Arizona Hydrobiidae (Prosobranchia: Rissoacea)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary
July 15, 2013 Final Report Project SR12-002: Benthic Invertebrate Community Monitoring and Indicator Development for Barnegat Bay-Little Egg Harbor Estuary Gary L. Taghon, Rutgers University, Project Manager [email protected] Judith P. Grassle, Rutgers University, Co-Manager [email protected] Charlotte M. Fuller, Rutgers University, Co-Manager [email protected] Rosemarie F. Petrecca, Rutgers University, Co-Manager and Quality Assurance Officer [email protected] Patricia Ramey, Senckenberg Research Institute and Natural History Museum, Frankfurt Germany, Co-Manager [email protected] Thomas Belton, NJDEP Project Manager and NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Bob Schuster, NJDEP Bureau of Marine Water Monitoring [email protected] Introduction The Barnegat Bay ecosystem is potentially under stress from human impacts, which have increased over the past several decades. Benthic macroinvertebrates are commonly included in studies to monitor the effects of human and natural stresses on marine and estuarine ecosystems. There are several reasons for this. Macroinvertebrates (here defined as animals retained on a 0.5-mm mesh sieve) are abundant in most coastal and estuarine sediments, typically on the order of 103 to 104 per meter squared. Benthic communities are typically composed of many taxa from different phyla, and quantitative measures of community diversity (e.g., Rosenberg et al. 2004) and the relative abundance of animals with different feeding behaviors (e.g., Weisberg et al. 1997, Pelletier et al. 2010), can be used to evaluate ecosystem health. Because most benthic invertebrates are sedentary as adults, they function as integrators, over periods of months to years, of the properties of their environment. -
North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886
THE NAUTILUS 101(1):25-32, 1987 Page 25 . North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886 Robert Hershler Fred G. Thompson Department of Invertebrate Zoology Florida State Museum National Museum of Natural History University of Florida Smithsonian Institution Gainesville, FL 32611, USA Washington, DC 20560, USA ABSTRACT scribed) in the Southwest. Taylor (1966) placed Tryonia in the Littoridininae Taylor, 1966 on the basis of its Anatomical details are provided for the type species of Tryonia turreted shell and glandular penial lobes. It is clear from Stimpson, 1865, Pyrgulopsis Call and Pilsbry, 1886, Fonteli- cella Gregg and Taylor, 1965, and Microamnicola Gregg and the initial descriptions and subsequent studies illustrat- Taylor, 1965, in an effort to resolve the systematic relationships ing the penis (Russell, 1971: fig. 4; Taylor, 1983:16-25) of these taxa, which represent most of the generic-level groups that Fontelicella and its subgenera, Natricola Gregg and of Hydrobiidae in southwestern North America. Based on these Taylor, 1965 and Microamnicola Gregg and Taylor, 1965 and other data presented either herein or in the literature, belong to the Nymphophilinae Taylor, 1966 (see Hyalopyrgus Thompson, 1968 is assigned to Tryonia; and Thompson, 1979). While the type species of Pyrgulop- Fontelicella, Microamnicola, Nat ricola Gregg and Taylor, 1965, sis, P. nevadensis (Stearns, 1883), has not received an- Marstonia F. C. Baker, 1926, and Mexistiobia Hershler, 1985 atomical study, the penes of several eastern species have are allocated to Pyrgulopsis. been examined by Thompson (1977), who suggested that The ranges of both Tryonia and Pyrgulopsis include parts the genus may be a nymphophiline. -
Springs Distribution, Flow, and Associated Species in the Verde River Basin, Arizona
--- Springs of the Verde River Basin --- Springs Distribution, Flow, and Associated Species in the Verde River Basin, Arizona This document was created by: Springs Stewardship Institute Museum of Northern Arizona 3101 N. Fort Valley Dr. Flagstaff, AZ 86001 Under contract to: One for the Verde P.O. Box 2535 Cottonwood, AZ 86326 10/31/2018 Recommended Citation: Schenk, E.R.; Jenness, J.S.; and Stevens, L.E. 2018. Springs Distribution, Flow, and Associated Species in the Verde River Basin, Arizona. Springs Stewardship Institute Technical Report to One for the Verde. Museum of Northern Arizona, Flagstaff, AZ. 47 p. DOI: 10.13140/RG.2.2.27113.95846 Springs Distribution, Flow, and Springs-dependent Species in the Verde River Basin, Arizona Edward R. Schenk, Jeff S. Jenness, and Lawrence E. Stevens Springs Stewardship Institute Museum of Northern Arizona 3101 N. Fort Valley Dr. Flagstaff, AZ 86001 10/31/2018 Contents Executive Summary: .................................................................................................................... 1 Introduction .................................................................................................................................. 3 The Springs Stewardship Institute and Springs Online ..................................................... 7 Methods ......................................................................................................................................... 9 Results ......................................................................................................................................... -
Recovery Plan Endangered and Species Nevada
RECOVERYPLAN FOR THE ENDANGEREDAND THREATENED SPECIES OF&H MEADOWS, NEVADA Prepared by Don W. Sada U.S. Fish and Wildlife Service Reno, Nevada RECOVERY PLAN FOR THE ENDANGERED AND THREATENED SPECIES OF ASH MEADOWS, NEVADA Prepared By Don W. Sada U.S. Fish and Wildlife Service Reno, Nevada for the U.S. Fish and Wildlife Service Portland, Oregon ~FP2 3 ‘:XN Date This plan covers the following federally listed species in Ash Meadows, Nevada and California: Devil’s Hole pupfish, Warm Springs pupfish, Ash Meadows Arnargosa pupfish, Ash Meadows speckled dace, Ash Meadows naucorid, Ash Meadows blazing star, Ash Meadows ivesia, Ainargosa niterwort, Spring-loving centaury, Ash Meadows sunray, Ash Meadows inilk-vetch, and Ash Meadows guxnplant. THIS IS THE COMPLETED ASH MEADOWS SPECIES RECOVERY PLAN. IT HAS BEEN APPROVED BY THE U.S. FISH AND WILDLIFE SERVICE. IT DOES NOT NECESSARILY REPRESENT OFFICIAL POSITIONS OR APPROVALS OF COOPERATING AGENCIES (AND IT DOES NOT NECESSARILY REPRESENT THE VIEWS OF ALL INDIVIDUALS) WHO PLAYED THE KEY ROLE IN PREPARING THIS PLAN. THIS PLAN IS SUBJECT TO MODIFICATION AS DICTATED BY NEW FINDINGS AND CHANGES IN SPECIES STATUS, AND COMPLETION OF TASKS DESCRIBED IN THE PLAN. GOALS AND OBJECTIVES WILL BE ATTAINED AND FUNDS EXPENDED CONTINGENT UPON APPROPRIATIONS, PRIORITIES, AND OTHER BUDGETARY CONSTRAINTS. LITERATURE CITATION SHOULD READ AS FOLLOWS U.S. Fish and Wildlife Service. 1990. Recovery plan for the endangered and threatened species of Ash Meadows, Nevada. U.S. Fish and Wildlife Service, Portland, Oregon. 123 pp. Additional copies may be obtained from Fish and Wildlife Reference Service 5430 Grosvenor Lane, Suite 110 Bethesda, Maryland 20814 Telephone: 301-492-6403 1-800-582-3421 : ACKNOWLEDGMENTS: This plan results from the efforts of many who spent considerable time and energy to prevent the destruction of Ash Meadows and the extinction of its diverse endemic biota. -
The Freshwater Snails (Mollusca: Gastropoda) of Mexico: Updated Checklist, Endemicity Hotspots, Threats and Conservation Status
Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 91 (2020): e912909 Taxonomy and systematics The freshwater snails (Mollusca: Gastropoda) of Mexico: updated checklist, endemicity hotspots, threats and conservation status Los caracoles dulceacuícolas (Mollusca: Gastropoda) de México: listado actualizado, hotspots de endemicidad, amenazas y estado de conservación Alexander Czaja a, *, Iris Gabriela Meza-Sánchez a, José Luis Estrada-Rodríguez a, Ulises Romero-Méndez a, Jorge Sáenz-Mata a, Verónica Ávila-Rodríguez a, Jorge Luis Becerra-López a, Josué Raymundo Estrada-Arellano a, Gabriel Fernando Cardoza-Martínez a, David Ramiro Aguillón-Gutiérrez a, Diana Gabriela Cordero-Torres a, Alan P. Covich b a Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av.Universidad s/n, Fraccionamiento Filadelfia, 35010 Gómez Palacio, Durango, Mexico b Institute of Ecology, Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602-2202, USA *Corresponding author: [email protected] (A. Czaja) Received: 14 April 2019; accepted: 6 November 2019 Abstract We present an updated checklist of native Mexican freshwater gastropods with data on their general distribution, hotspots of endemicity, threats, and for the first time, their estimated conservation status. The list contains 193 species, representing 13 families and 61 genera. Of these, 103 species (53.4%) and 12 genera are endemic to Mexico, and 75 species are considered local endemics because of their restricted distribution to very small areas. Using NatureServe Ranking, 9 species (4.7%) are considered possibly or presumably extinct, 40 (20.7%) are critically imperiled, 30 (15.5%) are imperiled, 15 (7.8%) are vulnerable and only 64 (33.2%) are currently stable. -
(Caenogastropoda: Cochliopidae) from the Atacama Desert, Northern Chile
Zootaxa 3925 (3): 445–449 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3925.3.9 http://zoobank.org/urn:lsid:zoobank.org:pub:09962D19-6BDF-4E06-B9B1-2760DDD3236E A new freshwater snail (Caenogastropoda: Cochliopidae) from the Atacama Desert, northern Chile GONZALO A. COLLADO Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Avenida Andrés Bello s/n, Casilla 447, Chillán, Chile. Fundación Chile Natura. E-mail: [email protected] In the family Cochliopidae, Heleobia Stimpson, 1865 is the most speciose genus in South America, with about 90 species (Hershler & Thompson 1992; Cazzaniga 2011). A recent molecular and morphological analysis performed in northern Chile (Atacama Desert) showed that the previously undescribed springsnails from Aguada de Chorrillos belong to Heleobia (Collado et al. 2013). In this study I formally describe this new species. Although this paper does not treat morphology in detail, the anatomical characters, in combination with the previously published molecular data provides a strong basis for recognizing this population as a distinct species. Material and methods The snails were collected alive from Aguada de Chorrillos (27°12′32.40″ S; 70°57′03.30″ W), Atacama Desert, northern Chile using a sieve of 0.5 mm mesh width and stored in absolute ethanol. The shells, opercula and penes were photographed and measured using a Motic SMZ–168 Stereo Microscope with a Moticam 2000 integrated digital camera. Type specimens were deposited in the Museo de Zoología de la Universidad de Concepción (MZUC), Concepción, Chile. -
Department of the Interior Fish and Wildlife Service
Tuesday, August 9, 2005 Part III Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Listing Roswell springsnail, Koster’s springsnail, Noel’s amphipod, and Pecos assiminea as Endangered With Critical Habitat; Final Rule VerDate jul<14>2003 18:26 Aug 08, 2005 Jkt 205001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\09AUR2.SGM 09AUR2 46304 Federal Register / Vol. 70, No. 152 / Tuesday, August 9, 2005 / Rules and Regulations DEPARTMENT OF THE INTERIOR SUPPLEMENTARY INFORMATION: in coastal brackish waters or along tropical and temperate seacoasts Background Fish and Wildlife Service worldwide (Taylor 1987). Inland species It is our intent to discuss only those of the genus Assiminea are known from 50 CFR Part 17 topics directly relevant to this final around the world, and in North America listing determination. For more RIN 1018–AI15 they occur in California (Death Valley information on the four invertebrates, National Monument), Utah, New Endangered and Threatened Wildlife refer to the February 12, 2002, proposed Mexico, Texas (Pecos and Reeves and Plants; Listing Roswell rule (67 FR 6459). However, some of Counties), and Mexico (Bolso´n de springsnail, Koster’s springsnail, this information is discussed in our Cuatro Cı´enegas). Noel’s amphipod, and Pecos analyses below, such as the summary of The Roswell springsnail and Koster’s assiminea as Endangered With Critical factors affecting the species. springsnail are aquatic species. These Habitat Springsnails snails have lifespans of 9 to 15 months and reproduce several times during the AGENCY: Fish and Wildlife Service, The Permian Basin of the spring through fall breeding season Interior. -
Abstract Volume
ABSTRACT VOLUME August 11-16, 2019 1 2 Table of Contents Pages Acknowledgements……………………………………………………………………………………………...1 Abstracts Symposia and Contributed talks……………………….……………………………………………3-225 Poster Presentations…………………………………………………………………………………226-291 3 Venom Evolution of West African Cone Snails (Gastropoda: Conidae) Samuel Abalde*1, Manuel J. Tenorio2, Carlos M. L. Afonso3, and Rafael Zardoya1 1Museo Nacional de Ciencias Naturales (MNCN-CSIC), Departamento de Biodiversidad y Biologia Evolutiva 2Universidad de Cadiz, Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO) 3Universidade do Algarve, Centre of Marine Sciences (CCMAR) Cone snails form one of the most diverse families of marine animals, including more than 900 species classified into almost ninety different (sub)genera. Conids are well known for being active predators on worms, fishes, and even other snails. Cones are venomous gastropods, meaning that they use a sophisticated cocktail of hundreds of toxins, named conotoxins, to subdue their prey. Although this venom has been studied for decades, most of the effort has been focused on Indo-Pacific species. Thus far, Atlantic species have received little attention despite recent radiations have led to a hotspot of diversity in West Africa, with high levels of endemic species. In fact, the Atlantic Chelyconus ermineus is thought to represent an adaptation to piscivory independent from the Indo-Pacific species and is, therefore, key to understanding the basis of this diet specialization. We studied the transcriptomes of the venom gland of three individuals of C. ermineus. The venom repertoire of this species included more than 300 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity. -
Lutetiella, a New Genus of Hydrobioids from the Middle Eocene (Lutetian) of the Upper Rhine Graben and Paris Basin (Mollusca: Gastropoda: Rissooidea S
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Geologica Saxonica - Journal of Central European Geology Jahr/Year: 2015 Band/Volume: 61 Autor(en)/Author(s): Kadolsky Dietrich Artikel/Article: Lutetiella, ein neues Genus von Hydrobioiden aus dem Mitteleozän (Lutetium) des Oberrheingrabens und Pariser Beckens (Mollusca: Gastropoda: Rissooidea s. lat.) 35-51 61 (1): 35 – 51 2 Jan 2015 © Senckenberg Gesellschaft für Naturforschung, 2015. Lutetiella, a new genus of hydrobioids from the Middle Eocene (Lutetian) of the Upper Rhine Graben and Paris Basin (Mollusca: Gastropoda: Rissooidea s. lat.) Lutetiella, ein neues Genus von Hydrobioiden aus dem Mitteleozän (Lutetium) des Oberrheingrabens und Pariser Beckens (Mollusca: Gastropoda: Rissooidea s. lat.) Dietrich Kadolsky 66 Heathhurst Road, Sanderstead, Surrey CR2 0BA, United Kingdom; [email protected] Revision accepted 17 November 2014. Published online at www.senckenberg.de/geologica-saxonica on 1 December 2014. Abstract Lutetiella n.gen. is proposed for Lutetiella hartkopfi n. sp. (type species) and L. conica (Prévost 1821) from the Middle Eocene (Lutetian) of the Upper Rhine Graben and Paris Basin, respectively. The protoconch microsculpture of L. hartkopfi n. sp. was occasionally preserved and proved to be a variant of the plesiomorphic hydrobioid pattern. The new genus is tentatively placed in Hydrobiidae. Problems in the classi- fication of hydrobioid fossils are discussed, arising from the dearth of distinguishing shell characters. Previous attributions of L. conica to Assiminea or Peringia are shown to be incorrect. The name Paludina conica Férussac 1814, a senior primary homonym of Paludina conica Prévost 1821, and denoting an unidentifiable hydrobioid, threatens the validity of the nameLutetiella conica (Prévost 1821) and should be suppressed. -
Red Gap Ranch Biological Resource Evaluation
RED GAP RANCH BIOLOGICAL RESOURCE EVALUATION Prepared for: Southwest Ground-water Consultants, Inc. Prepared by: WestLand Resources, Inc. Date: February 14, 2014 Project No.: 1822.01 TABLE OF CONTENTS 1. BACKGROUND AND OBJECTIVES ................................................................................................ 1 2. EXISTING ENVIRONMENT AND BIOLOGICAL RESOURCES ................................................... 2 2.1. Approach ...................................................................................................................................... 2 2.2. Physical Environment ................................................................................................................... 2 2.3. Biological Environment and Resources ....................................................................................... 3 3. SCREENING ANALYSIS FOR SPECIES OF CONCERN ................................................................ 5 3.1. Approach ...................................................................................................................................... 5 3.2. Screening Analysis Results .......................................................................................................... 7 3.2.1. USFWS-listed Species ...................................................................................................... 7 3.2.2. USFS Coconino National Forest Sensitive Species ........................................................ 15 3.2.3. USFS Management Indicator Species ............................................................................ -
Phylogenetic Relationships of the Cochliopinae (Rissooidea: Hydrobiidae): an Enigmatic Group of Aquatic Gastropods Hsiu-Ping Liu,* Robert Hershler,†,1 and Fred G
Molecular Phylogenetics and Evolution Vol. 21, No. 1, October, pp. 17–25, 2001 doi:10.1006/mpev.2001.0988, available online at http://www.idealibrary.com on Phylogenetic Relationships of the Cochliopinae (Rissooidea: Hydrobiidae): An Enigmatic Group of Aquatic Gastropods Hsiu-Ping Liu,* Robert Hershler,†,1 and Fred G. Thompson‡ *Department of Biology, Southwest Missouri State University, 901 South National Avenue, Springfield, Missouri 65804-0095; †Department of Systematic Biology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0118; and ‡Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611-7800 Received July 24, 2000; revised March 27, 2001 shler, 1993) have not been well tested as there is no Phylogenetic analysis based on a partial sequence of rigorously proposed analysis of relationships that in- the mitochondrial cytochrome c oxidase subunit I cludes more than a trivial sampling of this large group gene was performed for 26 representatives of the (e.g., Altaba, 1993; Ponder et al., 1993; Ponder, 1999). aquatic gastropod subfamily Cochliopinae, 6 addi- Phylogenetic reconstructions of these animals have tional members of the family Hydrobiidae, and out- been hampered by a paucity of apparent synapomor- group species of the families Rissoidae and Pomatiop- phies (Thompson, 1984), putatively extensive ho- sidae. Maximum-parsimony analysis yielded a single moplasy (Davis, 1988; Hershler and Thompson, 1992), shortest tree which resolved two monophyletic and difficulties in reconciling homology (Hershler and groups: (1) a clade containing all cochliopine taxa with Ponder, 1998). Whereas a recent survey and reassess- the exception of Antroselates and (2) a clade composed of Antroselates and the hydrobiid genus Amnicola. -
Phylogenetic Relationships Within the North American Hydrobiid Snail Genus Tgonia: Taxonomic and Biogeographic Implications
Phylogenetic Relationships Within the North American Hydrobiid Snail Genus Tgonia: Taxonomic and Biogeographic Implications Robert Hershleri , Hsiu-Ping Liu2, and Margaret Mulvey3 'Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560; 2Department of Biology, Olin Hall, Colgate University Hamilton, NY 13346; 3Savannah River Ecology Laboratory, P.O. Drawer E, Aiken, South Carolina 29802. Introduction The aquatic biota of western North America is of interest from the standpoint of evolutionary biology and biogeography because elements often are profoundly isolated by inhospitable deserts and mountain ranges, live in extremely restricted and/or harsh environments, and present distributional and phylogenetic patterns which have been molded by the extremely complex and dynamic(Cenozoi physical history of the region. Biotic distributions and evolutionary relationships may also provide clues as to early regional drainage relationships for which geological evidence often/has been obscured by subsequent deposition, deformation and erosion. Whereas early regional biogeographic treatments of fishes (e.g., Hubbs and Miller 1948; Hubbs 1974) focused on dispersal opportunities afforded by a highly integrated late Pleistocene "pluvial" drainage, Minckley et al. (1986) accepted great antiquity (Oligocene- Miocene) of this fauna and consequently emphasized the complex role of geological events in effecting vicariance, and the likelihood that fishes have been introduced to and/or transferred within the region by rafting on allochthonous terranes, intra-continental microplates, and other tectonically displaced or extended crustal fragments. The limited phylogenetic data then available for western American fishes demonstrated partial congruence with hypotheses for historical area relationships advanced by these authors, although they emphasized the need for additional Sich studies.