Mathematical Modeling As a Tool for Investigating Cell Cycle Control Networks

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Modeling As a Tool for Investigating Cell Cycle Control Networks Methods 41 (2007) 238–247 www.elsevier.com/locate/ymeth Mathematical modeling as a tool for investigating cell cycle control networks Jill C. Sible *, John J. Tyson Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA Accepted 11 July 2006 Abstract Although not a traditional experimental ‘‘method,’’ mathematical modeling can provide a powerful approach for investigating com- plex cell signaling networks, such as those that regulate the eukaryotic cell division cycle. We describe here one modeling approach based on expressing the rates of biochemical reactions in terms of nonlinear ordinary differential equations. We discuss the steps and challenges in assigning numerical values to model parameters and the importance of experimental testing of a mathematical model. We illustrate this approach throughout with the simple and well-characterized example of mitotic cell cycles in frog egg extracts. To facilitate new modeling efforts, we describe several publicly available modeling environments, each with a collection of integrated programs for math- ematical modeling. This review is intended to justify the place of mathematical modeling as a standard method for studying molecular regulatory networks and to guide the non-expert to initiate modeling projects in order to gain a systems-level perspective for complex control systems. Ó 2006 Elsevier Inc. All rights reserved. Keywords: Cell cycle; Computational biology; Frog egg extracts; Mathematical modeling; Ordinary differential equations; Parameter estimation; Systems biology; Xenopus laevis 1. Introduction networks. Models organize a large body of experimental data, describe the fundamental behaviors of the system as Because a universal mechanism controlling DNA syn- a whole, bridge gaps where experimental data are missing, thesis, mitosis, and cell division underlies the growth, and drive hypothesis-building for the next round of exper- development, and reproduction of all eukaryotes, an imentation. The value of mathematical modeling in understanding of this molecular regulatory system is one describing and predicting the behavior of complex systems of the most important goals of modern cell biology. As has been well established in fields such as chemical engi- the complex network of cell cycle controls is uncovered, neering and meteorology, but its power has been underap- it becomes increasingly difficult to make reliable predic- preciated until recently in molecular cell biology. tions about how modification of one component affects Although mathematical models can be built to describe the system as a whole. However, such predictions are need- any signaling network, application of modeling tools to cell ed if we are to identify the host of mutations contributing cycle regulation is particularly well suited and timely. First, to cancer or find within the molecular network novel the data in this field are vast, both providing a large body targets for therapeutic intervention. Mathematical models of information to build comprehensive models and creating provide powerful tools for managing the complexity of the need for a tool to understand how these data fit togeth- the cell cycle control system and of other signaling er. Second, cell cycle signaling networks are modular, allowing models to be constructed in parts and then assem- * Corresponding author. Fax: +1 540 231 9307. bled and reassembled in various ways. Furthermore, many E-mail address: [email protected] (J.C. Sible). models of the network are comparable between different 1046-2023/$ - see front matter Ó 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.ymeth.2006.08.003 J.C. Sible, J.J. Tyson / Methods 41 (2007) 238–247 239 organisms (e.g., budding yeast and mammals) so that it is tively simple, many predictions of the model have been val- feasible to make relatively small changes to a model idated experimentally, and this module can be adapted to describing one particular system in order to apply it to more complex cell cycles both in Xenopus and other another. Thus, each new model need not be constructed eukaryotes. from scratch. Third, a reasonable amount of quantitative or semi-quantitative information can be extracted from 2. Approach the literature, facilitating the early phases of model build- ing. By modifying established protocols (described in the 2.1. Construction of a wiring diagram accompanying articles), additional quantitative data can be generated to improve parameter estimation and experi- The first step in the modeling process is to organize the mental validation of models. Finally, despite the wealth of known interactions of the relevant molecules into a concept detailed information on cell cycle molecules and their spe- map or wiring diagram. A simple diagram representing the cific interactions, we lack a systems-level perspective of this core machinery regulating mitotic transitions in Xenopus complex control network. Modeling can provide this per- cell-free egg extracts is depicted in Fig. 1. The diagram spective by helping to identify underlying regulatory prin- depicts each biochemical entity with a separate icon. For ciples. Where a specific experimental detail is missing, example, the phosphorylated form of Wee1 is represented modeling can serve as bridge, enabling progress in building by a modified version of the icon for unphosphorylated a systems-level view, and guiding the design and execution Wee1. Solid arrows indicate chemical transitions between of future experiments. states, and dotted arrows represent a modulating signal Although the term ‘‘mathematical modeling’’ encom- on a biochemical reaction (often the catalytic influence of passes a wide range of computational approaches applica- an enzyme). Because no universal conventions for building ble to cell cycle studies, we focus this review on one branch these diagrams exist, all symbols must be defined explicitly of modeling: The construction of ordinary differential and used consistently. Hopefully, contributors to this field equations (ODEs) to describe protein interaction networks will adopt a common symbolism in the near future, that regulate the cell cycle. This approach has a strong facilitating the exchange of information between wiring track record of yielding accurate, predictive and testable diagrams and their affiliated mathematical models. models [1–7], and in recent years, has been integrated well Despite the wealth of information regarding cell cycle with experimental methodologies [8–12]. We will illustrate signaling networks, gaps in knowledge may exist such each step of the modeling process with an example: The that portions of the diagram cannot be wired with cer- core signaling network that controls entry into and exit tainty. It is neither necessary nor advised to postpone from mitosis in frog (Xenopus laevis) egg extracts by regu- the modeling process indefinitely until all molecular lating the activity of the mitotic cyclin-dependent kinase, details of the wiring diagram are understood. Rather, Cdk1. We chose this example because the network is rela- the gaps in the wiring diagram can be filled with place- amino acids OFF Cyclin P APC IE Cdk1 P Cdc25 Cdc25 IE ON PC Cdk1 P Cdk1 P A P Cdk1 Cyclin Cyclin Wee1 Wee1 P degraded cyclin Fig. 1. Wiring diagram of the core mitotic cell cycle engine in Xenopus cell-free egg extracts. Central to the diagram is the active cyclin–Cdk1 complex (also referred to as MPF), with activating phosphorylation on Thr 161 indicated by the green ‘P’. Cyclin enters the system by de novo synthesis and then combines with Cdk1. The phosphorylation on Thr 161 is rapid and therefore not represented in the diagram or the mathematical equations. Active Cdk1 can be phosphorylated on Thr 14 and Tyr 15 to form inactive preMPF. The double arrows indicate the reversibility of this process. The inhibitory phosphates are represented by the red ‘P’; and the influences of the relevant kinase (Wee1) and phosphatase (Cdc25C) are indicated by the dotted arrows. MPF itself phosphorylates Cdc25 and Wee1, positively and negatively affecting their activities, respectively. These feedback loops are easily appreciated from the wiring diagram. MPF also participates in a negative feedback loop whereby it phosphorylates a component of the APC, which subsequently directs the polyubiquitination of cyclin, tagging it for degradation by the proteasome. Like cyclin synthesis, cyclin degradation is represented by a single unidirectional arrow because the process is irreversible. Although not indicated in the diagram, cyclin degradation by the APC applies equally to free cyclin monomers and to preMPF. IE indicates an intermediate component (see text). 240 J.C. Sible, J.J. Tyson / Methods 41 (2007) 238–247 holders. These placeholders can be generic ones for which where k1 is the rate constant for cyclin synthesis, k2 is a parameters will be selected empirically to model the behav- function that describes the activity of the APC in promot- ior of the system without representing the molecular mech- ing cyclin degradation, and k3 is the rate constant for asso- anism in detail. This approach allows the modeling effort to ciation of cyclin monomers and Cdk monomers to form continue in order to discover properties of the system as a MPF dimers. These dimers are phosphorylated on threo- whole as well as specific features of better-characterized nine 161 to make active MPF. Because this reaction is fast portions of the diagram. Alternatively, a more specific and essentially irreversible, we are justified in neglecting the placeholder can be created that makes some untested T161-unphosphorylated forms of MPF. assumptions about the molecular mechanism. These The rate equation for [MPF] is likewise based on mass- assumptions in the wiring diagram will be tested in simula- action kinetics: tions of the model to determine whether they are consistent d with known behaviors of the system. Eventually, the MPF k3 Cyclin Cdk k2 MPF dt ½ ¼ ½ ½ À ½ assumptions that work in silico must be tested experimen- k MPF k preMPF tally when appropriate methodologies and reagents become À wee½ þ 25½ available. Ideally, portions of the wiring diagram that are A similar equation pertains to [preMPF].
Recommended publications
  • Rule-Based Modeling of Biochemical Systems with Bionetgen
    Rule-Based Modeling of Biochemical Systems with BioNetGen James R. Faeder1, Michael L. Blinov2, and William S. Hlavacek3 Once a model specification is processed by BNG2, Short Abstract — Rule-based modeling involves the models can be exported in one of a variety of formats, representation of molecules as structured objects and including MATLAB M-files and Systems Biology Markup molecular interactions as rules for transforming the attributes language (SBML) (3). BNG2 can also generate a network of of these objects. The approach allows systematic incorporation species and reactions for simulation using either an ODE of site-specific details about protein-protein interactions into a solver or Gillespie’s stochastic simulation algorithm (4). The model for the dynamics of a signal-transduction system, as well as other applications. The consequences of protein-protein dashed line in Fig. 1 indicates that the network generation interactions are difficult to specify and track with a and stochastic simulation engines are coupled so that for conventional modeling approach because of the large number large reaction networks species and reactions can be of protein phosphoforms and protein complexes that these generated on-the-fly as needed (5, 6). Recently, particle- interactions potentially generate. Here, we focus on how a rule- based simulation methods (7, 8) have been developed that based model is specified in the BioNetGen language (BNGL) avoid the computational costs associated with explicit and how a model specification is analyzed using the BioNetGen generation of the reachable network of species and software tool. We also discuss new developments in rule-based interactions, which can become a major bottleneck for the modeling that should enable the construction and analysis of simulation of even moderate-sized rule-based models (9).
    [Show full text]
  • Quantitative Cell Biology with the Virtual Cellq
    570 Review TRENDS in Cell Biology Vol.13 No.11 November 2003 Quantitative cell biology with the Virtual Cellq Boris M. Slepchenko1, James C. Schaff1, Ian Macara2 and Leslie M. Loew1 1Center For Biomedical Imaging Technology and National Resource for Cell Analysis and Modeling, Department of Physiology, University of Connecticut Health Center, Farmington, CT 06030, USA 2Center for Cell Signaling and Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA Cell biological processes are controlled by an interact- techniques such as patch-clamp single-channel recording. ing set of biochemical and electrophysiological events Once such data are acquired, a crucial and obvious that are distributed within complex cellular structures. challenge is to determine how these, often disparate and Computational models, comprising quantitative data complex, details can explain the cellular process under on the interacting molecular participants in these events, investigation. The ideal way to meet this challenge is to provide a means for applying the scientific method to integrate and organize the data into a predictive model. these complex systems. The Virtual Cell is a compu- Indeed, the value of computational approaches in cell tational environment designed for cell biologists, to biology has been increasingly recognized as demonstrated facilitate the construction of models and the generation by several recent reviews [4–6] and a book [37]. However, of predictive simulations from them. This review sum- for cell biologists, formulating a mathematical model marizes how a Virtual Cell model is assembled and based on quantitative data and solving its equations to describes the physical principles underlying the calcu- generate simulations can present significant technical lations that are performed.
    [Show full text]
  • Modeling Without Borders: Creating and Annotating Vcell Models Using the Web
    Modeling without Borders: Creating and Annotating VCell Models Using the Web Michael L. Blinov, Oliver Ruebenacker, James C. Schaff, and Ion I. Moraru Center for Cell Analysis and Modeling University of Connecticut Health Center Farmington, CT 06030, USA {blinov,oruebenacker,schaff,moraru}@exchange.uchc.edu http:vcell.org/sybil Abstract. Biological research is becoming increasingly complex and data-rich, with multiple public databases providing a variety of resources: hundreds of thousands of substances and interactions, hundreds of ready to use models, controlled terms for locations and reaction types, links to reference materials (data and/or publications), etc. Mathematical mod- eling can be used to integrate this complex data and create quantita- tive, testable predictions based on the current state of knowledge of a biological process. Data retrieval, visualization, flexible querying, and model annotation for future reuse, are some of the important require- ments for modeling-based research in the modern age. Here we describe an approach that we implement within the popular Virtual Cell (VCell) modeling and simulation framework in order to help connect the mod- eling community with the web of machine-processable systems biology knowledge. A new software application, called SyBiL (Systems Biology Linker), has been designed and developed for simultaneous querying of multiple systems biology knowledge bases and data sources, such as web repositories, databases, and user files, and converting the extracted and refined data into model elements. Integration of SyBiL as a component of VCell makes these capabilities easily available to a wide modeling community. Keywords: Biological databases, mathematical modeling, VCell, data conversion. 1 Introduction Mathematical modeling is increasingly necessarry to investigate the function of molecular pathways and networks, and a growing number of resources that fa- cilitate computational approaches are becoming available.
    [Show full text]
  • Vcell Quick Start Guide
    Virtual Cell Quick Start Guide 1. Pre-requisites: a. Java (version 1.4.2 or later; 1.5.x recommended) b. An Internet connection (broadband, no firewall recommended). 2. Go to http://www.vcell.org/ a. If you are a new user, first register and create a user name and password. b. If you are registered, navigate to the “VCell” page. 3. Click on one of the 2 links to run VCell as an application or as an applet: a. The software will download and start automatically (it can take a couple of minutes the first time or whenever VCell was updated since your last login) – unless you have pop-up blockers enabled and you are trying to run it as an applet, in which case you must click on the new link “Run the Virtual Cell” after logging in. • Tip: Most operating systems and browsers will work as long as you are running Java 1.4 or later, and there are no real hardware requirements. However, check the “Technical requirements” link for recommended configurations. b. VCell as an application will us Java webstart and will give the option to install a local shortcut. • Tip: Whenever you launch VCell from the local shortcut, if you are connected to the Internet, it will automatically check for and download any updated version. • Tip: You can run the local VCell application without an Internet connection and without logging in to the model database; in this case, however, you will only be able to save your work by using File Æ Export, and you will not be able to run simulations and view results until logging in.
    [Show full text]
  • Biodynamo: a New Platform for Large-Scale Biological Simulation
    Lukas Johannes Breitwieser, BSc BioDynaMo: A New Platform for Large-Scale Biological Simulation MASTER’S THESIS to achieve the university degree of Diplom-Ingenieur Master’s degree programme Software Engineering and Management submitted to Graz University of Technology Supervisor Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger Institute for Technical Informatics Advisor Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger Dr. Fons Rademakers (CERN) November 23, 2016 AFFIDAVIT I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all ma- terial which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master‘s thesis. Date Signature This thesis is dedicated to my parents Monika and Fritz Breitwieser Without their endless love, support and encouragement I would not be where I am today. iii Acknowledgment This thesis would not have been possible without the support of a number of people. I want to thank my supervisor Christian Steger for his guidance, support, and input throughout the creation of this document. Furthermore, I would like to express my deep gratitude towards the entire CERN openlab team, Alberto Di Meglio, Marco Manca and Fons Rademakers for giving me the opportunity to work on this intriguing project. Furthermore, I would like to thank them for vivid discussions, their valuable feedback, scientific freedom and possibility to grow. My gratitude is extended to Roman Bauer from Newcastle University (UK) for his helpful insights about computational biology detailed explanations and valuable feedback.
    [Show full text]
  • Emerging Whole-Cell Modeling Principles and Methods
    Available online at www.sciencedirect.com ScienceDirect Emerging whole-cell modeling principles and methods 1,2,3 1,2,3 1,2,3 Arthur P Goldberg , Bala´ zs Szigeti , Yin Hoon Chew , 1,2,3 1,2 1,2 John AP Sekar , Yosef D Roth and Jonathan R Karr Whole-cell computational models aim to predict cellular models should predict, or how to achieve WC models. phenotypes from genotype by representing the entire genome, Nevertheless, we and others are beginning to leverage the structure and concentration of each molecular species, advances in measurement technology, bioinformatics, each molecular interaction, and the extracellular environment. rule-based modeling, and multi-algorithmic simulation Whole-cell models have great potential to transform to develop WC models [4 ,5 ,6,7 ,8 ,9 ]. However, sub- bioscience, bioengineering, and medicine. However, numerous stantial work remains to achieve WC models [10 ,11 ]. challenges remain to achieve whole-cell models. Nevertheless, researchers are beginning to leverage recent progress in To build consensus on WC modeling, we propose a set of measurement technology, bioinformatics, data sharing, rule- key physical and chemical mechanisms that WC models based modeling, and multi-algorithmic simulation to build the should aim to represent, and a set of key phenotypes that first whole-cell models. We anticipate that ongoing efforts to WC models should aim to predict. We also summarize develop scalable whole-cell modeling tools will enable the experimental and computational progress that is dramatically more comprehensive and more accurate models, making WC modeling feasible, and outline several tech- including models of human cells. nological advances that would help accelerate WC modeling.
    [Show full text]
  • 1 a Simple and Efficient Pipeline for Construction, Merging, Expansion
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.09.373407; this version posted November 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A Simple and Efficient Pipeline for Construction, Merging, Expansion, and Simulation of Large-Scale, Single-Cell Mechanistic Models Cemal Erdem1,*, Ethan M. Bensman2, Arnab Mutsuddy1, Michael M. Saint-Antoine3, Mehdi Bouhaddou4, Robert C. Blake5, Will Dodd1, Sean M. Gross6, Laura M. Heiser6, F. Alex Feltus7,8,9, and Marc R. Birtwistle1,10,* 1 Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 2 Computer Science, School of Computing, Clemson University, Clemson, SC 3 Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 4 Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 5 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 6 Department of Biomedical Engineering, Oregon Health & Sciences University, Portland, OR 7 Department of Genetics and Biochemistry, Clemson University, Clemson, SC 8 Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC 9 Center for Human Genetics, Clemson University, Clemson, SC 10 Lead Contact * Correspondence: [email protected] (C.E.) and [email protected] (M.R.B.) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.09.373407; this version posted November 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The current era of big biomedical data accumulation and availability brings data integration opportunities for leveraging its totality to make new discoveries and/or clinically predictive models.
    [Show full text]
  • Real-Time Computer Simulations of Excitable Media: JAVA As a Scientific Language and As a Wrapper for C and FORTRAN Programs
    BioSystems 64 (2002) 73–96 www.elsevier.com/locate/biosystems Real-time computer simulations of excitable media: JAVA as a scientific language and as a wrapper for C and FORTRAN programs Flavio H. Fenton a,b,*, Elizabeth M. Cherry a, Harold M. Hastings a, Steven J. Evans b a Department of Physics, Hofstra Uni6ersity, Hempstead, NY 11549, USA b The Heart Institute, Beth Israel Medical Center, New York, NY 10003, USA Received 4 August 2001; accepted 1 September 2001 Abstract We describe a useful setting for interactive, real-time study of mathematical models of cardiac electrical activity, using implicit and explicit integration schemes implemented in JAVA. These programs are intended as a teaching aid for the study and understanding of general excitable media. Particularly for cardiac cell models and the ionic currents underlying their basic electrical dynamics. Within the programs, excitable media properties such as thresholds and refractoriness and their dependence on parameter values can be analyzed. In addition, the cardiac model applets allow the study of reentrant tachyarrhythmias using premature stimuli and conduction blocks to induce or to terminate reentrant waves of electrical activation in one and two dimensions. The role of some physiological parameters in the transition from tachycardia to fibrillation also can be analyzed by varying the maximum conductances of ion channels associated with a given model in real time during the simulations. These applets are available for download at http://arrhythmia.hofstra.edu or its mirror site http://stardec.ascc.neu.edu/fenton. © 2002 Elsevier Science B.V. All rights reserved. Keywords: Computer simulations; JAVA; Programs 1.
    [Show full text]
  • In Silico Systems Analysis of Biopathways
    In Silico Systems Analysis of Biopathways Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften der Universität Bielefeld. Vorgelegt von Ming Chen Bielefeld, im März 2004 MSc. Ming Chen AG Bioinformatik und Medizinische Informatik Technische Fakultät Universität Bielefeld Email: [email protected] Genehmigte Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr.rer.nat.) Von Ming Chen am 18 März 2004 Der Technischen Fakultät an der Universität Bielefeld vorgelegt Am 10 August 2004 verteidigt und genehmiget Prüfungsausschuß: Prof. Dr. Ralf Hofestädt, Universität Bielefeld Prof. Dr. Thomas Dandekar, Universität Würzburg Prof. Dr. Robert Giegerich, Universität Bielefeld PD Dr. Klaus Prank, Universität Bielefeld Dr. Dieter Lorenz / Dr. Dirk Evers, Universität Bielefeld ii Abstract In the past decade with the advent of high-throughput technologies, biology has migrated from a descriptive science to a predictive one. A vast amount of information on the metabolism have been produced; a number of specific genetic/metabolic databases and computational systems have been developed, which makes it possible for biologists to perform in silico analysis of metabolism. With experimental data from laboratory, biologists wish to systematically conduct their analysis with an easy-to-use computational system. One major task is to implement molecular information systems that will allow to integrate different molecular database systems, and to design analysis tools (e.g. simulators of complex metabolic reactions). Three key problems are involved: 1) Modeling and simulation of biological processes; 2) Reconstruction of metabolic pathways, leading to predictions about the integrated function of the network; and 3) Comparison of metabolism, providing an important way to reveal the functional relationship between a set of metabolic pathways.
    [Show full text]
  • Implementing Virtual Environments for Education and Research at NDSU
    Implementing Virtual Environments for Education and Research at NDSU Aaron Bergstrom, John Bauer, Brad Vender, Jeffrey Clark, Paul Juell, Phil McClean, Bernhardt Saini-Eidukat, Donald P. Schwert, Brian M. Slator, Alan R. White, Francis Larson, Otto Borchert, Robert Cosmano, Richard Frovarp, Guy Hokanson, Christina Johnson, James Landrum, Mei Li, John Opgrande, Rebecca Potter, Lai Ong Teo, Anurag Tokhi, Shannon Tomac, Joy Turnbull, Qiang Xiao, Melissa Zuroff World Wide Web Instructional Committee North Dakota State University Contact: [email protected] Abstract The World Wide Web Instructional Committee (WWWIC) at North Dakota State University (NDSU) develops and distributes immersive educational and research oriented virtual environments that are accessible through the world-wide-web and implemented by means of “Interactive 3D” user interfaces. This type of delivery of 3D content is known as Web3D. WWWIC's major Web3D projects include the Virtual Cell for cell biology education, the Geology Explorer for geology education, and the Digital Archive Network for Anthropology intended for use in archaeology and anthropology research. This paper will highlight the development history for each of these projects, and the development of WWWIC’s next generation interactive Java3D user interfaces. Introduction Over the past several years, the World Wide Web Instructional Committee (WWWIC) at North Dakota State University (NDSU) has built upon its previous successful developments in the area of web-based, interactive, immersive environments for education and research. Though past text- based computer technologies were found to be effective, WWWIC felt that further compelling visual enhancements could supplement project goals. Today, technologies such as real-time, desktop graphics accelerators and broadband technologies such as Internet2, DSL, and cable modems are available that allow these compelling enhancements to be delivered dynamically over the Internet (Borchert et al., 2001; Walsh and Bourges-Sévenier, 2001:7-13).
    [Show full text]
  • (SBML) Level 1: Structures and Facilities for Basic Model Definitions
    Systems Biology Markup Language (SBML) Level 1: Structures and Facilities for Basic Model Definitions Michael Hucka, Andrew Finney, Herbert Sauro, Hamid Bolouri mhucka,afinney,hsauro,hbolouri @cds.caltech.edu f Systems Biology Workbench Developmentg Group ERATO Kitano Systems Biology Project Control and Dynamical Systems, MC 107-81 California Institute of Technology, Pasadena, CA 91125, USA http://www.cds.caltech.edu/erato Principal Investigators: John Doyle and Hiroaki Kitano SBML Level 1, Version 1 (Final), 2 March 2001 Contents 1 Introduction 2 1.1 Scope and Limitations .............................................. 2 1.2 Notational Conventions ............................................. 2 2 Overview of SBML 3 3 Preliminary Definitions 4 3.1 Type SBase ................................................... 4 3.2 Guidelines for the Use of the annotations Field in SBase .......................... 5 3.3 Type SName ................................................... 6 3.4 Component Names and Namespaces in SBML ................................. 6 3.5 Formulas ..................................................... 7 4 SBML Components 8 4.1 Models ...................................................... 8 4.2 Unit Definitions ................................................. 9 4.3 Compartments .................................................. 11 4.4 Species ...................................................... 12 4.5 Parameters .................................................... 12 4.6 Rules ......................................................
    [Show full text]
  • An Introduction to Whole-Cell Modeling Release 0.0.1
    An introduction to whole-cell modeling Release 0.0.1 Jonathan Karr Arthur Goldberg Jun 26, 2020 Contents 1 Introduction 3 1.1 Motivation for WC modeling......................................4 1.1.1 Biological science: understand how genotype influences phenotype.............4 1.1.2 Medicine: personalize medicine for individual genomes....................5 1.1.3 Synthetic biology: rationally design microbial genomes....................5 1.2 The biology that WC models should aim to represent and predict...................5 1.2.1 Phenotypes that WC models should aim to predict.......................5 1.2.2 Physics and chemistry that WC models should aim to represent................6 1.3 Fundamental challenges to WC modeling................................7 1.3.1 Integrating molecular behavior to the cell level over several spatiotemporal scales......7 1.3.2 Assembling a unified molecular understanding of cells from imperfect data.........8 1.3.3 Selecting, calibrating and validating high-dimensional models................ 10 1.4 Feasibility of WC models........................................ 10 1.4.1 Experimental methods, data, and repositories......................... 10 1.4.2 Modeling and simulation tools................................. 18 1.4.3 Models of individual pathways and model repositories.................... 23 1.4.4 Models of multiple pathways.................................. 26 1.5 Emerging principles and methods for WC modeling.......................... 28 1.5.1 Principles of WC modeling................................... 29 1.5.2 Methods for WC modeling................................... 30 1.6 Latest WC models and their limitations................................. 34 1.6.1 Coarse-grained models..................................... 34 1.6.2 Genomically-centric bottom-up fine-grained models...................... 34 1.6.3 Physiologically-centric top-down fine-grained models..................... 35 1.6.4 Spatially-centric bottom-up fine-grained models.......................
    [Show full text]