Real-Time Computer Simulations of Excitable Media: JAVA As a Scientific Language and As a Wrapper for C and FORTRAN Programs

Total Page:16

File Type:pdf, Size:1020Kb

Real-Time Computer Simulations of Excitable Media: JAVA As a Scientific Language and As a Wrapper for C and FORTRAN Programs BioSystems 64 (2002) 73–96 www.elsevier.com/locate/biosystems Real-time computer simulations of excitable media: JAVA as a scientific language and as a wrapper for C and FORTRAN programs Flavio H. Fenton a,b,*, Elizabeth M. Cherry a, Harold M. Hastings a, Steven J. Evans b a Department of Physics, Hofstra Uni6ersity, Hempstead, NY 11549, USA b The Heart Institute, Beth Israel Medical Center, New York, NY 10003, USA Received 4 August 2001; accepted 1 September 2001 Abstract We describe a useful setting for interactive, real-time study of mathematical models of cardiac electrical activity, using implicit and explicit integration schemes implemented in JAVA. These programs are intended as a teaching aid for the study and understanding of general excitable media. Particularly for cardiac cell models and the ionic currents underlying their basic electrical dynamics. Within the programs, excitable media properties such as thresholds and refractoriness and their dependence on parameter values can be analyzed. In addition, the cardiac model applets allow the study of reentrant tachyarrhythmias using premature stimuli and conduction blocks to induce or to terminate reentrant waves of electrical activation in one and two dimensions. The role of some physiological parameters in the transition from tachycardia to fibrillation also can be analyzed by varying the maximum conductances of ion channels associated with a given model in real time during the simulations. These applets are available for download at http://arrhythmia.hofstra.edu or its mirror site http://stardec.ascc.neu.edu/fenton. © 2002 Elsevier Science B.V. All rights reserved. Keywords: Computer simulations; JAVA; Programs 1. Introduction in nature. In particular, models of cardiac electri- cal activity in cells can be used to illustrate some Mathematical models of biological and com- of the mechanisms underlying cardiac arrhyth- plex systems demonstrate many phenomena found mias. The continuous increase in computer power over the years has made it possible to solve many of these models using desktop computers. How- ever, systematic study of these models is greatly * Corresponding author. Tel.: +1-516-463-5586; fax: +1- 516-463-3059. enhanced by using a graphical user interface E-mail addresses: [email protected] (F.H. Fen- (GUI) for variation of parameters, visualization, ton), [email protected] (H.M. Hastings). and the analysis of results. 0303-2647/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0303-2647(01)00177-0 74 F.H. Fenton et al. / BioSystems 64 (2002) 73–96 The JAVA language is a natural choice for inter- free for non-commercial purposes. EASIWAV from face programming for several reasons. First, it is Henriquez’s group simulates cardiac wave propa- straightforward to register on-screen user interac- gation over a 2D domain and features nonuni- tions, such as mouse events, alphanumeric inputs, form anisotropy, irregular geometries, multiple and click-choice events (e.g. buttons and check- membrane models and simulation modules, all boxes). In addition, it is easy to change parame- with an intuitive GUI interface that runs under ters in real time and to plot in one, two and three UNIX. Li provides a program for modeling the dimensions, allowing easy visualization of results. action potential (AP) of a canine ventricular cell. Furthermore, since executables are platform-inde- Li’s software runs on the net under X-WINDOWS. pendent, programs can be run in different ma- Joe provides a web-based simulation (using JAVA chines and operating systems as well as through and JAVASCRIPT) of the heart’s specialized con- the internet. However, using JAVA as a program- duction system. CELLML is an XML-based lan- ming language can have some drawbacks. In some guage intended to store and exchange cases, unless substantial optimization is per- computer-based biological models. NRCAM of- formed on a specific algorithm, computational fers a similar approach in their ‘virtual cell’,a speed can increase unacceptably. In other cases, a general computational framework for modeling well-optimized program may already exist in biological processes, at the cellular level. other language, or the program may use standard In contrast, the present programs, and related subroutines that cannot easily be imported into material on our web site supplementary to this JAVA. In addition, the program may need to paper, are designed especially for educational use perform external system commands, which JAVA and exploratory research. The advantage of these does not allow for security reasons. However, programs is that they cover a wide range of these problems can be overcome by using the models and geometries with an easy-to-use inter- JAVA Native Interface (JNI) options, which allows face for simulating complex cardiac electrical dy- JAVA to interact with applications and libraries namics. They are also readily available on the written in other (native) languages. Internet and run under any operating system. In We present in this paper a set of JAVA applets this manuscript we provide a description of both intended for the study of excitable media—in the use of JAVA together with traditional scientific particular, models that describe cardiac electrical languages and the models themselves. activity in single cells, 1- and 2-D tissues. In This paper is dedicated to the memory of Section 2, we briefly describe methods and al- Michael Conrad. Professor Conrad worked at the gorithms used in writing the JAVA applets. Section interface between biology and computation, and 3 gives an overview of excitable media and pro- was in many ways well ahead of the recent thrust vides the basic equations the applets are designed in computational biology. His work on computa- to solve. In Section 4, we discuss several represen- tional models of the brain led to many more tative applets for single cells, 1-D cables, and 2-D recent developments. The journal BioSystems also tissues. In Section 5, we present conclusions and reflects his philosophy and guidance as Editor, discuss future work. In addition, we provide an with its emphasis on theory well grounded in appendix (Appendix A) with a general example experiment. Finally, Professor Conrad considered showing how to call C and FORTRAN subroutines teaching an essential part of his career and left a from JAVA, which is useful when JAVA is used legacy of Ph.D. students. One of us (H.M. Hast- only as a GUI wrapper. ings) had the pleasure of knowing Professor Con- Other groups have developed computational rad as a colleague and writing two papers with systems for cardiac modeling and made them him (Hastings and Conrad, 1979; Conrad and available publicly (Barry, 1998; Henriquez et al., Hastings, 1985). Our present paper on computa- 2000; Li, 2000; Joe, 1997; CellML, 2000; NR- tional models of cardiac dynamics and other ex- CAM, 2001). Barry’s software requires a fee; citable media, and its goal of promoting the other software and our software are available for computer as an experimental and educational F.H. Fenton et al. / BioSystems 64 (2002) 73–96 75 tool, follows his tradition. More generally, the lar boundary conditions combined with an ex- continued growth of computational approaches to plicit Euler scheme. biology recognizes Professor Conrad’s vision and All the programs presented in this article were leadership. written in JAVA (version 1.1.7B-2) on a Compaq Alpha workstation. The programs have been com- piled and run successfully on PCs under WIN- 2. Systems, methods, and algorithms DOWS using Sun-JAVA 1.3.0 and on PCs under LINUX using IBM-JAVA 1.1.8 and/or kaffe 1.0.6. The implementation of the programs consists of two major parts, the graphical interface that in- 3. Models puts and outputs data; and the integration of the differential equations of a given mathematical cell The mathematical models we implement in our model. In the graphical interface, the input of JAVA applets all represent excitable media, a class events is handled using the standard methods of nonlinear complex systems of which cardiac from the java.awt.*, java.awt.event.* and electrical dynamics is an example. Excitable media Java.lang.* classes (SUN, 1997). Basic plotting of can be defined as systems composed of elementary graphs and images is relatively simple and many segments or cells, each of which possesses the useful examples can be found at (SUN, 1997). following properties: However, when a large number of pixels need to 1. a well-defined rest state, be frequently drawn, there are some advanced 2. a threshold for excitation, and procedures that are worth mentioning. The sim- 3. a diffusive-type coupling to its nearest plest way to draw graphs and small images is to neighbors. use the fillLine(x1,y1,x2,y2) method, which can By a threshold for excitation, we mean that any create pixels when given identical starting and external stimulus applied to a cell that keeps that ending coordinates (x1=x2andy1=y2) and in cell below this threshold produces a qualitatively general is faster than fillRect(). When generating different result than a stimulus that raises the cell large images that require a significant set of pixels, above threshold. Stimuli below the threshold are this method becomes extremely slow, and the damped out and produce no persistent change in java.awt.image.MemoryImageSource class is a the system, which simply returns to the rest state. better choice. This class is an implementation of However, stimuli above the threshold induce the the ImageProducer interface, which uses an array cell to change from its rest state to an excited to produce pixel values and can generate images state. This change produces a pulse in time whose at high speeds, so little time is spent in the plot- shape and nature are determined by the nonlinear ting procedures.
Recommended publications
  • Rule-Based Modeling of Biochemical Systems with Bionetgen
    Rule-Based Modeling of Biochemical Systems with BioNetGen James R. Faeder1, Michael L. Blinov2, and William S. Hlavacek3 Once a model specification is processed by BNG2, Short Abstract — Rule-based modeling involves the models can be exported in one of a variety of formats, representation of molecules as structured objects and including MATLAB M-files and Systems Biology Markup molecular interactions as rules for transforming the attributes language (SBML) (3). BNG2 can also generate a network of of these objects. The approach allows systematic incorporation species and reactions for simulation using either an ODE of site-specific details about protein-protein interactions into a solver or Gillespie’s stochastic simulation algorithm (4). The model for the dynamics of a signal-transduction system, as well as other applications. The consequences of protein-protein dashed line in Fig. 1 indicates that the network generation interactions are difficult to specify and track with a and stochastic simulation engines are coupled so that for conventional modeling approach because of the large number large reaction networks species and reactions can be of protein phosphoforms and protein complexes that these generated on-the-fly as needed (5, 6). Recently, particle- interactions potentially generate. Here, we focus on how a rule- based simulation methods (7, 8) have been developed that based model is specified in the BioNetGen language (BNGL) avoid the computational costs associated with explicit and how a model specification is analyzed using the BioNetGen generation of the reachable network of species and software tool. We also discuss new developments in rule-based interactions, which can become a major bottleneck for the modeling that should enable the construction and analysis of simulation of even moderate-sized rule-based models (9).
    [Show full text]
  • Quantitative Cell Biology with the Virtual Cellq
    570 Review TRENDS in Cell Biology Vol.13 No.11 November 2003 Quantitative cell biology with the Virtual Cellq Boris M. Slepchenko1, James C. Schaff1, Ian Macara2 and Leslie M. Loew1 1Center For Biomedical Imaging Technology and National Resource for Cell Analysis and Modeling, Department of Physiology, University of Connecticut Health Center, Farmington, CT 06030, USA 2Center for Cell Signaling and Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA Cell biological processes are controlled by an interact- techniques such as patch-clamp single-channel recording. ing set of biochemical and electrophysiological events Once such data are acquired, a crucial and obvious that are distributed within complex cellular structures. challenge is to determine how these, often disparate and Computational models, comprising quantitative data complex, details can explain the cellular process under on the interacting molecular participants in these events, investigation. The ideal way to meet this challenge is to provide a means for applying the scientific method to integrate and organize the data into a predictive model. these complex systems. The Virtual Cell is a compu- Indeed, the value of computational approaches in cell tational environment designed for cell biologists, to biology has been increasingly recognized as demonstrated facilitate the construction of models and the generation by several recent reviews [4–6] and a book [37]. However, of predictive simulations from them. This review sum- for cell biologists, formulating a mathematical model marizes how a Virtual Cell model is assembled and based on quantitative data and solving its equations to describes the physical principles underlying the calcu- generate simulations can present significant technical lations that are performed.
    [Show full text]
  • Modeling Without Borders: Creating and Annotating Vcell Models Using the Web
    Modeling without Borders: Creating and Annotating VCell Models Using the Web Michael L. Blinov, Oliver Ruebenacker, James C. Schaff, and Ion I. Moraru Center for Cell Analysis and Modeling University of Connecticut Health Center Farmington, CT 06030, USA {blinov,oruebenacker,schaff,moraru}@exchange.uchc.edu http:vcell.org/sybil Abstract. Biological research is becoming increasingly complex and data-rich, with multiple public databases providing a variety of resources: hundreds of thousands of substances and interactions, hundreds of ready to use models, controlled terms for locations and reaction types, links to reference materials (data and/or publications), etc. Mathematical mod- eling can be used to integrate this complex data and create quantita- tive, testable predictions based on the current state of knowledge of a biological process. Data retrieval, visualization, flexible querying, and model annotation for future reuse, are some of the important require- ments for modeling-based research in the modern age. Here we describe an approach that we implement within the popular Virtual Cell (VCell) modeling and simulation framework in order to help connect the mod- eling community with the web of machine-processable systems biology knowledge. A new software application, called SyBiL (Systems Biology Linker), has been designed and developed for simultaneous querying of multiple systems biology knowledge bases and data sources, such as web repositories, databases, and user files, and converting the extracted and refined data into model elements. Integration of SyBiL as a component of VCell makes these capabilities easily available to a wide modeling community. Keywords: Biological databases, mathematical modeling, VCell, data conversion. 1 Introduction Mathematical modeling is increasingly necessarry to investigate the function of molecular pathways and networks, and a growing number of resources that fa- cilitate computational approaches are becoming available.
    [Show full text]
  • Vcell Quick Start Guide
    Virtual Cell Quick Start Guide 1. Pre-requisites: a. Java (version 1.4.2 or later; 1.5.x recommended) b. An Internet connection (broadband, no firewall recommended). 2. Go to http://www.vcell.org/ a. If you are a new user, first register and create a user name and password. b. If you are registered, navigate to the “VCell” page. 3. Click on one of the 2 links to run VCell as an application or as an applet: a. The software will download and start automatically (it can take a couple of minutes the first time or whenever VCell was updated since your last login) – unless you have pop-up blockers enabled and you are trying to run it as an applet, in which case you must click on the new link “Run the Virtual Cell” after logging in. • Tip: Most operating systems and browsers will work as long as you are running Java 1.4 or later, and there are no real hardware requirements. However, check the “Technical requirements” link for recommended configurations. b. VCell as an application will us Java webstart and will give the option to install a local shortcut. • Tip: Whenever you launch VCell from the local shortcut, if you are connected to the Internet, it will automatically check for and download any updated version. • Tip: You can run the local VCell application without an Internet connection and without logging in to the model database; in this case, however, you will only be able to save your work by using File Æ Export, and you will not be able to run simulations and view results until logging in.
    [Show full text]
  • Biodynamo: a New Platform for Large-Scale Biological Simulation
    Lukas Johannes Breitwieser, BSc BioDynaMo: A New Platform for Large-Scale Biological Simulation MASTER’S THESIS to achieve the university degree of Diplom-Ingenieur Master’s degree programme Software Engineering and Management submitted to Graz University of Technology Supervisor Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger Institute for Technical Informatics Advisor Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger Dr. Fons Rademakers (CERN) November 23, 2016 AFFIDAVIT I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all ma- terial which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master‘s thesis. Date Signature This thesis is dedicated to my parents Monika and Fritz Breitwieser Without their endless love, support and encouragement I would not be where I am today. iii Acknowledgment This thesis would not have been possible without the support of a number of people. I want to thank my supervisor Christian Steger for his guidance, support, and input throughout the creation of this document. Furthermore, I would like to express my deep gratitude towards the entire CERN openlab team, Alberto Di Meglio, Marco Manca and Fons Rademakers for giving me the opportunity to work on this intriguing project. Furthermore, I would like to thank them for vivid discussions, their valuable feedback, scientific freedom and possibility to grow. My gratitude is extended to Roman Bauer from Newcastle University (UK) for his helpful insights about computational biology detailed explanations and valuable feedback.
    [Show full text]
  • Emerging Whole-Cell Modeling Principles and Methods
    Available online at www.sciencedirect.com ScienceDirect Emerging whole-cell modeling principles and methods 1,2,3 1,2,3 1,2,3 Arthur P Goldberg , Bala´ zs Szigeti , Yin Hoon Chew , 1,2,3 1,2 1,2 John AP Sekar , Yosef D Roth and Jonathan R Karr Whole-cell computational models aim to predict cellular models should predict, or how to achieve WC models. phenotypes from genotype by representing the entire genome, Nevertheless, we and others are beginning to leverage the structure and concentration of each molecular species, advances in measurement technology, bioinformatics, each molecular interaction, and the extracellular environment. rule-based modeling, and multi-algorithmic simulation Whole-cell models have great potential to transform to develop WC models [4 ,5 ,6,7 ,8 ,9 ]. However, sub- bioscience, bioengineering, and medicine. However, numerous stantial work remains to achieve WC models [10 ,11 ]. challenges remain to achieve whole-cell models. Nevertheless, researchers are beginning to leverage recent progress in To build consensus on WC modeling, we propose a set of measurement technology, bioinformatics, data sharing, rule- key physical and chemical mechanisms that WC models based modeling, and multi-algorithmic simulation to build the should aim to represent, and a set of key phenotypes that first whole-cell models. We anticipate that ongoing efforts to WC models should aim to predict. We also summarize develop scalable whole-cell modeling tools will enable the experimental and computational progress that is dramatically more comprehensive and more accurate models, making WC modeling feasible, and outline several tech- including models of human cells. nological advances that would help accelerate WC modeling.
    [Show full text]
  • 1 a Simple and Efficient Pipeline for Construction, Merging, Expansion
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.09.373407; this version posted November 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A Simple and Efficient Pipeline for Construction, Merging, Expansion, and Simulation of Large-Scale, Single-Cell Mechanistic Models Cemal Erdem1,*, Ethan M. Bensman2, Arnab Mutsuddy1, Michael M. Saint-Antoine3, Mehdi Bouhaddou4, Robert C. Blake5, Will Dodd1, Sean M. Gross6, Laura M. Heiser6, F. Alex Feltus7,8,9, and Marc R. Birtwistle1,10,* 1 Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 2 Computer Science, School of Computing, Clemson University, Clemson, SC 3 Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 4 Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 5 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 6 Department of Biomedical Engineering, Oregon Health & Sciences University, Portland, OR 7 Department of Genetics and Biochemistry, Clemson University, Clemson, SC 8 Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC 9 Center for Human Genetics, Clemson University, Clemson, SC 10 Lead Contact * Correspondence: [email protected] (C.E.) and [email protected] (M.R.B.) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.09.373407; this version posted November 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The current era of big biomedical data accumulation and availability brings data integration opportunities for leveraging its totality to make new discoveries and/or clinically predictive models.
    [Show full text]
  • In Silico Systems Analysis of Biopathways
    In Silico Systems Analysis of Biopathways Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften der Universität Bielefeld. Vorgelegt von Ming Chen Bielefeld, im März 2004 MSc. Ming Chen AG Bioinformatik und Medizinische Informatik Technische Fakultät Universität Bielefeld Email: [email protected] Genehmigte Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr.rer.nat.) Von Ming Chen am 18 März 2004 Der Technischen Fakultät an der Universität Bielefeld vorgelegt Am 10 August 2004 verteidigt und genehmiget Prüfungsausschuß: Prof. Dr. Ralf Hofestädt, Universität Bielefeld Prof. Dr. Thomas Dandekar, Universität Würzburg Prof. Dr. Robert Giegerich, Universität Bielefeld PD Dr. Klaus Prank, Universität Bielefeld Dr. Dieter Lorenz / Dr. Dirk Evers, Universität Bielefeld ii Abstract In the past decade with the advent of high-throughput technologies, biology has migrated from a descriptive science to a predictive one. A vast amount of information on the metabolism have been produced; a number of specific genetic/metabolic databases and computational systems have been developed, which makes it possible for biologists to perform in silico analysis of metabolism. With experimental data from laboratory, biologists wish to systematically conduct their analysis with an easy-to-use computational system. One major task is to implement molecular information systems that will allow to integrate different molecular database systems, and to design analysis tools (e.g. simulators of complex metabolic reactions). Three key problems are involved: 1) Modeling and simulation of biological processes; 2) Reconstruction of metabolic pathways, leading to predictions about the integrated function of the network; and 3) Comparison of metabolism, providing an important way to reveal the functional relationship between a set of metabolic pathways.
    [Show full text]
  • Implementing Virtual Environments for Education and Research at NDSU
    Implementing Virtual Environments for Education and Research at NDSU Aaron Bergstrom, John Bauer, Brad Vender, Jeffrey Clark, Paul Juell, Phil McClean, Bernhardt Saini-Eidukat, Donald P. Schwert, Brian M. Slator, Alan R. White, Francis Larson, Otto Borchert, Robert Cosmano, Richard Frovarp, Guy Hokanson, Christina Johnson, James Landrum, Mei Li, John Opgrande, Rebecca Potter, Lai Ong Teo, Anurag Tokhi, Shannon Tomac, Joy Turnbull, Qiang Xiao, Melissa Zuroff World Wide Web Instructional Committee North Dakota State University Contact: [email protected] Abstract The World Wide Web Instructional Committee (WWWIC) at North Dakota State University (NDSU) develops and distributes immersive educational and research oriented virtual environments that are accessible through the world-wide-web and implemented by means of “Interactive 3D” user interfaces. This type of delivery of 3D content is known as Web3D. WWWIC's major Web3D projects include the Virtual Cell for cell biology education, the Geology Explorer for geology education, and the Digital Archive Network for Anthropology intended for use in archaeology and anthropology research. This paper will highlight the development history for each of these projects, and the development of WWWIC’s next generation interactive Java3D user interfaces. Introduction Over the past several years, the World Wide Web Instructional Committee (WWWIC) at North Dakota State University (NDSU) has built upon its previous successful developments in the area of web-based, interactive, immersive environments for education and research. Though past text- based computer technologies were found to be effective, WWWIC felt that further compelling visual enhancements could supplement project goals. Today, technologies such as real-time, desktop graphics accelerators and broadband technologies such as Internet2, DSL, and cable modems are available that allow these compelling enhancements to be delivered dynamically over the Internet (Borchert et al., 2001; Walsh and Bourges-Sévenier, 2001:7-13).
    [Show full text]
  • (SBML) Level 1: Structures and Facilities for Basic Model Definitions
    Systems Biology Markup Language (SBML) Level 1: Structures and Facilities for Basic Model Definitions Michael Hucka, Andrew Finney, Herbert Sauro, Hamid Bolouri mhucka,afinney,hsauro,hbolouri @cds.caltech.edu f Systems Biology Workbench Developmentg Group ERATO Kitano Systems Biology Project Control and Dynamical Systems, MC 107-81 California Institute of Technology, Pasadena, CA 91125, USA http://www.cds.caltech.edu/erato Principal Investigators: John Doyle and Hiroaki Kitano SBML Level 1, Version 1 (Final), 2 March 2001 Contents 1 Introduction 2 1.1 Scope and Limitations .............................................. 2 1.2 Notational Conventions ............................................. 2 2 Overview of SBML 3 3 Preliminary Definitions 4 3.1 Type SBase ................................................... 4 3.2 Guidelines for the Use of the annotations Field in SBase .......................... 5 3.3 Type SName ................................................... 6 3.4 Component Names and Namespaces in SBML ................................. 6 3.5 Formulas ..................................................... 7 4 SBML Components 8 4.1 Models ...................................................... 8 4.2 Unit Definitions ................................................. 9 4.3 Compartments .................................................. 11 4.4 Species ...................................................... 12 4.5 Parameters .................................................... 12 4.6 Rules ......................................................
    [Show full text]
  • An Introduction to Whole-Cell Modeling Release 0.0.1
    An introduction to whole-cell modeling Release 0.0.1 Jonathan Karr Arthur Goldberg Jun 26, 2020 Contents 1 Introduction 3 1.1 Motivation for WC modeling......................................4 1.1.1 Biological science: understand how genotype influences phenotype.............4 1.1.2 Medicine: personalize medicine for individual genomes....................5 1.1.3 Synthetic biology: rationally design microbial genomes....................5 1.2 The biology that WC models should aim to represent and predict...................5 1.2.1 Phenotypes that WC models should aim to predict.......................5 1.2.2 Physics and chemistry that WC models should aim to represent................6 1.3 Fundamental challenges to WC modeling................................7 1.3.1 Integrating molecular behavior to the cell level over several spatiotemporal scales......7 1.3.2 Assembling a unified molecular understanding of cells from imperfect data.........8 1.3.3 Selecting, calibrating and validating high-dimensional models................ 10 1.4 Feasibility of WC models........................................ 10 1.4.1 Experimental methods, data, and repositories......................... 10 1.4.2 Modeling and simulation tools................................. 18 1.4.3 Models of individual pathways and model repositories.................... 23 1.4.4 Models of multiple pathways.................................. 26 1.5 Emerging principles and methods for WC modeling.......................... 28 1.5.1 Principles of WC modeling................................... 29 1.5.2 Methods for WC modeling................................... 30 1.6 Latest WC models and their limitations................................. 34 1.6.1 Coarse-grained models..................................... 34 1.6.2 Genomically-centric bottom-up fine-grained models...................... 34 1.6.3 Physiologically-centric top-down fine-grained models..................... 35 1.6.4 Spatially-centric bottom-up fine-grained models.......................
    [Show full text]
  • Virtual Reality Training for Micro-Robotic Cell Injection
    Virtual Reality Training for Micro-robotic Cell Injection by Syafizwan Nizam Mohd Faroque BSc (Hons), MEd Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Deakin University August, 2016 Abstract Micro-robotic cell injection is a procedure requiring a high degree of precision to manoeuvre a motorised micropipette and deposit a small quantity of material at a particular location inside a cell. Performing the procedure requires three-dimensional movement of the micro-robot with individual or simultaneous control of the three normal Cartesian axes. Currently the micro-robotic cell injection procedure is performed manually by an expert bio-operator where lengthy training and a great deal of experience are required to become proficient. In order to reduce the training cost, duration and ethical issues surrounding the use of real cells for training, this thesis introduces two virtual reality micro-robotic cell injection training platforms. The first is a desktop-sized haptically-enabled virtual reality training system which supports portability and flexibility and employs common personal computer or laptop peripherals. A reconfigurable multipurpose haptic interface was also developed as part of the platform in order to provide convenience in setting up and mobility. The second platform provides a large-scale virtual reality platform for micro-robotic cell injection training. It utilises three large screens which are arranged in different display configurations to provide immersive virtual environment. The three display configurations project a large virtual replication of a micro-robotic cell injection setup in two-dimensional, three-dimensional and three-dimensional i immersive displays respectively. The large display area of the two- dimensional large-scale display can provide a very detailed representation of the environment.
    [Show full text]