensures that the design meets CP requirements and CP approval is required before moving to the construction stage. Construction Process Upon CP approval of the design, Industrial Development will prepare a construction agreement for execution. Once the construction agreement is in place, CP will order materials and schedule CP construction forces to perform the work as detailed in the agreement. This usually involves installation of mainline turnouts, signals work, switch heaters, etc. The customer and its contractors will perform all work beyond the clearance point in accordance with the approved track design and construction agreement. The customer will coordinate its construction work with CP. Customer will be responsible for locating all underground and above ground utilities, and, if required, relocating them or constructing protection around them. Any deviation or changes from the approved plans that affects either the track work or the structures around the track work must be reviewed and approved by CP. There is to be no work within the CP ROW without prior authorization from CP. Completion and Operation Once construction is complete, an authorized CP employee will conduct a final inspection to ensure CP standards have been met. This must occur prior to commencing operations on the private siding. A signed private siding agreement is required prior to commencement of operations on the private siding. Industrial Development will prepare the agreement for signature. A plan of the private siding in accordance with example siding agreement plan attached in the appendix section will form a part of the private siding agreement. 4 Design Standards Track Curvature Indicate Beginning of Curve (BC), End of Curve (EC) and spiral points on the track plan. A curve data table must accompany the curve shown on a track alignment drawing. All curves and turnouts will be shown with their appropriate stationing. Stationing along the railroad tracks will be in feet or meters and be shown in the format of 00+00.00 Minimum distance between reverse curves shall be 100 feet (30 meters). Curves must have 100 feet (30 m) of tangent between the Point of Curve (PC) and Point of Switch (PS), Bridge End or Road Crossing. All curves must end at least 60' short of building doors or other objects located where there is a minimum clearance of 8'6". Two (2) inches must be added to the clearance of 8'6" for each degree of curve if the curve ends closer than 60'. Curves that are greater than 7 degrees 30 minutes will use elastic fasteners and Grade 5 (7”x9”x8.5’) ties. Maximum recommended curvature is 9 degrees 30 minutes. Curvature greater than 9 degrees 30 minutes will require special approval and may be considered only if conditions are such that there is no other viable alternative. These curves will be looked at on a case by case basis. For unit train loop tracks the maximum curvature shall be 7 degrees 30 minutes. Grades in industry service tracks shall not exceed 1.5% unless it is a unit train facility in which case the maximum shall not exceed 1.0%. Minimum vertical curve length shall be 200 feet (60 m). The maximum practical grade is dependent on operating and other factors. Vertical curves shall not extend into limits of turnout switch ties. Turnouts All mainline turnouts will be furnished and installed by the railroad at industry expense. The railroad will construct track up to the clearance point only. Additional costs for mainline turnout installation could include (but not limited to): fiber cable protection or relocation, signal modifications, power switches, electric locks, and switch heaters. Turnouts will be located in tangent track and a minimum 100’ (30 m) of tangent track must be placed between reverse curves and the point of switch. Industry will be responsible for building a turnout construction pad for each new turnout as well as road access to each mainline turnout for CP forces to maintain turnout. Mainline turnouts shall be a minimum of # 11. Unit train and high volume facilities will be required to have a minimum of # 15. Turnouts on industry maintained track shall be minimum #9 with 115# rail, it is recommended that minimum #11 turnouts be utilized on industry track where design permits. 5 Turnouts will show point of switch (PS), and the turnout number with direction. Include weight of rail and if it is to be new rail or relay rail. (ie. #.15 RH (Right Hand) 136lb New). Mainline turnouts may be required to have switch machines, switch heaters and be signalized depending on their location. Grounding Track(s) being used to unload/load flammable materials shall be properly grounded and bonded. Grading Construction of an adequate subgrade will be the responsibility of the customer. The customer should retain a professional engineer to design the subgrade. The Contractor shall place and compact suitable materials in embankments and shall finish the embankments to the grade, slope and alignment as shown on the plans. Suitable materials shall consist of soils free from organics, debris, and frozen materials. Embankment slopes shall be compacted and dressed to provide a uniform and dense slope. If unsuitable materials are encountered within the track roadbed areas that will affect stability of the roadbed, they shall be removed. Unsuitable material removed shall be replaced to grade with suitable material and properly compacted. The Contractor shall operate sufficient equipment to properly compact the embankment. Utilize construction procedures and drainage design that will provide a stable roadbed. Each layer shall not exceed 6" (150 mm) in loose depth and shall be compacted to the dry density as specified before additional layers are placed. All embankments shall be compacted to a density of not less than 95% of the maximum standard laboratory density, and not more than +4 percentage points above the optimum moisture content. The standard laboratory density and optimum moisture content shall be the maximum density and optimum moisture as determined in accordance with ASTM Designation: D 698 (Standard Proctor Test). The Contractor shall place a minimum of 8 “ (200 mm) of granular sub-ballast which meets the above criteria and contains no material larger than that which will pass through a 3 inch square sieve. Sub-ballast shall be crushed gravel or crushed stone with
Recommended publications
  • Relative Train Length and the Infrastructure Required to Mitigate Delays from Operating Combinations of Normal and Over-Length F
    Original Article Proc IMechE Part F: J Rail and Rapid Transit 0(0) 1–12 Relative train length and the ! IMechE 2018 Article reuse guidelines: infrastructure required to mitigate sagepub.com/journals-permissions DOI: 10.1177/0954409718809204 delays from operating combinations journals.sagepub.com/home/pif of normal and over-length freight trains on single-track railway lines in North America C Tyler Dick , Ivan Atanassov, F Bradford Kippen III and Darkhan Mussanov Abstract Distributed power locomotives have facilitated longer heavy-haul freight trains that improve the efficiency of railway operations. In North America, where the majority of mainlines are single track, the potential operational and economic advantages of long trains are limited by the inadequate length of many existing passing sidings (passing loops). To alleviate the challenge of operating trains that exceed the length of passing sidings, railways preserve the mainline capacity by extending passing sidings. However, industry practitioners rarely optimize the extent of infrastructure investment for the volume of over-length train traffic on a particular route. This paper investigates how different combinations of normal and over-length trains, and their relative lengths, relate to the number of siding extensions necessary to mitigate the delay performance of over-length train operation on a single-track rail corridor. The experiments used Rail Traffic Controller simulation software to determine train delay for various combinations of short and long train lengths under different directional distributions of a given daily railcar throughput volume. Simulation results suggest a relationship between the ratio of train lengths and the infrastructure expansion required to eliminate the delay introduced by operating over- length trains on the initial route.
    [Show full text]
  • NORTH WEST Freight Transport Strategy
    NORTH WEST Freight Transport Strategy Department of Infrastructure NORTH WEST FREIGHT TRANSPORT STRATEGY Final Report May 2002 This report has been prepared by the Department of Infrastructure, VicRoads, Mildura Rural City Council, Swan Hill Rural City Council and the North West Municipalities Association to guide planning and development of the freight transport network in the north-west of Victoria. The State Government acknowledges the participation and support of the Councils of the north-west in preparing the strategy and the many stakeholders and individuals who contributed comments and ideas. Department of Infrastructure Strategic Planning Division Level 23, 80 Collins St Melbourne VIC 3000 www.doi.vic.gov.au Final Report North West Freight Transport Strategy Table of Contents Executive Summary ......................................................................................................................... i 1. Strategy Outline. ...........................................................................................................................1 1.1 Background .............................................................................................................................1 1.2 Strategy Outcomes.................................................................................................................1 1.3 Planning Horizon.....................................................................................................................1 1.4 Other Investigations ................................................................................................................1
    [Show full text]
  • C&O Has Good Ideas In
    Siding thrown over to locate main track signal between main and siding C & 0 Has Good Ideas in CTC Sheet-metal houses not only at switches but also at interme­ diate signals and use of hold-out signals are features of this project. Well organized construction requires no work trains. TO INCREASE TRACK CAPAC­ portant freight line. Numerous Windsor, Ont., and Blenheim, Ont. ITY, facilitate train movements industries , including large, automo­ Previously no signaling was in and reduce operating expenses, the bile factories, are located at Plym­ service on the single track between Chesapeake & Ohio has installed outh , Flint and Saginaw. Also the Plymouth and Kearsley interlock­ centralized traffic control on 55 Plymouth-Saginaw section is part ing at Flint. Two tracks extend miles of single-track between Plym­ of an important route to and from north from Plymouth 1.0 mile to a outh, Mich., and Mount Morris, Ludington, Mich., which is the port power switch which is included in Mich. This project connects with for C&O car ferries, operated all the new CTC. At Wixom there are CTC previously in service on 24 year, across Lake Michigan to and two sidings with power switches miles between Mt. Morris and from Wisconsin ports of Milwau­ included in the CTC. Other sidings Saginaw, Mich., the entire 79 miles kee, Manitowoc and Kewaunee. with power switches included in between Plymouth and Saginaw the CTC are at Clyde and Newark. now being controlled from a ma­ Twenty Trains Dally These sidings were lengthened to chine at Saginaw. hold 112 and 133 cars respectively .
    [Show full text]
  • Derails in Passing Sidings? As 1.5 U 'Ually the Case, It I'> Impo%Ible to Move Tre Insulated Ioiflt
    30 RAILWAY SIGNALING Vol. 24, No.1 i\s the InSUlltld joint i" a :,ecessary part aT the 19nal ( ,,) In torcing rat elK~ - 1)art use a ratl expander It system as well as 0" the t'c.ck, it mturally follows tl1dt It one IS &t haIld DC! not use an )rdinary full tap"'r '"rack belongs neither to one department nor to the other, but chise1. If a chisel muq be usen, use on(; whICh is wider to both, Therefore, both departments should interest th,l11 the rail-head and which has a small japer, 111 order themselves 111 hcping 'nsulated joil'ts in repair in an to 1\ aid d~.ma2ing the rail el d. efficient and er ollomin1 mannu, (0 Do It bend 'lOlts or drive them through btl ~h;ngs. 11o:t men who are ell cdl} responsible for the care If rail end~ a d ;oir,t parts Ir in prope' POSI io 1, he of JO'nts ha\ e found that mp1 r defects, which req~lre bn]ts can be l11::-e ted w thO'lt rr...lt1:'n", n' bending. very little til e to remedy, such a" loose r,ub. lipped (7) Paler 1 .suL i II W 11 nN 'dthstand the erorl"ous rail tnds, rail fins cutting mto 5.11er, low or loose ties fon (' of rail expansion in hot weather. After the proper and defeclive spikl11g, should be corrected Immediately OpUlIllg IS secured between the rail cnus for the ll1 ertion upon being detected a £ the end post: it should be held, a::: much as pOSSIble, Frequent inspection shuuld be made, SIgnal mail­ by the installatlOl1 of ~ail ancile r5.
    [Show full text]
  • Track Inspection – 2009
    Santa Cruz County Regional Transportation Commission Track Maintenance Planning / Cost Evaluation for the Santa Cruz Branch Watsonville Junction, CA to Davenport, CA Prepared for Egan Consulting Group December 2009 HDR Engineering 500 108th Avenue NE, Suite 1200 Bellevue, WA 98004 CONFIDENTIAL Table of Contents Executive Summary 4 Section 1.0 Introduction 10 Section 1.1 Description of Types of Maintenance 10 Section 1.2 Maintenance Criteria and Classes of Track 11 Section 2.0 Components of Railroad Track 12 Section 2.1 Rail and Rail Fittings 13 Section 2.1.1 Types of Rail 13 Section 2.1.2 Rail Condition 14 Section 2.1.3 Rail Joint Condition 17 Section 2.1.4 Recommendations for Rail and 17 Joint Maintenance Section 2.2 Ties 20 Section 2.2.1 Tie Condition 21 Section 2.2.2 Recommendations for Tie Maintenance 23 Section 2.3 Ballast, Subballst, Subgrade, and Drainage 24 Section 2.3.1 Description of Railroad Ballast, Subballst, 24 Subgrade, and Drainage Section 2.3.2 Ballast, Subgrade, and Drainage Conditions 26 and Recommendations Section 2.4 Effects of Rail Car Weight 29 Section 3.0 Track Geometry 31 Section 3.1 Description of Track Geometry 31 Section 3.2 Track Geometry at the “Micro-Level” 31 Section 3.3 Track Geometry at the “Macro-Level” 32 Santa Cruz County Regional Transportation Commission Page 2 of 76 Santa Cruz Branch Maintenance Study CONFIDENTIAL Section 3.4 Equipment and Operating Recommendations 33 Following from Track Geometry Section 4.0 Specific Conditions Along the 34 Santa Cruz Branch Section 5.0 Summary of Grade Crossing
    [Show full text]
  • Railway Siding Rules and Regulations
    Appendix no. 2 – Characteristics of railway siding infrastructure elements (excerpt) RAILWAY SIDING RULES AND REGULATIONS: CENTRUM LOGISTYCZNO INWESTYCYJNE POZNAŃ II SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ 62-020 SWARZĘDZ - JASIN, UL. RABOWICKA 6, Valid from 1st November 2017 1 1. Technical description of railway siding: 2.1. Location of railway siding: Centrum Logistyczno Inwestycyjne Poznań II sp. z o.o. siding is a station siding with branching turnout no. 6 to station track no. 6b of Swarzędz station at km 291.017 of railway line no. 003 Warsaw West - Kunowice (for the siding it is km 0.000 - beginning of turnout no. 6 is the beginning of the siding track). 2.2. Switch circles and traffic operation positions and their manning: CLIP II Railway siding constitutes five manoeuvring zones. No traffic operation position and manning on the siding. 2.3. Location of delivery-acceptance points at the siding: 1) The acceptance track for wagons, groups of wagons and full train sets brought by the Carrier is track no. 101 or track no. 105 of the siding CENTRUM LOGISTYCZNO INWESTYCYJNE POZNAŃ II. 2) The delivery track for wagons, groups of wagons and full train sets brought by the Carrier is track no. 101 or track no. 103 of the siding CENTRUM LOGISTYCZNO INWESTYCYJNEGO POZNAŃ II. 3) On site, the delivery-acceptance point is marked with a sign “Delivery-acceptance point”, the sign is located at the intertrack space of tracks 101 and 103. 2.4. Tracks on siding: General length of track Usable length of track Capacity - Notes (‰) section section Purpose Track no.
    [Show full text]
  • Notes on Curves for Railways
    NOTES ON CURVES FOR RAILWAYS BY V B SOOD PROFESSOR BRIDGES INDIAN RAILWAYS INSTITUTE OF CIVIL ENGINEERING PUNE- 411001 Notes on —Curves“ Dated 040809 1 COMMONLY USED TERMS IN THE BOOK BG Broad Gauge track, 1676 mm gauge MG Meter Gauge track, 1000 mm gauge NG Narrow Gauge track, 762 mm or 610 mm gauge G Dynamic Gauge or center to center of the running rails, 1750 mm for BG and 1080 mm for MG g Acceleration due to gravity, 9.81 m/sec2 KMPH Speed in Kilometers Per Hour m/sec Speed in metres per second m/sec2 Acceleration in metre per second square m Length or distance in metres cm Length or distance in centimetres mm Length or distance in millimetres D Degree of curve R Radius of curve Ca Actual Cant or superelevation provided Cd Cant Deficiency Cex Cant Excess Camax Maximum actual Cant or superelevation permissible Cdmax Maximum Cant Deficiency permissible Cexmax Maximum Cant Excess permissible Veq Equilibrium Speed Vg Booked speed of goods trains Vmax Maximum speed permissible on the curve BG SOD Indian Railways Schedule of Dimensions 1676 mm Gauge, Revised 2004 IR Indian Railways IRPWM Indian Railways Permanent Way Manual second reprint 2004 IRTMM Indian railways Track Machines Manual , March 2000 LWR Manual Manual of Instructions on Long Welded Rails, 1996 Notes on —Curves“ Dated 040809 2 PWI Permanent Way Inspector, Refers to Senior Section Engineer, Section Engineer or Junior Engineer looking after the Permanent Way or Track on Indian railways. The term may also include the Permanent Way Supervisor/ Gang Mate etc who might look after the maintenance work in the track.
    [Show full text]
  • Customer Track Maintenance Guide Winter Safety
    Customer Track Maintenance Guide Winter Safety Safety is of the utmost importance at CN, not only for our employees but Our goal is to move your products as quickly and safely as possible. also for you, our customers. Please contact your service delivery representative or account manager if you have any questions. We’ve developed this Customer Track Maintenance Guide in order to help bring attention to the additional hazards that are present during the winter Additional information on our seasonal safety guidelines can be found at: months, especially for our crews performing switching activities. www.cn.ca/seasonalsafety Winter is a challenging time for a railroad; many of the service disruptions are caused by accumulations of snow and ice. On the track, problems with switches and crossings are mainly caused by snow — so clearing the snow solves the problem. 3 Flangeways wheel flange Be particularly vigilant where flangeways can be become contaminated with snow, ice, or other material, or where any trackage is covered by excessive amounts of snow or ice, or other material. Ensure equipment can be carefully operated through flangeway over such track. flangeway Be especially aware at crossings, as these are prone to these types minimum of 1.5” clear rail of conditions. of ice, snow, mud, etc. At a minimum, flangeways must be cleared to a depth of 1.5”. Acceptable: Not acceptable: 4 Switches Be aware that switches can become very difficult to line due to cold weather and snow/ice build-up in the switch points. Attempting to line a stiff switch can and does lead to back, leg and arm injuries.
    [Show full text]
  • Derailment of Freight Train 9204V, Sims Street Junction, West Melbourne
    DerailmentInsert document of freight title train 9204V LocationSims Street | Date Junction, West Melbourne, Victoria | 4 December 2013 ATSB Transport Safety Report Investigation [InsertRail Occurrence Mode] Occurrence Investigation Investigation XX-YYYY-####RO-2013-027 Final – 13 January 2015 Cover photo source: Chief Investigator, Transport Safety (Vic) This investigation was conducted under the Transport Safety Investigation Act 2003 (Cth) by the Chief Investigator Transport Safety (Victoria) on behalf of the Australian Transport Safety Bureau in accordance with the Collaboration Agreement entered into on 18 January 2013. Released in accordance with section 25 of the Transport Safety Investigation Act 2003 Publishing information Published by: Australian Transport Safety Bureau Postal address: PO Box 967, Civic Square ACT 2608 Office: 62 Northbourne Avenue Canberra, Australian Capital Territory 2601 Telephone: 1800 020 616, from overseas +61 2 6257 4150 (24 hours) Accident and incident notification: 1800 011 034 (24 hours) Facsimile: 02 6247 3117, from overseas +61 2 6247 3117 Email: [email protected] Internet: www.atsb.gov.au © Commonwealth of Australia 2015 Ownership of intellectual property rights in this publication Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Commonwealth of Australia. Creative Commons licence With the exception of the Coat of Arms, ATSB logo, and photos and graphics in which a third party holds copyright, this publication is licensed under a Creative Commons Attribution 3.0 Australia licence. Creative Commons Attribution 3.0 Australia Licence is a standard form license agreement that allows you to copy, distribute, transmit and adapt this publication provided that you attribute the work.
    [Show full text]
  • Transportation Planning for the Richmond–Charlotte Railroad Corridor
    VOLUME I Executive Summary and Main Report Technical Monograph: Transportation Planning for the Richmond–Charlotte Railroad Corridor Federal Railroad Administration United States Department of Transportation January 2004 Disclaimer: This document is disseminated under the sponsorship of the Department of Transportation solely in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof, nor does it express any opinion whatsoever on the merit or desirability of the project(s) described herein. The United States Government does not endorse products or manufacturers. Any trade or manufacturers' names appear herein solely because they are considered essential to the object of this report. Note: In an effort to better inform the public, this document contains references to a number of Internet web sites. Web site locations change rapidly and, while every effort has been made to verify the accuracy of these references as of the date of publication, the references may prove to be invalid in the future. Should an FRA document prove difficult to find, readers should access the FRA web site (www.fra.dot.gov) and search by the document’s title or subject. 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FRA/RDV-04/02 4. Title and Subtitle 5. Report Date January 2004 Technical Monograph: Transportation Planning for the Richmond–Charlotte Railroad Corridor⎯Volume I 6. Performing Organization Code 7. Authors: 8. Performing Organization Report No. For the engineering contractor: Michael C. Holowaty, Project Manager For the sponsoring agency: Richard U. Cogswell and Neil E. Moyer 9. Performing Organization Name and Address 10.
    [Show full text]
  • Maintenance of Railway Siding National Fertilizers Limited, Panipaty Unit Transportation Section Maintenance of Railway Siding
    1 MAINTENANCE OF RAILWAY SIDING NATIONAL FERTILIZERS LIMITED, PANIPATY UNIT TRANSPORTATION SECTION MAINTENANCE OF RAILWAY SIDING 1.0 TECHANICAL SPECIFICATION: GENERAL: 1.1 SCOPE: These specifications contain good practices and procedures for maintenance of Permanent Way and forms a part of tender document. The following Codes and Manuals with all correction slips up to date should be referred for the maintenance of NFL Private Railway Siding (BG): i) Indian Railways Permanent Way Manual, Bridge Manual and Works Manual. ii) Indian Railway Tracks Manual. iii) Indian Railway Code for the Engineering Department. iv) Schedule of Dimensions. v) Indian Railway General & Subsidiary Rules. 1.2 DEFINATION: Reference to Indian Railway and work Manual means reference to latest issue of relevant standard including all its amendments up to date. 1.3 CODE: All maintenance work shall be performed in accordance with provision as described in Indian Railway Way and Works Manual. These Technical Specification shall be supplementary to the specification contained in Indian Railway Way and Work manual wherein variance, these specification shall take precedence over the provisions in the Indian Railway way and works Manual. 1.4 THE MAINTENANCE OF PERMANENT WAY GENERAL INSTRUCTIONS ANNUAL PROGRAMME OF TRACK MAINTENANCE: A) The annual programme of regular track maintenance and works incidental thereto shall be based on Annexure-B with such variations to suit local conditions as may be specified by Officer-in-Charge. B) Consistent with maintaining each gauge length in safe condition for traffic, as many days as possible should be allotted for systematic through packing from one end to the other.
    [Show full text]
  • Trends in the Share of Railways in Transportation
    www.cepal.org/transporte Issue No. 303 - Number 11 / 2011 BULLETIN FACILITATION OF TRANSPORT AND TRADE IN LATIN AMERICA AND THE CARIBBEAN This issue of the FAL Bulletin analyses the history of railways in modal distribution Trends in the share in Latin America, and puts forward recommendations for improving their functioning and making them a real, of railways competitive and sustainable transport option. The study is part of the activities being in transportation conducted by the Unit in the project on “Strategies for environmental sustainability: climate change and energy”, funded by the Spanish Agency for International Development Cooperation (AECID). The author of this issue of the Bulletin is Introduction Gonzalo Martín Baranda, Consultant for the Infrastructure Services Unit of ECLAC. For additional information please contact Railways flourished in the nineteenth century, becoming a key element [email protected] in the transport of goods and passengers For a number of reasons, Introduction however, their prominence has gradually diminished and they now have only a limited role, mostly in the transportation of certain bulk products. I. The rise of railways This document looks at the how the use of the railways for freight has II. Recent history of railways changed over the years, and puts forward a series of recommendations in Latin America to increase their use in present-day Latin America. III. Consideration of externalities and associated social costs I. The rise of railways for sustainable modal choices IV. The role of railways in modal shifts Railways rose to prominence in the nineteenth century, leading to a radical change in the surface transport of freight and passengers, and V.
    [Show full text]