Effect of Genotype on Micronutrient Absorption and Metabolism: a Review of Iron, Copper, Iodine and Selenium, and Folates Richard Mithen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diagnosis and Treatment of Genetic HFE-Hemochromatosis: the Danish Aspect
Review Gastroenterol Res. 2019;12(5):221-232 Diagnosis and Treatment of Genetic HFE-Hemochromatosis: The Danish Aspect Nils Thorm Milmana, d, Frank Vinholt Schioedta, Anders Ellekaer Junkerb, Karin Magnussenc Abstract hemochromatosis. Among people of Northwestern European descent including ethnic Danes, HFE-hemochromatosis is by This paper outlines the Danish aspects of HFE-hemochromatosis, far the most common, while non-HFE hemochromatosis oc- which is the most frequent genetic predisposition to iron overload curs sporadically [1]. in the five million ethnic Danes; more than 20,000 people are ho- The Danish National Board of Health in 2017 assigned mozygous for the C282Y mutation and more than 500,000 people are the handling (evaluation, diagnosis and treatment) of patients compound heterozygous or heterozygous for the HFE-mutations. The with hemochromatosis to the specialty of gastroenterology and disorder has a long preclinical stage with gradually increasing body hepatology thereby terminating many years of frustration in iron overload and eventually 30% of men will develop clinically overt these “homeless” patients, who, due to their plethora of symp- disease, presenting with symptoms of fatigue, arthralgias, reduced li- toms, are referred from one specialty to another in order to bido, erectile dysfunction, cardiac disease and diabetes. Subsequently obtain a diagnosis. This review is based on the Danish Na- the disease may progress into irreversible arthritis, liver cirrhosis, tional Guidelines for HFE-hemochromatosis elaborated by the cardiomyopathy, pancreatic fibrosis and osteoporosis. The effective Danish Society for Gastroenterology and Hepatology [2]. The standard treatment is repeated phlebotomies, which in the preclinical figures and text boxes are reproduced with permission from the and early clinical stages ensures a normal survival rate. -
Impaired Lysosomal Acidification Triggers Iron Deficiency And
RESEARCH ARTICLE Impaired lysosomal acidification triggers iron deficiency and inflammation in vivo King Faisal Yambire1, Christine Rostosky2, Takashi Watanabe3, David Pacheu-Grau1, Sylvia Torres-Odio4, Angela Sanchez-Guerrero1,2, Ola Senderovich5, Esther G Meyron-Holtz5, Ira Milosevic2, Jens Frahm3, A Phillip West4, Nuno Raimundo1* 1Institute of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany; 2European Neuroscience Institute, a Joint Initiative of the Max-Planck Institute and of the University Medical Center Goettingen, Goettingen, Germany; 3Biomedizinische NMR, Max-Planck Institute for Biophysical Chemistry, Goettingen, Germany; 4Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Austin, United States; 5Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel Abstract Lysosomal acidification is a key feature of healthy cells. Inability to maintain lysosomal acidic pH is associated with aging and neurodegenerative diseases. However, the mechanisms elicited by impaired lysosomal acidification remain poorly understood. We show here that inhibition of lysosomal acidification triggers cellular iron deficiency, which results in impaired mitochondrial function and non-apoptotic cell death. These effects are recovered by supplying iron via a lysosome-independent pathway. Notably, iron deficiency is sufficient to trigger inflammatory signaling in cultured primary neurons. Using a mouse model of impaired lysosomal acidification, we observed a robust iron deficiency response in the brain, verified by in vivo magnetic resonance *For correspondence: imaging. Furthermore, the brains of these mice present a pervasive inflammatory signature [email protected] associated with instability of mitochondrial DNA (mtDNA), both corrected by supplementation of goettingen.de the mice diet with iron. Our results highlight a novel mechanism linking impaired lysosomal Competing interests: The acidification, mitochondrial malfunction and inflammation in vivo. -
The Potential for Transition Metal-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis
REVIEW ARTICLE published: 23 July 2014 AGING NEUROSCIENCE doi: 10.3389/fnagi.2014.00173 The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis David B. Lovejoy* and Gilles J. Guillemin Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia Edited by: Modulations of the potentially toxic transition metals iron (Fe) and copper (Cu) are impli- Roger S. Chung, Macquarie cated in the neurodegenerative process in a variety of human disease states including University, USA amyotrophic lateral sclerosis (ALS). However, the precise role played by these metals is Reviewed by: Junming Wang, University of still very much unclear, despite considerable clinical and experimental data suggestive of Mississippi Medical Center, USA a role for these elements in the neurodegenerative process.The discovery of mutations in Ramon Santos El-Bachá, Universidade the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD-1) in ALS patients established Federal da Bahia, Brazil the first known cause of ALS. Recent data suggest that various mutations in SOD-1 affect *Correspondence: metal-binding of Cu and Zn, in turn promoting toxic protein aggregation. Copper home- David B. Lovejoy, Macquarie University, Australian School of ostasis is also disturbed in ALS, and may be relevant to ALS pathogenesis. Another set Advanced Medicine, Motor Neuron of interesting observations in ALS patients involves the key nutrient Fe. In ALS patients, and Neurodegenerative Diseases Fe loading can be inferred by studies showing increased expression of serum ferritin, an Research Group, Building F10A, 2 Fe-storage protein, with high serum ferritin levels correlating to poor prognosis. Magnetic Technology Place, NSW, 2109, Australia resonance imaging of ALS patients shows a characteristic T2 shortening that is attributed e-mail: [email protected] to the presence of Fe in the motor cortex. -
Revisiting Hemochromatosis: Genetic Vs
731 Review Article on Unresolved Basis Issues in Hepatology Page 1 of 16 Revisiting hemochromatosis: genetic vs. phenotypic manifestations Gregory J. Anderson1^, Edouard Bardou-Jacquet2 1Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute and School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia; 2Liver Disease Department, University of Rennes and French Reference Center for Hemochromatosis and Iron Metabolism Disease, Rennes, France Contributions: (I) Conception and design: Both authors; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: None; (V) Data analysis and interpretation: None; (VI) Manuscript writing: Both authors; (VII) Final approval of manuscript: Both authors. Correspondence to: Gregory J. Anderson. Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia. Email: [email protected]. Abstract: Iron overload disorders represent an important class of human diseases. Of the primary iron overload conditions, by far the most common and best studied is HFE-related hemochromatosis, which results from homozygosity for a mutation leading to the C282Y substitution in the HFE protein. This disease is characterized by reduced expression of the iron-regulatory hormone hepcidin, leading to increased dietary iron absorption and iron deposition in multiple tissues including the liver, pancreas, joints, heart and pituitary. The phenotype of HFE-related hemochromatosis is quite variable, with some individuals showing little or no evidence of increased body iron, yet others showing severe iron loading, tissue damage and clinical sequelae. The majority of genetically predisposed individuals show at least some evidence of iron loading (increased transferrin saturation and serum ferritin), but a minority show clinical symptoms and severe consequences are rare. -
Small-Molecule Binding Sites to Explore New Targets in the Cancer Proteome
Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2016 Small-molecule binding sites to explore new targets in the cancer proteome David Xu, Shadia I. Jalal, George W. Sledge Jr., and Samy O. Meroueh* Supplementary Text Druggable Binding Sites across all 10 Diseases. Using the previously established cutoffs, we identified genes that were overexpressed across multiple cancer types and featured druggable binding sites. We ranked these genes based on the total number of tumors that overexpressed the gene (Fig. S1). Using a simple PubMed query, we then counted the number of articles in which either the gene symbol or gene name was co-mentioned with the term ‘cancer’. Most of the most frequently occurring differentially-expressed genes correspond to proteins of well- established cancer targets. Among them are matrix metalloproteinases (MMPs), including MMP1, MMP9, and MMP12, which are implicated in tumor invasion and metastasis (1). There are several protein kinases, including TTK, AURKA, AURKB, and PLK1, that are involved in cell signaling and well-established oncology targets (2). Some genes among this list that have not been extensively studied nor targeted in cancer. These include the serine/threonine kinase PKMYT1 (MYT1) is a regulator of G2/M transition in the cell cycle, but lacks focused small molecule inhibitors that specifically target the kinase. Recent efforts in developing small molecule inhibitors involve repurposing of available kinase inhibitors to specifically target the kinase (3). A subunit of the GINS complex GINS2 (PSF2) is involved in cell proliferation and survival in cancer cell lines (4,5). -
Copper Dyshomeostasis in Neurodegenerative Diseases—Therapeutic Implications
International Journal of Molecular Sciences Review Copper Dyshomeostasis in Neurodegenerative Diseases—Therapeutic Implications Gra˙zynaGromadzka 1,*, Beata Tarnacka 2 , Anna Flaga 1 and Agata Adamczyk 3 1 Collegium Medicum, Faculty of Medicine, Cardinal Stefan Wyszynski University, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland; a.fl[email protected] 2 Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Rehabilitation Clinic, Medical University of Warsaw, Sparta´nska1 Street, 02-637 Warsaw, Poland; [email protected] 3 Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawi´nskiegoStreet, 02-106 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-5-1071-7110 Received: 6 November 2020; Accepted: 28 November 2020; Published: 4 December 2020 Abstract: Copper is one of the most abundant basic transition metals in the human body. It takes part in oxygen metabolism, collagen synthesis, and skin pigmentation, maintaining the integrity of blood vessels, as well as in iron homeostasis, antioxidant defense, and neurotransmitter synthesis. It may also be involved in cell signaling and may participate in modulation of membrane receptor-ligand interactions, control of kinase and related phosphatase functions, as well as many cellular pathways. Its role is also important in controlling gene expression in the nucleus. In the nervous system in particular, copper is involved in myelination, and by modulating synaptic activity as well as excitotoxic cell death and signaling cascades induced by neurotrophic factors, copper is important for various neuronal functions. Current data suggest that both excess copper levels and copper deficiency can be harmful, and careful homeostatic control is important. -
Pathophysiological Consequences and Benefits of HFE Mutations: 20 Years of Research
Pathophysiological consequences and benefits of HFE mutations: 20 years of research | Haematologica 19.05.17 12:55 EHA search & Advanced Search Home Current Issue Ahead Of Print Archive Submit a Manuscript About Us More Pathophysiological Consequences And Benefits Of HFE Mutations: 20 Years Of Research Ina Hollerer, André Bachmann, Martina U. Muckenthaler Haematologica May 2017 102: 809-817; Doi:10.3324/haematol.2016.160432 AUTHOR AFFILIATIONS Article Figures & Data Info & Metrics ! PDF Vol 102 Issue 5 Abstract Table of Contents Table of Contents Mutations in the HFE (hemochromatosis) gene cause hereditary (PDF) hemochromatosis, an iron overload disorder that is hallmarked by About the Cover excessive accumulation of iron in parenchymal organs. The HFE Index by author mutation p.Cys282Tyr is pathologically most relevant and occurs in the Caucasian population with a carrier frequency of up to 1 in 8 in specific European regions. Despite this high prevalence, the mutation causes a clinically relevant phenotype only in a minority of cases. In this review, we summarize historical facts and recent " Email © Request research findings about hereditary hemochromatosis, and outline # Print Permissions the pathological consequences of the associated gene defects. In $ Citation Tools % Share addition, we discuss potential advantages of HFE mutations in asymptomatic carriers. Tweet Gefällt mir 55 Introduction Alert me when this article is cited http://www.haematologica.org/content/102/5/809 Seite 1 von 22 Pathophysiological consequences and benefits of HFE mutations: 20 years of research | Haematologica 19.05.17 12:55 Iron plays a key role in various physiological pathways. All cells of Alert me if a correction is posted the human body contain iron as an integral part of FeS-proteins. -
Diagnosis and Treatment of Genetic HFE-Hemochromatosis: the Danish Aspect
Diagnosis and Treatment of Genetic HFE-Hemochromatosis The Danish Aspect Milman, Nils Thorm; Schioedt, Frank Vinholt; Junker, Anders Ellekaer; Magnussen, Karin Published in: Gastroenterology Research DOI: 10.14740/gr1206 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Milman, N. T., Schioedt, F. V., Junker, A. E., & Magnussen, K. (2019). Diagnosis and Treatment of Genetic HFE-Hemochromatosis: The Danish Aspect. Gastroenterology Research, 12(5), 221-232. https://doi.org/10.14740/gr1206 Download date: 02. okt.. 2021 Review Gastroenterol Res. 2019;12(5):221-232 Diagnosis and Treatment of Genetic HFE-Hemochromatosis: The Danish Aspect Nils Thorm Milmana, d, Frank Vinholt Schioedta, Anders Ellekaer Junkerb, Karin Magnussenc Abstract hemochromatosis. Among people of Northwestern European descent including ethnic Danes, HFE-hemochromatosis is by This paper outlines the Danish aspects of HFE-hemochromatosis, far the most common, while non-HFE hemochromatosis oc- which is the most frequent genetic predisposition to iron overload curs sporadically [1]. in the five million ethnic Danes; more than 20,000 people are ho- The Danish National Board of Health in 2017 assigned mozygous for the C282Y mutation and more than 500,000 people are the handling (evaluation, diagnosis and treatment) of patients compound heterozygous or heterozygous for the HFE-mutations. The with hemochromatosis to the specialty of gastroenterology and disorder has a long preclinical stage with gradually increasing body hepatology thereby terminating many years of frustration in iron overload and eventually 30% of men will develop clinically overt these “homeless” patients, who, due to their plethora of symp- disease, presenting with symptoms of fatigue, arthralgias, reduced li- toms, are referred from one specialty to another in order to bido, erectile dysfunction, cardiac disease and diabetes. -
The C282Y Mutation of the HFE Gene Is Not Found in Chinese Haemochromatotic Patients: Multicentre Retrospective Study
Mutation of the HFE gene The C282Y mutation of the HFE gene is not found in Chinese haemochromatotic patients: multicentre retrospective study WMS Tsui, PWY Lam, KC Lee, KF Ma, YK Chan, MWY Wong, SP Yip, CSC Wong, ASF Chow, STH Lo Objective. To detect two novel mutations (C282Y and H63D) of the HFE gene in Chinese patients with hepatic iron overload. Design. Multicentre retrospective study. Setting. Four public hospitals, Hong Kong. Participants. Fifty Chinese patients who presented from January 1987 through December 1999 with hepatic iron overload from various causes. Main outcome measures. The DNA from liver biopsy samples was tested for HFE mutations by restriction fragment length polymorphism analysis. Results. The sample DNA quality was unsatisfactory for analysis of the C282Y mutation in one case and the H63D mutation in nine cases. The C282Y mutation was not detected in any of the 49 satisfactory samples. Three of the 41 samples were heterozygous for the H63D mutation and only one was homozygous, giving an allele frequency of 6.1%. Of the three H63D-heterozygotes, one had β-thalassaemia major, one had β- thalassaemia minor, and one had hereditary spherocytosis. None of the 12 patients who were presumed to have primary haemochromatosis were positive for either mutation. Conclusions. The classical form of human leukocyte antigen–linked hereditary haemochromatosis appears to be absent from this locality. The H63D mutation is found in a minority (9.8%) of the patients, in whom it may act synergistically with an erythropoietic factor. -
A Simple Genetic Test Identifies 90% of UK Patients with Haemochromatosis
Gut 1997; 41: 841–844 841 A simple genetic test identifies 90% of UK patients with haemochromatosis Gut: first published as 10.1136/gut.41.6.841 on 1 December 1997. Downloaded from The UK Haemochromatosis Consortium Abstract tended “ancestral” haplotype of chromosome 6 Background—The diagnosis of genetic microsatellite marker alleles (D6S265-1, haemochromatosis (GH) before iron over- D6S105-8, D6S1260-4 which includes HLA- load has developed is diYcult. However a A3), reflecting the haplotype of the founder convincing candidate gene for GH, HFE mutation.6 In the absence of information about (previously HLA-H), has been described the biochemical defect in genetic haemochro- recently. matosis, positional cloning has been used in the Aims—To determine the prevalence of the search for the gene. Recently, we showed that haemochromatosis associated HFE muta- the gene mapped telomeric to HLA-A, close to tions C282Y and H63D in United Kingdom the microsatellite marker D6S1260.6 Extension aVected and control populations. of this approach led to the identification of a Methods—The prevalence of the HFE strong candidate gene for genetic haemochro- C282Y and H63D mutations was deter- matosis, termed HFE7 (previously HLA-H). mined by polymerase chain reaction am- The direct evidence on which this claim was plification and restriction enzyme based centred on the high frequency (83%) of digestion in a cohort of 115 well character- US patients with genetic haemochromatosis ised patients with GH and 101 controls homozygous for a single mutation (C282Y), from the United Kingdom. the association of this mutation with the ances- Results—One hundred and five of 115 tral haplotype, and the proposed functional (91%) patients with GH were homozygous consequences of this mutation. -
Oxidized Phospholipids Regulate Amino Acid Metabolism Through MTHFD2 to Facilitate Nucleotide Release in Endothelial Cells
ARTICLE DOI: 10.1038/s41467-018-04602-0 OPEN Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells Juliane Hitzel1,2, Eunjee Lee3,4, Yi Zhang 3,5,Sofia Iris Bibli2,6, Xiaogang Li7, Sven Zukunft 2,6, Beatrice Pflüger1,2, Jiong Hu2,6, Christoph Schürmann1,2, Andrea Estefania Vasconez1,2, James A. Oo1,2, Adelheid Kratzer8,9, Sandeep Kumar 10, Flávia Rezende1,2, Ivana Josipovic1,2, Dominique Thomas11, Hector Giral8,9, Yannick Schreiber12, Gerd Geisslinger11,12, Christian Fork1,2, Xia Yang13, Fragiska Sigala14, Casey E. Romanoski15, Jens Kroll7, Hanjoong Jo 10, Ulf Landmesser8,9,16, Aldons J. Lusis17, 1234567890():,; Dmitry Namgaladze18, Ingrid Fleming2,6, Matthias S. Leisegang1,2, Jun Zhu 3,4 & Ralf P. Brandes1,2 Oxidized phospholipids (oxPAPC) induce endothelial dysfunction and atherosclerosis. Here we show that oxPAPC induce a gene network regulating serine-glycine metabolism with the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) as a cau- sal regulator using integrative network modeling and Bayesian network analysis in human aortic endothelial cells. The cluster is activated in human plaque material and by atherogenic lipo- proteins isolated from plasma of patients with coronary artery disease (CAD). Single nucleotide polymorphisms (SNPs) within the MTHFD2-controlled cluster associate with CAD. The MTHFD2-controlled cluster redirects metabolism to glycine synthesis to replenish purine nucleotides. Since endothelial cells secrete purines in response to oxPAPC, the MTHFD2- controlled response maintains endothelial ATP. Accordingly, MTHFD2-dependent glycine synthesis is a prerequisite for angiogenesis. Thus, we propose that endothelial cells undergo MTHFD2-mediated reprogramming toward serine-glycine and mitochondrial one-carbon metabolism to compensate for the loss of ATP in response to oxPAPC during atherosclerosis. -
H63D Syndrome in Carriers of a Homozygous Mutation of HFE Gene H63D
Incidence of a clinically relevant H63D syndrome in carriers of a homozygous mutation of HFE gene H63D Carolina Diamandis ( [email protected] ) Lazar Clinic Group David Seideman Lazar Clinic Group Jacob S. Adams H63D Syndrome Research Consortium Riku Honda H63D Syndrome Research Consortium Marianne Kaufmann H63D Syndrome Research Consortium Research Article Keywords: H63D Syndrome Posted Date: May 3rd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-487488/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Incidence of a clinically relevant H63D syndrome in carriers of a homozygous mutation of HFE gene H63D Jacob S. AdamsIC, Marianne KaufmannIC, Riku HondaIC, David SeidemanLCG, Carolina DiamandisLCG Affiliations: Lazar Clinic Group (LCG) Rare Diseases Research Consortium (non-profit) International H63D Consortium (IC) (non-profit) Corresponding Author: Dr. Carolina Diamandis LCG Greece Rare Diseases Research Consortium Kifissias 16, Athina, 115 26 Hellenic Republic [email protected] ______________________________ Abstract H63D syndrome is a phenotype of a homozygous mutation of the HFE gene H63D, which is otherwise known to cause at most mild classical hemochromatosis. H63D syndrome leads to an iron overload in the body (especially in the brain, heart, liver, skin and male gonads) in the form of non-transferrin bound iron (NTBI) poisoning. Hallmark symptoms and causal factor for H63D syndrome is a mild hypotransferrinemia with transferrin saturation values >50%. H63D syndrome is an incurable multi-organ disease, leading to permanent disability. Our objective was to find out how many carriers of a homozygous H63D mutation develop H63D syndrome. For this purpose, we systematically evaluated the medical records of homozygous carriers of the mutation.