Spider Bite - Wikipedia, the Free Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

Spider Bite - Wikipedia, the Free Encyclopedia Spider bite - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Spider_bite Spider bite From Wikipedia, the free encyclopedia Spider bite, sometimes called arachnidism in technical literature, is injury resulting from the bites of spiders. It is an unusual class of injury and the effects of most confirmed spider bites are trivial, Venomous spiders even though nearly all species of spider are venomous. For all practical purposes arachnidism is Classification and external resources substantial envenomation by a spider bite, their bites otherwise being medically insignificant. Depending on the species of spider and the victim, arachnidism will have various effects, ranging from going practically unnoticed, through transient pain, to gangrene, or fatal neurotoxicity.[1]:455 Bites from the widow spiders (genus Latrodectus) produce a special class of arachnidism, a neurotoxic condition known as Latrodectism,[2] Similarly, bites from the recluse spiders (genus Loxosceles) cause the condition called Loxoscelism, which has become particularly notorious in recent decades as the predominant cause of "necrotic arachnidism", in which necrosis of the surrounding tissue is the major concern.[3][4] Another medical condition that has historically been claimed to arise from spider bites is Tarantism, but there is no substantial evidence for the existence of this supposed condition. Chelicerae of a black wishbone (nemesiid) spider, a mygalomorph. ICD-10 T14.1 (http://apps.who.int Contents /classifications/icd10/browse /2010/en#/T14.1) · T63.3 1 General considerations (http://apps.who.int/classifications 2 Signs and symptoms /icd10/browse/2010/en#/T63.3) 3 Pathophysiology W57 (nonvenomous) 3.1 Neurotoxic venom X21 (venomous) 3.2 Necrotic venom ICD-9 989.5 (http://www.icd9data.com 3.3 Comparative analysis 3.3.1 Measurements /getICD9Code.ashx?icd9=989.5) · 4 Diagnosis E905.1 (http://www.icd9data.com 5 Management /getICD9Code.ashx?icd9=E905.1) · 5.1 Necrosis E906.4 (http://www.icd9data.com 5.2 Other /getICD9Code.ashx?icd9=E906.4) 6 Epidemiology 1 of 25 4/27/2014 12:03 PM Spider bite - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Spider_bite 6.1 Australia DiseasesDB 12299 6.2 United States (http://www.diseasesdatabase.com 7 Classification /ddb12299.htm) 7.1 Brazilian wandering spiders MedlinePlus 002858 (http://www.nlm.nih.gov 7.2 Australian funnel-web spiders /medlineplus/ency/article 7.3 Tangle-web spiders 7.3.1 Widow spiders /002858.htm) 7.3.2 False black widows eMedicine article/772484 7.4 Sicariidae spiders (http://emedicine.medscape.com 7.4.1 Six-eyed sand spiders /article/772484-overview) 7.4.2 Recluse spiders 7.5 Mouse spiders 7.6 Tarantulas 7.6.1 New-world tarantulas 7.6.2 Old-world tarantulas 7.7 Yellow Sac spiders 7.8 Others 7.8.1 Hobo spiders 7.8.2 Lycosa tarantula 7.8.3 White-tailed spiders 7.8.4 Harvestman 7.8.5 Sun spiders 8 Historical remedies 9 See also 10 References 11 External links General considerations Spiders are predators and most species rely largely on their bites to subdue and kill their prey before consuming it. With the exception of web-building spiders that may feed on almost any creature that their webs can immobilise, spiders do not generally attack animals larger than themselves. However, some species also may bite in self-defense. Some in particular — e.g., Atrax robustus — will stand their ground when approached by larger animals, and will adopt an aggressive stance. Still, nearly all spider bites occur when humans unintentionally press up against spiders and receive a defensive bite. 2 of 25 4/27/2014 12:03 PM Spider bite - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Spider_bite Only two spider families, Uloboridae and Holarchaeidae, are known to be non-venomous, i.e., lacking venom glands, but only spiders of fairly large species possess chelicera long enough to penetrate human skin, and most (though by no means all) spiders that are large enough to bite humans effectively are mature females. Apart from the size and effectiveness of the venom-delivery organs, the toxicity and the quantity of the venom are the main factors determining the harm that the bite is likely to cause. Spiders regarded as dangerous possess venom that is sufficiently toxic to humans that a single bite can deliver a medically significant dose. The vast majority of bites by species large enough for their bites to be noticeable will have no serious medical consequences.[5] In various combinations and concentrations, medically significant spider venoms include necrotic agents, neurotoxins, and pharmacologically active compounds such as serotonin. Out of over 40,000 known species of spider only some two hundred species in twenty genera are known to have medically significant bites, a few of them of them potentially lethal.[6] In most cases of bites, the chief concern is the spider's venom, although in some cases medically non-significant spiders can transmit infectious diseases or serious non-contagious infections. Spider bites commonly are misdiagnosed by both the general public and medical practitioners. Many other conditions, both infectious and non-infectious can be confused with spider bites.[7] Many of these conditions are far more common and more likely to be the source of necrotic wounds.[8] Signs and symptoms Pain from non-venomous spider bites typically lasts for 5 to 60 minutes while pain from venomous spider bites frequently lasts for longer than 24 hours.[9] The rate of a bacterial infection due to a spider bite is low (0.9%).[9] Pathophysiology A primary concern of the bite of a spider is the effect of its venom. A spider envenomation occurs whenever a spider injects venom into the skin. Not all spider bites involve injection of venom into the skin, and the amount of venom injected can vary based on the type of spider and the circumstances of the encounter. The mechanical injury from a spider bite is not a serious concern for humans. Some spider bites do leave a large enough wound that infection may be a concern However, it is generally the toxicity of spider venom that poses the most risk to human beings; several spiders are known to have venom that can cause injury to humans in the amounts that a spider will typically inject when biting. A Brazilian man 31 hours after having been bitten on his face by a All spiders are capable of producing venom, with the exception of the hackled orb-weavers, the Holarchaeidae, Loxosceles spider. and the primitive Mesothelae. (Other arachnids often confused with spiders, such as the harvestman and sun spiders, also do not produce venom). Nonetheless, only a small percentage of species have bites that pose a 3 of 25 4/27/2014 12:03 PM Spider bite - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Spider_bite danger to people. Many spiders do not have mouthparts capable of penetrating human skin. While venoms are by definition toxic substances, most spiders do not have venom that is sufficiently toxic (in the quantities delivered) to require medical attention and, of those that do, fatalities are exceedingly rare. (For details that substantiate these claims, see the remainder of this article.) Spider venoms work on one of two fundamental principles; they are either neurotoxic (attacking the nervous system) or necrotic (attacking tissues surrounding the bite, and, in some cases, attacking vital organs and systems). Neurotoxic venom 4 months after a brown recluse spider bite with scar remaining The majority of spiders with serious bites possess a neurotoxic venom of some sort, though the specific manner in which the nervous system is attacked varies from spider to spider.[10][11][12] Widow spider venom contains components known as latrotoxins, which cause the release of the neurotransmitter acetylcholine, stimulating muscle contractions. This can affect the body in several ways, including causing painful abdominal cramps, as well as interfering with respiration, and causing other systemic effects.[6] The venom of Australian funnel-web spiders and mouse spiders works by opening sodium channels, causing excessive neural activity which interferes with normal bodily function. The venom of Brazilian wandering spiders is also a potent neurotoxin, which attacks multiple types of ion channels [13] In addition, the venom contains high levels of serotonin, making an envenomation by this species particularly painful. Necrotic venom Spiders known to have necrotic venom occur most notoriously in the family Sicariidae, which includes both the recluse spiders and the six-eyed sand spiders. Spiders in this family possess a known dermonecrotic agent sphingomyelinase D,[14][15] which is otherwise found only in a few pathogenic bacteria.[16][17] Some species in this family are more venomous than others; according to one study, the venom of the Chilean recluse and several species of six-eyed sand spider indigenous to southern Africa, contains an order of magnitude more of this substance than do other sicariid spiders such as the brown recluse.[18] Bites by spiders in this family can produce symptoms ranging from minor localized effects, to severe dermonecrotic lesions, up to and including severe systemic reactions including renal failure, and in some cases, death.[19] Even in the absence of systemic effects, serious bites from sicariid spiders may form a necrotising ulcer that destroys soft tissue and may take months and very rarely years to heal, leaving deep scars. The damaged tissue may become gangrenous and eventually slough away. Initially there may be no pain from a bite, but over time the wound may grow to 10 inches (25 cm) in extreme cases. Bites usually become painful and itchy within two to eight hours, pain and other local effects worsen 12 to 36 hours after the bite, and then necrosis will develop over the next few days.[20] 4 of 25 4/27/2014 12:03 PM Spider bite - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Spider_bite Systemic effects are unusual but include Mild symptoms such nausea, vomiting, fever, rashes, and muscle and joint pain.
Recommended publications
  • False Black Widows and Other Household Spiders
    False Black Widows and Other Household Spiders Spiders can quite unnecessarily evoke all kinds of dread and fear. The Press does not help by publishing inaccurate and often alarmist stories about them. Spiders are in fact one of our very important beneficial creatures. Spiders in the UK devour a weight of insect 'pests' equivalent to that of the nation's human population! During the mid-late summer, many spiders mature and as a result become more obvious as they have then grown to their full size. One of these species is Steatoda nobilis. It came from the Canary and Madeiran Islands into Devon over a 100 years ago, being first recorded in Britain near Torquay in 1879! However it was not described from Britain until 1993, when it was known to have occurred since at least 1986 and 1989 as flourishing populations in Portsmouth (Hampshire) and Swanage (Dorset). There was also a population in Westcliff-on-Sea (Essex) recorded in 1990, and another in Littlehampton and Worthing (West Sussex). Its distribution is spreading more widely along the coast in the south and also inland, with confirmed records from South Devon, East Sussex, Kent, Surrey and Warwick. The large, grape-like individuals are the females and the smaller, more elongate ones, the males. These spiders are have become known as False Widows and, because of their colour, shape and size, are frequently mistaken for the Black Widow Spider that are found in warmer climes, but not in Britain (although some occasionally come into the country in packaged fruit and flowers). Black Widow Spiders belong to the world-wide genus Latrodectus.
    [Show full text]
  • Interactions of Insecticidal Spider Peptide Neurotoxins with Insect Voltage- and Neurotransmitter-Gated Ion Channels
    Interactions of insecticidal spider peptide neurotoxins with insect voltage- and neurotransmitter-gated ion channels (Molecular representation of - HXTX-Hv1c including key binding residues, adapted from Gunning et al, 2008) PhD Thesis Monique J. Windley UTS 2012 CERTIFICATE OF AUTHORSHIP/ORIGINALITY I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Monique J. Windley 2012 ii ACKNOWLEDGEMENTS There are many people who I would like to thank for contributions made towards the completion of this thesis. Firstly, I would like to thank my supervisor Prof. Graham Nicholson for his guidance and persistence throughout this project. I would like to acknowledge his invaluable advice, encouragement and his neverending determination to find a solution to any problem. He has been a valuable mentor and has contributed immensely to the success of this project. Next I would like to thank everyone at UTS who assisted in the advancement of this research. Firstly, I would like to acknowledge Phil Laurance for his assistance in the repair and modification of laboratory equipment. To all the laboratory and technical staff, particulary Harry Simpson and Stan Yiu for the restoration and sourcing of equipment - thankyou. I would like to thank Dr Mike Johnson for his continual assistance, advice and cheerful disposition.
    [Show full text]
  • Norsk Lovtidend
    Nr. 7 Side 1067–1285 NORSK LOVTIDEND Avd. I Lover og sentrale forskrifter mv. Nr. 7 Utgitt 30. juli 2015 Innhold Side Lover og ikrafttredelser. Delegering av myndighet 2015 Juni 19. Ikrafts. av lov 19. juni 2015 nr. 60 om endringer i helsepersonelloven og helsetilsynsloven (spesialistutdanningen m.m.) (Nr. 674) ................................................................1079................................ Juni 19. Ikrafts. av lov 19. juni 2015 nr. 77 om endringar i lov om Enhetsregisteret m.m. (registrering av sameigarar m.m.) (Nr. 675) ................................................................................................1079 ..................... Juni 19. Deleg. av Kongens myndighet til Helse- og omsorgsdepartementet for fastsettelse av forskrift for å gi helselover og -forskrifter hel eller delvis anvendelse på Svalbard og Jan Mayen (Nr. 676) ................................................................................................................................1080............................... Juni 19. Ikrafts. av lov 19. juni 2015 nr. 59 om endringer i helsepersonelloven mv. (vilkår for autorisasjon) (Nr. 678) ................................................................................................................................1084 ..................... Juni 19. Ikrafts. av lov 13. mars 2015 nr. 12 om endringer i stiftelsesloven (stiftelsesklagenemnd) (Nr. 679) ................................................................................................................................................................1084
    [Show full text]
  • Insects & Spiders of Kanha Tiger Reserve
    Some Insects & Spiders of Kanha Tiger Reserve Some by Aniruddha Dhamorikar Insects & Spiders of Kanha Tiger Reserve Aniruddha Dhamorikar 1 2 Study of some Insect orders (Insecta) and Spiders (Arachnida: Araneae) of Kanha Tiger Reserve by The Corbett Foundation Project investigator Aniruddha Dhamorikar Expert advisors Kedar Gore Dr Amol Patwardhan Dr Ashish Tiple Declaration This report is submitted in the fulfillment of the project initiated by The Corbett Foundation under the permission received from the PCCF (Wildlife), Madhya Pradesh, Bhopal, communication code क्रम 車क/ तकनीकी-I / 386 dated January 20, 2014. Kanha Office Admin office Village Baherakhar, P.O. Nikkum 81-88, Atlanta, 8th Floor, 209, Dist Balaghat, Nariman Point, Mumbai, Madhya Pradesh 481116 Maharashtra 400021 Tel.: +91 7636290300 Tel.: +91 22 614666400 [email protected] www.corbettfoundation.org 3 Some Insects and Spiders of Kanha Tiger Reserve by Aniruddha Dhamorikar © The Corbett Foundation. 2015. All rights reserved. No part of this book may be used, reproduced, or transmitted in any form (electronic and in print) for commercial purposes. This book is meant for educational purposes only, and can be reproduced or transmitted electronically or in print with due credit to the author and the publisher. All images are © Aniruddha Dhamorikar unless otherwise mentioned. Image credits (used under Creative Commons): Amol Patwardhan: Mottled emigrant (plate 1.l) Dinesh Valke: Whirligig beetle (plate 10.h) Jeffrey W. Lotz: Kerria lacca (plate 14.o) Piotr Naskrecki, Bud bug (plate 17.e) Beatriz Moisset: Sweat bee (plate 26.h) Lindsay Condon: Mole cricket (plate 28.l) Ashish Tiple: Common hooktail (plate 29.d) Ashish Tiple: Common clubtail (plate 29.e) Aleksandr: Lacewing larva (plate 34.c) Jeff Holman: Flea (plate 35.j) Kosta Mumcuoglu: Louse (plate 35.m) Erturac: Flea (plate 35.n) Cover: Amyciaea forticeps preying on Oecophylla smargdina, with a kleptoparasitic Phorid fly sharing in the meal.
    [Show full text]
  • BMB-WRC Animal Inventory
    Department of Environment and Natural Resources BIODIVERSITY MANAGEMENT BUREAU Quezon Avenue, Diliman, Quezon City INVENTORY OF LIVE ANIMALS AT THE BMB-WILDLIFE RESCUE CENTER AS OF JULY 31, 2020 SPECIES STOCK ON HAND (AS OF COMMON NAME SCIENTIFIC NAME JULY 31, 2020) MAMMALS ENDEMIC / INDIGENOUS 1. Northern luzon cloud Ploeomys pallidus 1 rat 2. Palawan bearcat Arctictis binturong 2 3. Philippine deer Rusa marianna 2 4. Philippine monkey or Macaca fascicularis 92 Long-tailed macaque 5. Philippine palm civet Paradoxurus hermaphroditus 6 EXOTIC 6. Hedgehog Atelerix frontalis 1 7. Serval cat Leptailurus serval 2 8. Sugar glider Petaurus breviceps 58 9. Tiger Panthera tigris 2 10. Vervet monkey Chlorocebus pygerythrus 1 11. White handed gibbon Hylobates lar 1 Sub-total A 168 (Mammals) AVIANS ENDEMIC / INDIGENOUS 12. Black kite Milvus migrans 1 13. Black-crowned night Nycticorax nycticorax 1 heron 14. Blue-naped parrot Tanygnathus lucionensis 4 15. Brahminy kite Haliastur indus 41 16. Changeable hawk Spizaetus cirrhatus 6 eagle 17. Crested goshawk Accipiter trivirgatus 1 18. Crested serpent eagle Spilornis cheela 24 19. Green imperial pigeon Ducula aenea 2 20. Grey-headed fish eagle Haliaeetus ichthyaetus 1 21. Nicobar pigeon Caloenas nicobarica 1 22. Palawan hornbill Anthracoceros marchei 2 23. Palawan talking myna Gracula religiosa 3 24. Philippine eagle Pithecophaga jefferyi 1 25. Philippine hanging Loriculus philippensis 11 parrot 26. Philippine hawk eagle Spizaetus philippensis 12 27. Philippine horned Bubo philippensis 9 (eagle) owl 28. Philippine Scops owl Otus megalotis 5 29. Pink-necked pigeon Treron vernans 1 30. Pinsker's hawk eagle Spizaetus pinskerii 1 31. Red turtle dove Streptopelia tranquebarica 1 32.
    [Show full text]
  • The Venom of the Spider Selenocosmia Jiafu Contains Various Neurotoxins Acting on Voltage-Gated Ion Channels in Rat Dorsal Root Ganglion Neurons
    Toxins 2014, 6, 988-1001; doi:10.3390/toxins6030988 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article The Venom of the Spider Selenocosmia Jiafu Contains Various Neurotoxins Acting on Voltage-Gated Ion Channels in Rat Dorsal Root Ganglion Neurons Zhaotun Hu 1,2, Xi Zhou 1, Jia Chen 1, Cheng Tang 1, Zhen Xiao 2, Dazhong Ying 1, Zhonghua Liu 1,* and Songping Liang 1,* 1 Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; E-Mails: [email protected] (Z.H.); [email protected] (X.Z.); [email protected] (J.C.); [email protected] (C.T.); [email protected] (D.Y.) 2 Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Department of Life Science, Huaihua College, Huaihua, Hunan 418008, China; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (Z.L.); [email protected] (S.L.); Tel.: +86-731-8887-2556 (Z.L. & S.L.); Fax: +86-731-8886-1304 (Z.L. & S.L.). Received: 27 January 2014; in revised form: 10 February 2014 / Accepted: 17 February 2014 / Published: 5 March 2014 Abstract: Selenocosmia jiafu is a medium-sized theraphosid spider and an attractive source of venom, because it can be bred in captivity and it produces large amounts of venom. We performed reversed-phase high-performance liquid chromatography (RP-HPLC) and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analyses and showed that S.
    [Show full text]
  • Inclusion of All Species in the Genus Poecilotheria in Appendix II
    Prop. 11.52 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA Amendments to Appendices I and II of CITES Eleventh Meeting of the Conference of the Parties Nairobi (Kenya), April 10-20, 2000 A. PROPOSAL Inclusion of all species in the genus Poecilotheria in Appendix II. Poecilotheria spp. are arboreal tarantula spiders that occur in the eastern hemisphere. B. PROPONENT Sri Lanka and the United States of America. C. SUPPORTING STATEMENT 1. Taxonomy 1.1 Class: Arachnida 1.2 Order: Araneae 1.3 Family: Theraphosidae 1.4 Genus and species: Poecilotheria Simon, 1885 (synonym: Scurria C.L. Koch 1851) Poecilotheria fasciata (Latreille, 1804), central Sri Lanka Poecilotheria formosa Pocock, 1899, southern India Poecilotheria hillyardi from the region of Trivandrum, southern India (expected publication and validation in 2000 by P. Kirk) Poecilotheria metallica Pocock, 1899, southwestern India Poecilotheria miranda Pocock, 1900, northeastern India Poecilotheria ornata Pocock, 1899, southern Sri Lanka Poecilotheria pederseni from the region of Yala, southeastern Sri Lanka (expected publication and validation in 2000 by P. Kirk) Poecilotheria regalis Pocock, 1899, southwestern India Poecilotheria rufilata Pocock, 1899, southern India Poecilotheria smithi Kirk, 1996, southcentral Sri Lanka Poecilotheria striata Pocock, 1895, southern India Poecilotheria subfusca Pocock, 1895, southcentral Sri Lanka Poecilotheria uniformis Strand, 1913, Sri Lanka 1.5 Scientific synonyms: P. fasciata Mygale fasciata Latreille, 1804 Avicularia fasciata Lamarck,1818 Theraphosa fasciata Gistel, 1848 Scurria fasciata C.L. Koch, 1851 Lasiodora fasciata Simon, 1864 P. formosa none P. hillyard none Prop. 11.52 – p. 1 P. metallica none P. miranda none P. ornata none P. pederseni none P.
    [Show full text]
  • Notes on Indian Mygalomorph Spiders, Ii
    NOTES ON INDIAN MYGALOMORPH SPIDERS, II. By F. H. GRAVELY, D. Se., Superintendent, Government Museum, Madras. The first series of these notes appeared in 1915 in Vol. XI of these­ "Records." Two new species and some additional information were added in 1921 (Vol. XXII) in an account of the Spiders of Barkuda Island in the Chilka Lake. I have to thank Mr. H. Chennappaiya, Zoological Assistant in the Madras Government Museum, for assistance in working out the additional material, mostly sent by the Indian Museum, Calcutta, whj.ch is dealt with in this paper. Mygalomorph spiders are popularly regarded as poisonous, but authentic records of their bites seem to be rare. The effects of bites of t.wo species, Macrothele vidua and Haploclastus' nilgirinus, are described below (pp. 73 & 81). Family OTENIZIDAE. Genus Heligmomerus Simon. The specimen recorded in the first series of ' these notes, and stated therein as possibly introduced into the Botanical Gardens at Sibpur near Calcutta, was probably indigenous, as a well-grown female of the genus has since been found on the ground floor of the Museum House, Calcutta, and a number of smaller ones have been sent from Serampore by Mrs. Drake. In the absence of'males the species cannot be adequately defined. The species described as Acanthodon barkudensis in the second paper mentioned above, proves on further examination to have the tibiae of the third pair of legs of the female excavate above and must, therefore, be transferred to this genus. In the male this excavation is, however, obsolete-which suggests that Idiops bikaricus, described from a male only in the first paper, may perhaps also belong to th~ genus.
    [Show full text]
  • Spiders & Scorpion Livestock
    Spiders & Scorpion Livestock Updated: 22.09.2017 Please Note: Livestock lists are correct at time of publishing and availability is subject to change Common Name Latin Name Age/Size Price Stock Status Spiders Brazilian Red And White Knee Female £49.95 Available Tarantula Adult Brazilian White Knee Tarantula £34.95 Available Chaco Golden Knee Tarantula Grammostola Pulchripes £29.95 Available Cobalt Blue Tarantula Haplopelma Lividum Sub Adult £49.95 Available Costa Rican Zebra Female £49.95 Available Curly Hair Tarantula Female £29.95 Available Field Wolf Spider Hogna Miami £19.95 Available Fringed Ornamental p. ornata spiderling £24.95 Available 1 / 4 Common Name Latin Name Age/Size Price Stock Status Spiders Golden Baboon Tarantula Augacephalus ezendami £39.95 Available Gooty Ornamental p. metallica spiderling £49.95 Available Green Bottle Blue Tarantula Female £49.95 Available Green Femur Birdeater Phormictopus"Green Femur" £39.95 Available Indian Ornamental Tarantula Poecilotheria regalis 2cm £24.95 Available King Baboon Tarantula Pelinobius Muticus £24.95 Available Martinique Pink Toe Tarantula 2cm £16.95 Available Mexican Fire Leg Tarantula Brachypelma Bohemi £39.95 Available Mexican Red Knee Tarantula Brachypelma Smithi £34.95 Available 2 / 4 Common Name Latin Name Age/Size Price Stock Status Spiders Mexican Red Leg Tarantula Brachypelma Emilia £39.95 Available £24.95 Available Mexican Red Rump Brachypelma Vagans Female Sub Adult Available £49.95 spiderling £19.95 Available OBT Tarantula Female Sub Adult Available £39.95 Purple Earth
    [Show full text]
  • Assessment of Species Listing Proposals for CITES Cop18
    VKM Report 2019: 11 Assessment of species listing proposals for CITES CoP18 Scientific opinion of the Norwegian Scientific Committee for Food and Environment Utkast_dato Scientific opinion of the Norwegian Scientific Committee for Food and Environment (VKM) 15.03.2019 ISBN: 978-82-8259-327-4 ISSN: 2535-4019 Norwegian Scientific Committee for Food and Environment (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] vkm.no vkm.no/english Cover photo: Public domain Suggested citation: VKM, Eli. K Rueness, Maria G. Asmyhr, Hugo de Boer, Katrine Eldegard, Anders Endrestøl, Claudia Junge, Paolo Momigliano, Inger E. Måren, Martin Whiting (2019) Assessment of Species listing proposals for CITES CoP18. Opinion of the Norwegian Scientific Committee for Food and Environment, ISBN:978-82-8259-327-4, Norwegian Scientific Committee for Food and Environment (VKM), Oslo, Norway. VKM Report 2019: 11 Utkast_dato Assessment of species listing proposals for CITES CoP18 Note that this report was finalised and submitted to the Norwegian Environment Agency on March 15, 2019. Any new data or information published after this date has not been included in the species assessments. Authors of the opinion VKM has appointed a project group consisting of four members of the VKM Panel on Alien Organisms and Trade in Endangered Species (CITES), five external experts, and one project leader from the VKM secretariat to answer the request from the Norwegian Environment Agengy. Members of the project group that contributed to the drafting of the opinion (in alphabetical order after chair of the project group): Eli K.
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]
  • Genetic Analysis of Tarantulas in the Genus Brachypelma Using Inter Simple Sequence Repeats (ISSR)
    Eastern Michigan University DigitalCommons@EMU Senior Honors Theses & Projects Honors College 2020 Genetic analysis of tarantulas in the genus Brachypelma using Inter Simple Sequence Repeats (ISSR) Sarah Holtzen Follow this and additional works at: https://commons.emich.edu/honors Part of the Biology Commons Recommended Citation Holtzen, Sarah, "Genetic analysis of tarantulas in the genus Brachypelma using Inter Simple Sequence Repeats (ISSR)" (2020). Senior Honors Theses & Projects. 688. https://commons.emich.edu/honors/688 This Open Access Senior Honors Thesis is brought to you for free and open access by the Honors College at DigitalCommons@EMU. It has been accepted for inclusion in Senior Honors Theses & Projects by an authorized administrator of DigitalCommons@EMU. For more information, please contact [email protected]. Genetic analysis of tarantulas in the genus Brachypelma using Inter Simple Sequence Repeats (ISSR) Abstract There is a great deal of morphological and genetic species diversity on Earth that requires careful conservation. One such genetically diverse genus of tarantulas is that of Brachypelma. In this study, we employ a newer DNA fingerprinting technique known as Inter Simple Sequence Repeat (ISSR), ot study the genetic variation among Brachypelma species and to determine if the invasive Brachypelma tarantula found in Florida B. vagans. Although B. vagans is a species protected under CITES Appendix II, this species has a wide distribution in Mexico and traits allowing for invasion to new habitats. It was hypothesized that the invasive tarantula in Florida is that of B. vagans and that it would be more closely related to samples from the Mexican populations as opposed to samples from the United States pet trade.
    [Show full text]