The Bivalve Glycymeris Planicostalis As a High-Resolution Paleoclimate Archive for the Rupelian (Early Oligocene) of Central Europe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“Halitherium” Cristolii Fitzinger, 1842 (Mammalia, Sirenia) from the Late Oligocene of Austria, with the Description of a New Genus
European Journal of Taxonomy 256: 1–32 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2016.256 www.europeanjournaloftaxonomy.eu 2016 · Voss M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:43130F90-D802-4B65-BC6D-E3815A951C09 A taxonomic and morphological re-evaluation of “Halitherium” cristolii Fitzinger, 1842 (Mammalia, Sirenia) from the late Oligocene of Austria, with the description of a new genus Manja VOSS 1 ,*, Björn BERNING 2 & Erich REITER 3 1 Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany. 2 Upper Austrian State Museum, Geoscience Collections, Welser Straße 20, 4060 Leonding, Austria. 3 Institut für Chemische Technologie Anorganischer Stoffe, Johannes Kepler Universität Linz, Altenberger Straße 69, 4040 Linz, Austria. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:5B55FBFF-7871-431A-AE33-91A96FD4DD39 2 urn:lsid:zoobank.org:author:30D7D0DB-F379-4006-B727-E75A0720BD93 3 urn:lsid:zoobank.org:author:EA57128E-C88B-4A46-8134-0DF048567442 Abstract. The fossil sirenian material from the upper Oligocene Linz Sands of Upper Austria is reviewed and re-described in detail following a recent approach on the invalidity of the genus Halitherium Kaup, 1838. This morphological study provides the fi rst evidence for the synonymy of “Halitherium” cristolii Fitzinger 1842, “H.” abeli Spillmann, 1959 and “H.” pergense (Toula, 1899), supporting the hypothesis that only a single species inhabited the late Oligocene shores of present-day Upper Austria. -
Glycymeris Longior (Sowerby, 1832) Clam at the Southern Edge of Its Distribution (Argentine Sea) Lucas H
Gimenez et al. Helgol Mar Res (2020) 74:2 https://doi.org/10.1186/s10152-020-0534-x Helgoland Marine Research ORIGINAL ARTICLE Open Access Age and growth of Glycymeris longior (Sowerby, 1832) clam at the southern edge of its distribution (Argentine Sea) Lucas H. Gimenez1,2†, María del Socorro Doldan1,3,4*† , Paula C. Zaidman1,3,4 and Enrique M. Morsan1,3 Abstract Even though Glycymeris longior is a clam widely distributed in the SW Atlantic Ocean, little is known about its biology and life history. The present study assessed the periodicity of the internal growth increments of G. longior using thin shell sections. Each internal growth increment was composed of two alternating bands: a translucent band (light- coloured when viewed with transmitted light) and an opaque band (dark-coloured). Annual formation for each pair of bands was demonstrated. The formation of the annual growth increments was synchronous among individuals. Growth was determined from live clams collected at El Sótano, Argentine Sea (age range 29 to 69 years). Accord- ing to the growth model, G. longior grows fast during the frst 5 years of life and then growth= becomes slower in later years; individuals reached 50% and 90% of maximum size at 5 and 13 years of age, respectively. High variability was found in shell height for the frst 10 years: diferences up to 5–7 mm among individuals were registered for the frst 2 years of age, and up to 11 mm between the ages of 3 and 9 years. The growth performance index phi-prime (φ′) and the index of growth performance (P) of G. -
THE NAUTILUS (Quarterly)
americanmalacologists, inc. PUBLISHERS OF DISTINCTIVE BOOKS ON MOLLUSKS THE NAUTILUS (Quarterly) MONOGRAPHS OF MARINE MOLLUSCA STANDARD CATALOG OF SHELLS INDEXES TO THE NAUTILUS {Geographical, vols 1-90; Scientific Names, vols 61-90) REGISTER OF AMERICAN MALACOLOGISTS JANUARY 30, 1984 THE NAUTILUS ISSN 0028-1344 Vol. 98 No. 1 A quarterly devoted to malacology and the interests of conchologists Founded 1889 by Henry A. Pilsbry. Continued by H. Burrington Baker. Editor-in-Chief: R. Tucker Abbott EDITORIAL COMMITTEE CONSULTING EDITORS Dr. William J. Clench Dr. Donald R. Moore Curator Emeritus Division of Marine Geology Museum of Comparative Zoology School of Marine and Atmospheric Science Cambridge, MA 02138 10 Rickenbacker Causeway Miami, FL 33149 Dr. William K. Emerson Department of Living Invertebrates Dr. Joseph Rosewater The American Museum of Natural History Division of Mollusks New York, NY 10024 U.S. National Museum Washington, D.C. 20560 Dr. M. G. Harasewych 363 Crescendo Way Dr. G. Alan Solem Silver Spring, MD 20901 Department of Invertebrates Field Museum of Natural History Dr. Aurele La Rocque Chicago, IL 60605 Department of Geology The Ohio State University Dr. David H. Stansbery Columbus, OH 43210 Museum of Zoology The Ohio State University Dr. James H. McLean Columbus, OH 43210 Los Angeles County Museum of Natural History 900 Exposition Boulevard Dr. Ruth D. Turner Los Angeles, CA 90007 Department of Mollusks Museum of Comparative Zoology Dr. Arthur S. Merrill Cambridge, MA 02138 c/o Department of Mollusks Museum of Comparative Zoology Dr. Gilbert L. Voss Cambridge, MA 02138 Division of Biology School of Marine and Atmospheric Science 10 Rickenbacker Causeway Miami, FL 33149 EDITOR-IN-CHIEF The Nautilus (USPS 374-980) ISSN 0028-1344 Dr. -
Biogeographical Homogeneity in the Eastern Mediterranean Sea. II
Vol. 19: 75–84, 2013 AQUATIC BIOLOGY Published online September 4 doi: 10.3354/ab00521 Aquat Biol Biogeographical homogeneity in the eastern Mediterranean Sea. II. Temporal variation in Lebanese bivalve biota Fabio Crocetta1,*, Ghazi Bitar2, Helmut Zibrowius3, Marco Oliverio4 1Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy 2Department of Natural Sciences, Faculty of Sciences, Lebanese University, Hadath, Lebanon 3Le Corbusier 644, 280 Boulevard Michelet, 13008 Marseille, France 4Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’, University of Rome ‘La Sapienza’, Viale dell’Università 32, 00185 Roma, Italy ABSTRACT: Lebanon (eastern Mediterranean Sea) is an area of particular biogeographic signifi- cance for studying the structure of eastern Mediterranean marine biodiversity and its recent changes. Based on literature records and original samples, we review here the knowledge of the Lebanese marine bivalve biota, tracing its changes during the last 170 yr. The updated checklist of bivalves of Lebanon yielded a total of 114 species (96 native and 18 alien taxa), accounting for ca. 26.5% of the known Mediterranean Bivalvia and thus representing a particularly poor fauna. Analysis of the 21 taxa historically described on Lebanese material only yielded 2 available names. Records of 24 species are new for the Lebanese fauna, and Lioberus ligneus is also a new record for the Mediterranean Sea. Comparisons between molluscan records by past (before 1950) and modern (after 1950) authors revealed temporal variations and qualitative modifications of the Lebanese bivalve fauna, mostly affected by the introduction of Erythraean species. The rate of recording of new alien species (evaluated in decades) revealed later first local arrivals (after 1900) than those observed for other eastern Mediterranean shores, while the peak in records in conjunc- tion with our samplings (1991 to 2010) emphasizes the need for increased field work to monitor their arrival and establishment. -
Seasonality Palaeo3 Manoscritto Accettato.Pdf
ÔØ ÅÒÙ×Ö ÔØ Seasonality fluctuations recorded in fossil bivalves during the early Pleis- tocene: Implications for climate change Gaia Crippa, L. Angiolini, C. Bottini, E. Erba, F. Felletti, C. Frigerio, J.A.I. Hennissen, M.J. Leng, M.R. Petrizzo, I. Raffi, G. Raineri, M.H. Stephenson PII: S0031-0182(16)00030-4 DOI: doi: 10.1016/j.palaeo.2016.01.029 Reference: PALAEO 7659 To appear in: Palaeogeography, Palaeoclimatology, Palaeoecology Received date: 9 September 2015 Revised date: 7 January 2016 Accepted date: 12 January 2016 Please cite this article as: Crippa, Gaia, Angiolini, L., Bottini, C., Erba, E., Felletti, F.,Frigerio,C.,Hennissen,J.A.I.,Leng,M.J., Petrizzo, M.R., Raffi, I., Raineri, G., Stephenson, M.H., Seasonality fluctuations recorded in fossil bivalves during the early Pleistocene: Implications for climate change, Palaeogeography, Palaeoclimatology, Palaeoe- cology (2016), doi: 10.1016/j.palaeo.2016.01.029 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Seasonality fluctuations recorded in fossil bivalves during the early Pleistocene: implications for climate change Gaia Crippa 1, L. Angiolini 1, C. Bottini 1, E. Erba 1, F. Felletti 1, C. Frigerio 1, J.A.I. -
Linnaeus, 1758)
Glycymeris glycymeris (Linnaeus, 1758) AphiaID: 140025 DOG COCKLE Autobranchia (Subclasse) > Pteriomorphia (Infraclasse) © Vasco Ferreira - OMARE / Jan. 21 2019 Serge Gofas, via WoRMS Facilmente confundível com: Glycymeris bimaculata . Sinónimos Arca glycymeris Linnaeus, 1758 Arca minima W. Turton, 1819 Glycymeris orbicularis da Costa, 1778 Glycymeris wagenwoorti Lacourt, 1977 Pectunculus dautzenbergi de Gregorio, 1892 Pectunculus glycymeris (Linnaeus, 1758) Pectunculus glycymeris var. bavayi Bucquoy, Dautzenberg & Dollfus, 1891 1 Pectunculus glycymeris var. globosa Jeffreys, 1869 Pectunculus glycymeris var. lineolata Dautzenberg, 1893 Pectunculus glycymeris var. obscura Bucquoy, Dautzenberg & Dollfus, 1891 Pectunculus glycymeris var. typica Monterosato, 1892 Pectunculus glycymeris var. zigzag Dautzenberg, 1893 Pectunculus marmoratus Lamarck, 1819 Pectunculus punctatus Calcara, 1840 Referências additional source Huber, M. (2010). Compendium of bivalves. A full-color guide to 3,300 of the world’s marine bivalves. A status on Bivalvia after 250 years of research. Hackenheim: ConchBooks. 901 pp., 1 CD-ROM. [details] additional source Zamouri-Langar, N.; Chouba, L.; Ajjabi Chebil, L.; Mrabet, R.; El Abed, A. (2011). Les coquillages bivalves des côtes tunisiennes. Institut National des Sciences et Technologies de la Mer: Salammbô. ISBN 978-9938-9512-0-2. 128 pp. [details] additional source Nolf F. & Swinnen F. (2013) The Glycymerididae (Mollusca: Bivalvia) of the NE Atlantic and the Mediterranean Sea. Neptunea 12(3): 1-35. [details] additional source Nolf F. & Swinnen F. (2013) The Glycymerididae (Mollusca: Bivalvia) of the NE Atlantic and the Mediterranean Sea. Neptunea 12(3): 1-35. [details] additional source Huber, M. (2010). Compendium of bivalves. A full-color guide to 3,300 of the world’s marine bivalves. A status on Bivalvia after 250 years of research. -
APPENDIX 4. Classification and Synonymy of the Sirenia and Desmostylia
revised 3/29/2010 APPENDIX 4. Classification and Synonymy of the Sirenia and Desmostylia The following compilation encapsulates the nomenclatural history of the Sirenia and Desmostylia as comprehensively as I have been able to trace it. Included are all known formal names of taxa and their synonyms and variant combinations, with abbreviated citations of the references where these first appeared and their dates of publication; statements of the designated or inferred types of these taxa and their provenances; and comments on the nomenclatural status of these names. Instances of the use of names or combinations subsequent to their original publication are, however, not listed. Of course, the choices of which taxa to recognize as valid and their proper arrangement reflect my own current views. This arrangement is outlined immediately hereafter to aid in finding taxa in this section. (Note that not all taxa in this summary list are necessarily valid; several are probable synonyms but have not been formally synonymized.) For a quick-reference summary of the names now in use for the Recent species of sirenians, see Appendix 5. – DPD Summary Classification and List of Taxa Recognized ORDER SIRENIA Illiger, 1811 Family Prorastomidae Cope, 1889 Pezosiren Domning, 2001 P. portelli Domning, 2001 Prorastomus Owen, 1855 P. sirenoides Owen, 1855 Family Protosirenidae Sickenberg, 1934 Ashokia Bajpai, Domning, Das, and Mishra, 2009 A. antiqua Bajpai, Domning, Das, and Mishra, 2009 Protosiren Abel, 1907 P. eothene Zalmout, Haq, and Gingerich, 2003 P. fraasi Abel, 1907 P. sattaensis Gingerich, Arif, Bhatti, Raza, and Raza, 1995 P. smithae Domning and Gingerich, 1994 ?P. minima (Desmarest, 1822) Hooijer, 1952 Family Trichechidae Gill, 1872 (1821) Subfamily Miosireninae Abel, 1919 Anomotherium Siegfried, 1965 1 Daryl P. -
Occurrence of Marine Biotoxins in Bivalve Molluscs Available in Poland in 2014–2018
J Vet Res 65, 329-333, 2021 DOI:10.2478/jvetres-2021-00046 Occurrence of marine biotoxins in bivalve molluscs available in Poland in 2014–2018 Anna Madejska, Jacek Osek Department of Hygiene of Food of Animal Origin National Veterinary Research Institute, 24-100 Puławy, Poland [email protected] Received: March 16, 2021 Accepted: August 3, 2021 Abstract Introduction: Marine biotoxins are toxic substances that may cause illness and death in marine organisms and humans. This article disseminates the results of a 4-year study on the occurrence of marine biotoxins in raw bivalve molluscs purchased from Polish suppliers. Material and Methods: A total of 256 samples of 8 different molluscs species were analysed for the presence of biotoxins using the ELISA method for paralytic shellfish poison, diarrhoetic shellfish poison, and amnaesic shellfish poison. Results: The permitted limits of marine biotoxin content were not exceeded in any of the analysed samples and the majority of them were free from these compounds. Conclusion: The results of the study indicate that the tested raw bivalve molluscs available in Poland were safe for consumers. Keywords: marine biotoxins, ELISA, bivalve molluscs, food control. Introduction molluscs contaminated with marine biotoxins may result in human food poisoning and even death. The main The occurrence of toxic contaminants in food and biotoxins found in marine shellfish are the saxitoxins its sources is a very important issue in food safety. (STX), causing paralytic shellfish poisoning (PSP); Marine biotoxins are a group of chemical compounds domoic acid (DA), responsible for amnesic shellfish produced by phytoplankton and other aquatic organisms. -
Shells from the Excavation of Yavne-Yam (North)
‘Atiqot 81, 2015 SHELLS FROM THE EXCAVATION OF YAVNE-YAM (NORTH) HENK K. MIENIS1 The salvage excavation at Yavne-Yam (North), Only the freshwater mussel Unio mancus carried out by Moshe Ajami and Uzi ‘Ad (this eucirrus has disappeared from Nahal Soreq due volume),2 yielded several samples of shells. to severe pollution of its waters in recent times. The presence of the land snail Theba pisana Material and Methods within a Roman-period context at Yavne-Yam The eight mollusc samples submitted for (North) is interesting. Heller and Tchernov identification were collected in six loci: three in (1978) considered Theba pisana a possible Area B and three in Area C. Most of the shells ancient introduction, since they did not find it could be identified on site. In a few cases, shell among the Pleistocene land snails occurring fragments were compared with recent samples in the coastal plain of Israel. However, in the Mollusc Collection of Tel Aviv University. that species has already been found in the The bulk of the sample was collected in the so- underwater Neolithic wells off ‘Atlit (Mienis, called shell-pit in Area C (L321; see Ajami and unpublished). ‘Ad, this volume: Plan 8); only the presence of None of the marine shells show clear-cut the various species was noted. markings of manipulation; however, some of the Glycymeris valves with a hole in the umbo Results might have served as a shell pendant. The The results of the studied material are listed in same is true for some of the holed valves of systematic order in Table 1. -
Spondylus and Glycymeris Bracelets> Trade Reflections at Neolithic
UDK 903.25'12\'15 (497.11)''633\634''>594.1 Documenta Praehistorica XXXIII (2006) Spondylus and Glycymeris bracelets> trade reflections at Neolithic Vin;a-Belo Brdo Vesna Dimitrijevic´ 1, Boban Tripkovic´ 2 1 Institute of Regional Geology and Palaeontology, Faculty of Mining and Geology, Serbia [email protected] 2 Department of Archaeology, Faculty of Philosophy, Serbia [email protected] ABSTRACT – In the provision, production and exchange of prestigious items and materials in prehi- storic Europe, marine shell ornaments play important role. The marine shell collection at the Vin≠a- Belo Brdo site is the largest in the central and northern Balkans. More than 300 ornament items ma- nufactured from marine shells have been collected since the first excavations in 1908 up until the most recent campaign. The majority of ornaments were made using recent shells that were obtained through trade with contemporaneous Neolithic communities; few ornaments were made of fossil bi- valve shells. Bracelets were the most common type. Two bivalve genera, Spondylus and Glycymeris, were used in their production. These are easily recognizable when complete valves are compared, but dif- ficult to distinguish in highly modified items where shell morphology is obscured. The defining charac- teristics for shell identification are presented, particularly to differentiate ornaments manufactured from the Spondylus and Glycymeris genera, as well as those made of recent and fossil shells. The pos- sible exchange routes for these are discussed, as well as their diachronic distribution at the Vin≠a site. IZVLE∞EK – Okraski iz morskih ∏koljk so igrali pomembno vlogo pri pripravi, izdelavi in menjavi pre- sti∫nih predmetov in materialov v prazgodovinski Evropi. -
Morphological and Systematic Re-Assessment of the Late Oligocene “Halitherium” Bellunense Reveals a New Crown Group Genus of Sirenia
Morphological and systematic re-assessment of the late Oligocene “Halitherium” bellunense reveals a new crown group genus of Sirenia MANJA VOSS, SILVIA SORBI, and DARYL P. DOMNING Voss, M., Sorbi, S., and Domning, D.P. 2017. Morphological and systematic re-assessment of the late Oligocene “Hali- therium” bellunense reveals a new crown group genus of Sirenia. Acta Palaeontologica Polonica 62 (1): 163–172. “Halitherium” bellunense is exclusively known from a single individual from upper Oligocene glauconitic sandstone near Belluno, northern Italy. According to a review of its morphological basis, which consists of associated cranial elements, some vertebrae and ribs, this specimen is identified as a juvenile, because the first upper incisor (I1) and sup- posedly second upper molar (M2) are not fully erupted. However its juvenile status allowed only cautious conclusions on its taxonomy and systematic affinity. The presence of a nasal process of the premaxilla with a broadened and bulbous posterior end, and a lens-shaped I1, corroborate an evolutionarily-derived status of this species that places it well within the sirenian crown group Dugonginae. Considering these new data and in order to avoid continued misuse of the inap- propriate generic name of Halitherium, a new generic name, Italosiren gen. nov., and emended species diagnosis are supplied for this taxon. Key words: Mammalia, Tethytheria, Sirenia, Dugonginae, evolution, Oligocene, Italy. Manja Voss [[email protected]], Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany. Silvia Sorbi [[email protected]], Museo di Storia Naturale, Università di Pisa, Via Roma 79, 56011 Calci, Pisa, Italy. -
TREATISE ONLINE Number 48
TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North