Facebook Billionaire Pours Funds Into High-Risk Research Silicon Valley Philanthropy Project Revives Some Grants Rejected by US Government

Total Page:16

File Type:pdf, Size:1020Kb

Facebook Billionaire Pours Funds Into High-Risk Research Silicon Valley Philanthropy Project Revives Some Grants Rejected by US Government NEWS IN FOCUS differences between fields. “Take a group images of cells captured with light microscopes biological phenomena, prompting biologists to of smart biologists and put them in a room of into 3D images in which some of a cell’s orga- ask questions they might not have considered smart computer scientists and they will talk nelles are labelled in colour. The approach before. “The most interesting phrase in science two different languages to each other, and have eliminates the need to stain cells — a process isn’t ‘Eureka!’, but ‘That’s weird — what’s going different mindsets,” says Daphne Koller, chief that requires more time and a sophisticated lab, on?’” Nelson says. computing officer at Calico — a biotechnology and can damage the cell. Last month, the group Such serendipitous discoveries could help to company in San Francisco, California, that is published details of an advanced technique that advance disease research, says Rick Horwitz, the backed by Google’s parent, Alphabet. can predict the shape and location of even more Allen Institute’s executive director. If deep learn- Scientists also had to identify which types cell parts using just a few pieces of data — such ing can reveal subtle markers of cancer in an of study could be conducted using networks as the cell’s outline (G. R. Johnson et al. Preprint individual cell, he says, it could help to improve that must be trained with huge sets of images at bioRxiv http://doi.org/chwv; 2017). how researchers classify tumour progression. before they can start making predictions. “What you’re seeing now is an unprece- That could in turn trigger new hypotheses about When Google wanted to use deep learning to dented shift in how well machine learning can how cancer spreads. find mutations in genomes, its scientists had to accomplish biological tasks that have to do with Other machine-learning connoisseurs in convert strands of DNA letters into images that imaging,” says Anne Carpenter, director of the biology have set their sights on new frontiers, computers could recognize. Then they trained Imaging Platform at the Broad Institute of MIT now that convolutional neural networks are their network on DNA snippets that had been and Harvard in Cambridge, Massachusetts. In taking flight for image processing. “Imaging aligned with a reference genome, and whose 2015, her interdisciplinary team began to pro- is important, but so is chemistry and molec- mutations were known. The end result was cess cell images using convolutional neural ular data,” says Alex Wolf, a computational DeepVariant, a tool released in December that networks; now, Carpenter says, the networks biologist at the German Research Center for can find small variations in DNA sequences. In process about 15% of image data at her centre. Environmental Health in Neuherberg. Wolf tests, DeepVariant performed at least as well as She predicts that the approach will become the hopes to tweak neural networks so that they conventional tools. centre’s main mode of processing in a few years. can analyse gene expression. “I think there Cell biologists at the Allen Institute for Cell Others are most excited by the idea that will be a very big breakthrough in the next few Science in Seattle, Washington, are using con- analysing images with convolutional neural years,” he says, “that allows biologists to apply volutional neural networks to convert flat, grey networks could inadvertently reveal subtle neural networks much more broadly.” ■ FUNDING Facebook billionaire pours funds into high-risk research Silicon Valley philanthropy project revives some grants rejected by US government. BY EWEN CALLAWAY research. And Chris Somerville, a biochemist Moskovitz, whose estimated net worth is and a scientific adviser to the organization, more than $14 billion, and Tuna have said fter his plan to test a cancer vaccine for says that Open Phil’s total spending will rise that they plan to give away most of their for- middle-aged pet dogs was rejected by several times over the coming years. tune during their lifetimes. It is likely that, the US National Institutes of Health A(NIH), inventor and biochemist Stephen Johnston sought funding outside the main- stream system. On 20 December, the Open Philanthropy Project, a grant-giving organi- zation that is largely funded by Facebook co- JOHN MOORE/GETTY founder Dustin Moskovitz and his wife, Cari Tuna, announced that Johnston will receive US$6.4 million to test the vaccine he devel- oped. His team at Arizona State University in Tempe is now poised to enrol its first pooches in a clinical trial. The science-funding efforts of the Open Philanthropy Project, or Open Phil, have so far flown under the radar compared with those of other Silicon Valley funders. But that is likely to change. The organization, which was launched in 2011 but rebranded under its current name in 2014, has significantly boosted its spending to $200 million this year, of which around $40 million went to scientific Dogs with cancer are about to be enrolled in a clinical trial of a vaccine for the disease. 10 | NATURE | VOL 553 | 4 JANUARY©2 0201818 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. ©2018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. IN FOCUS NEWS in terms of impact on research, Open Phil BIOSECURITY will soon rival better-known philanthropy vehicles, such as the Chan Zuckerberg Initiative in Palo Alto, California, which among other efforts awarded $50 million Ban on pathogen in life-sciences grants in 2017 to create a biohub in the San Francisco Bay Area. Open Phil, based in San Francisco, acknowledges the high odds of failure of studies lifted the basic research it funds and, for a private funder, publishes brutally honest assess- ments of its projects. These range from United States allows work to make viruses more dangerous. developing lab-made meat alternatives to work on a controversial genetic-engineering BY SARA REARDON technology called gene drive. For its latest funding round, Open Phil asked scientists he US government has lifted its contro- whose grant applications had been rejected versial ban on funding experiments that EYE OF SCIENCE/SPL by an NIH competition for risky research to make certain pathogens more deadly or dust off their proposals. Some 120 research- Ttransmissible. On 19 December, the National ers resubmitted their requests, and it Institutes of Health (NIH) announced that awarded $10.8 million in total to four teams. scientists can once again use federal money to “My hope is Open Philanthropy can conduct ‘gain-of-function’ research on patho- make the world safe for serendipity again,” gens such as influenza viruses. But the agency says Ed Boyden, a neuroscientist at the also said that researchers’ grant applications Massachusetts Institute of Technology in will undergo greater scrutiny than in the past. Cambridge, who won $3 million from the The goal is to standardize “a rigorous pro- project in 2016. He is working to develop cess that we really want to be sure we’re doing a technology that swells tissue to make it right”, says NIH director Francis Collins. Influenza viruses can be modified in the lab. easier to examine under a microscope. The NIH announcement ends a morato- rium on gain-of-function research that began The plan includes a list of suggested factors TAKING A PUNT in October 2014. Back then, some research- for the HHS to consider, including an assess- Gregory Timp, a biophysicist at the ers argued that the agency’s ban — which ment of a project’s risks and benefits, and a University of Notre Dame in South Bend, singled out research on the viruses that cause determination of whether the investigator and Indiana, who has won $2 million from flu, severe acute respiratory syndrome and institution are capable of conducting the work Open Phil to develop a technology to Middle East respiratory syndrome (MERS) safely. It also says that an experiment should sequence proteins, says that the evaluation — was too broad. The 21 projects halted by proceed only if there is no safer alternative process involved rebutting each of the NIH’s the policy included studies of seasonal flu and method of achieving the same results. critiques of his proposal, as well as several efforts to develop vaccines. The NIH eventu- At the end of the assessment process, the rounds of interviews with scientist advisers. ally allowed ten of these studies to proceed, HHS can recommend that the work go ahead, “They have scientific rigour couched in Cal- but three projects using the MERS virus and ask the researchers to modify their plan or sug- ifornia casual. Everything is informal, but eight dealing with flu remained ineligible for gest that the NIH refuse funding. The NIH will they ask these piercing questions,” he says. US government grants — until now. also judge the proposal’s scientific merit before Katherina Rosqueta, founding execu- While the ban was in effect, the NIH and deciding whether to award grant funding. tive director of the Center for High Impact other government agencies examined the costs Scientists have long debated the merits Philanthropy at the University of Pennsyl- and benefits of allowing such research. In 2016, of gain-of-function research and the new vania in Philadelphia, says that the project’s the National Science decision could reopen that discussion. efforts to share its extensive research and Advisory Board for Gain-of- Yoshihiro Kawaoka, a virologist at the Uni- justify its giving makes it stand out among Biosecurity — an function studies versity of Wisconsin–Madison, whose work private funders. “They have a highly independent panel “risked creating was affected by the moratorium, says the analytical view.
Recommended publications
  • Amy Elizabeth Herr
    Amy E. Herr, Ph.D. John D. & Catherine T. MacArthur Professor Bioengineering, University of California, Berkeley UNIVERSITY OF CALIFORNIA, Berkeley, CA 94720 BERKELEY [email protected] | herrlab.berkeley.edu EDUCATION 01/98 – 09/02 STANFORD UNIVERSITY Stanford, CA Doctor of Philosophy, Mechanical Engineering National Science Foundation Graduate Research Fellow “Isoelectric Focusing for Multi-Dimensional Separations in Microfluidic Devices” Advisors: Profs. Thomas W. Kenny & Juan G. Santiago 09/97 – 01/99 STANFORD UNIVERSITY Stanford, CA Master of Science, Mechanical Engineering National Science Foundation Graduate Research Fellow 09/93 – 06/97 CALIFORNIA INSTITUTE OF TECHNOLOGY (CALTECH) Pasadena, CA Bachelor of Science, Engineering & Applied Science with Honors APPOINTMENTS 07/19 – now JOHN D. & CATHERINE T. MACARTHUR PROFESSOR, UNIVERSITY OF CALIFORNIA, BERKELEY 07/14 – 07/19 LESTER JOHN & LYNNE DEWAR LLOYD DISTINGUISHED PROFESSOR (5-year appointment), UC BERKELEY 07/12 – 07/15 ASSOCIATE PROFESSOR, BIOENGINEERING, UNIVERSITY OF CALIFORNIA, BERKELEY 07/07 – 07/12 ASSISTANT PROFESSOR, BIOENGINEERING, UNIVERSITY OF CALIFORNIA, BERKELEY UC BERKELEY/UCSF GRADUATE GROUP IN BIOENGINEERING Directing a research group focused on design and study of microanalytical tools and methods that exploit scale-dependent physics & chemistry to address questions in the biosciences and biomedicine. Chan Zuckerberg Biohub Investigator (2017-21), National Advisory Council for Biomedical Imaging and Bioengineering (2020-23), Faculty Director of Bakar Faculty Fellows Program (2016-now), Co-Convener of Chancellor’s Advisory Committee on Life Sciences (2019-22), BioE Vice-chair for Engagement (2016- now), Director’s Council for Jacobs Institute of Design Innovation, Board Member of Chemical & Biological Microsystems Society (2013-19; Awards Chair 2016-18), Director of Bioengineering Immersion Experience (2012-22; NIH R25).
    [Show full text]
  • Software for Microscopy Workshop Whitepaper
    Software for Microscopy Workshop White Paper Raghav Chhetri1, Stephan Preibisch1,2, Nico Stuurman3 1 HHMI Janelia Research Campus, Ashburn, VA, USA 2 Berlin Institute for Molecular Systems Biology, MDC, Berlin, Germany 3 Dept. of Cellular and Molecular Pharmacology, University of San Francisco and HHMI/UCSF, USA Workshop Participants: Nenad Amodaj, Luminous Point Hazen Babcock, Harvard University David Bennett, Janelia Research Campus/HHMI Andreas Boden, KTH Royal Institute of Technology, Stockholm Ulrike Boehm, Janelia Research Campus/HHMI Peter Brown, Arizona State University Ahmet Can Solak, Chan Zuckerberg Biohub Yannan Chen, Columbia University Raghav Chhetri, Janelia Research Campus/HHMI Kevin Dean, UT Southwestern Medical Center Michael DeSantis, Janelia Research Campus/HHMI Brian English, Janelia Research Campus/HHMI Paul French, Imperial College London Adam Glaser, University of Washington John Heddleston, Janelia Research Campus/HHMI Elizabeth Hillman, Columbia University Georg Jaindl, Vidrio Technologies Justine Larsen, Chan Zuckerberg Initiative Jeffrey Kuhn, Massachusetts Institute of Technology Sunil Kumar, Imperial College London Xuesong Li, National Institutes of Health/NIBIB Brian Long, Allen Institute Rusty Nicovich, Allen Institute Henry Pinkard, University of California, Berkeley Stephan Preibisch, Janelia Research Campus/HHMI Blair Rossetti, Janelia Research Campus/HHMI Loic Royer, Chan Zuckerberg Biohub Doug Shepherd, Arizona State University Nicholas Sofroniew, Chan Zuckerberg Initiative Elliot Steel, University
    [Show full text]
  • Improved COVID-19 Serology Test Performance by Integrating Multiple Lateral Flow Assays Using Machine Learning
    medRxiv preprint doi: https://doi.org/10.1101/2020.07.15.20154773; this version posted July 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Improved COVID-19 Serology Test Performance by Integrating Multiple Lateral Flow Assays using Machine Learning Cody T. Mowery1-6, Alexander Marson3-11, Yun S. Song10,12-13,*, and Chun Jimmie Ye9-11,14-16,* 1Medical Scientist Training Program, University of California, San Francisco, CA 94143, USA 2Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA 3Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA 4J. David Gladstone Institutes, San Francisco, CA 94158, USA 5Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA 6Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA 7Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA 8Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA 9Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA 10Chan Zuckerberg Biohub, San Francisco, CA, USA 11Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA 12Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, USA 13Department of Statistics, University of California, Berkeley, CA 94720, USA 14Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA 15Institute of Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA 16Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA *Correspondence should be addressed to Y.S.S.
    [Show full text]
  • A SARS-Cov-2 Variant That Occurs Worldwide and Has Spread In
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.25.265074; this version posted August 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Article Summary Line: A SARS-CoV-2 variant that occurs worldwide and has spread in 2 California significantly affects diagnostic sensitivity of an N gene assay, highlighting the need to 3 employ multiple viral targets for detection. 4 Running Title: N gene variant reduces SARS-CoV-2 test sensitivity 5 Keywords: SARS-CoV-2, COVID-19, diagnosis, phylogeny, PCR, nucleocapsid 6 Title: Identification of a polymorphism in the N gene of SARS-CoV-2 that adversely impacts 7 detection by a widely-used RT-PCR assay. 8 Authors: Manu Vanaerschot, Sabrina A. Mann, James T. Webber, Jack Kamm, Sidney M. Bell, 9 John Bell, Si Noon Hong, Minh Phuong Nguyen, Lienna Y. Chan, Karan D. Bhatt, Michelle 10 Tan, Angela M. Detweiler, Alex Espinosa, Wesley Wu, Joshua Batson, David Dynerman, 11 CLIAHUB Consortium, Debra A. Wadford, Andreas S. Puschnik, Norma Neff, Vida Ahyong, 12 Steve Miller, Patrick Ayscue, Cristina M. Tato, Simon Paul, Amy Kistler, Joseph L. DeRisi, 13 Emily D. Crawford 14 Affiliations: 15 Chan Zuckerberg Biohub, San Francisco, California, USA (Manu Vanaerschot, Sabrina A. 16 Mann, James T. Webber, Jack Kamm, Lienna Y Chan, Karan D. Bhatt, Michelle Tan, Angela M. 17 Detweiler, Wesley Wu, Josh Batson, David Dynerman, Andreas S. Puschnik, Vida Ahyong, 18 Norma Neff, Patrick Ayscue, Cristina M. Tato, Amy Kistler, Joseph L.
    [Show full text]
  • A Chimeric Nuclease Substitutes a Phage CRISPR-Cas System
    RESEARCH ARTICLE A chimeric nuclease substitutes a phage CRISPR-Cas system to provide sequence- specific immunity against subviral parasites Zachary K Barth1†, Maria HT Nguyen1, Kimberley D Seed1,2* 1Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States; 2Chan Zuckerberg Biohub, San Francisco, United States Abstract Mobile genetic elements, elements that can move horizontally between genomes, have profound effects on their host’s fitness. The phage-inducible chromosomal island-like element (PLE) is a mobile element that integrates into the chromosome of Vibrio cholerae and parasitizes the bacteriophage ICP1 to move between cells. This parasitism by PLE is such that it abolishes the production of ICP1 progeny and provides a defensive boon to the host cell population. In response to the severe parasitism imposed by PLE, ICP1 has acquired an adaptive CRISPR-Cas system that targets the PLE genome during infection. However, ICP1 isolates that naturally lack CRISPR-Cas are still able to overcome certain PLE variants, and the mechanism of this immunity against PLE has thus far remained unknown. Here, we show that ICP1 isolates that lack CRISPR-Cas encode an endonuclease in the same locus, and that the endonuclease provides ICP1 with immunity to a subset of PLEs. Further analysis shows that this endonuclease is of chimeric origin, incorporating a DNA-binding domain that is highly similar to some PLE replication origin-binding proteins. This similarity allows the endonuclease to bind and cleave PLE origins of replication. The endonuclease appears to exert considerable selective pressure on PLEs and may drive PLE replication module *For correspondence: [email protected] swapping and origin restructuring as mechanisms of escape.
    [Show full text]
  • Comparative Host-Coronavirus Protein Interaction Networks Reveal Pan-Viral Disease Mechanisms
    RESEARCH ARTICLES Cite as: D. E. Gordon et al., Science 10.1126/science.abe9403 (2020). Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms David E. Gordon1,2,3,4*, Joseph Hiatt1,4,5,6,7*, Mehdi Bouhaddou1,2,3,4*, Veronica V. Rezelj8*, Svenja Ulferts9*, Hannes Braberg1,2,3,4*, Alexander S. Jureka10*, Kirsten Obernier1,2,3,4*, Jeffrey Z. Guo1,2,3,4*, Jyoti Batra1,2,3,4*, Robyn M. Kaake1,2,3,4*, Andrew R. Weckstein11*, Tristan W. Owens12*, Meghna Gupta12*, Sergei Pourmal12*, Erron W. Titus12*, Merve Cakir1,2,3,4*, Margaret Soucheray1,2,3,4, Michael McGregor1,2,3,4, Zeynep Cakir1,2,3,4, Gwendolyn Jang1,2,3,4, Matthew J. O’Meara13, Tia A. Tummino1,2,14, Ziyang Zhang1,2,3,15, Helene Foussard1,2,3,4, Ajda Rojc1,2,3,4, Yuan Zhou1,2,3,4, Dmitry Kuchenov1,2,3,4, Ruth Hüttenhain1,2,3,4, Jiewei Xu1,2,3,4, Manon Eckhardt1,2,3,4, Danielle L. Swaney1,2,3,4, Jacqueline M. Fabius1,2, Manisha Ummadi1,2,3,4, Beril Tutuncuoglu1,2,3,4, Ujjwal Rathore1,2,3,4, Maya Modak1,2,3,4, Paige Haas1,2,3,4, Kelsey M. Haas1,2,3,4, Zun Zar Chi Naing1,2,3,4, Ernst H. Pulido1,2,3,4, Ying Shi1,2,3,15, Inigo Barrio-Hernandez16, Danish Memon16, Eirini Petsalaki16, Alistair Dunham16, Downloaded from Miguel Correa Marrero16, David Burke16, Cassandra Koh8, Thomas Vallet8, Jesus A. Silvas10, Caleigh M. Azumaya12, Christian Billesbølle12, Axel F. Brilot12, Melody G. Campbell12,17, Amy Diallo12, Miles Sasha Dickinson12, Devan Diwanji12, Nadia Herrera12, Nick Hoppe12, Huong T.
    [Show full text]
  • Speaker/Panelist Biographies
    2021 UCSF-Stanford CERSI Innovations in Regulatory Science Summit Speaker/Panelist Biographies Amy P. Abernethy, MD, PhD Principal Deputy Commissioner, U.S. Food and Drug Administration Amy P. Abernethy, M.D., Ph.D. is an oncologist and internationally recognized clinical data expert and clinical researcher. As the Principal Deputy Commissioner of Food and Drugs, Dr. Abernethy helps oversee FDA’s day-to-day functioning and directs special and high-priority cross-cutting initiatives that impact the regulation of drugs, medical devices, tobacco and food. As acting Chief Information Officer, she oversees FDA’s data and technical vision, and its execution. She has held multiple executive roles at Flatiron Health and was professor of medicine at Duke University School of Medicine, where she ran the Center for Learning Health Care and the Duke Cancer Care Research Program. Dr. Abernethy received her M.D. at Duke University, where she did her internal medicine residency, served as chief resident, and completed her hematology/oncology fellowship. She received her Ph.D. from Flinders University, her B.A. from the University of Pennsylvania and is boarded in palliative medicine. Disclosures: None Hal Barron, MD Chief Scientific Officer and President, R&D, GlaxoSmithKline Hal joined GSK as Chief Scientific Officer and President, R&D on 1 January 2018. He was also appointed to the GSK Board of Directors as an Executive Director and member of the Science Committee. Hal is responsible for all research and development of our pipeline molecules as well as life-cycle management of the approved medicines. He is a member of the Corporate Executive Team.
    [Show full text]
  • Katherine S. Pollard Research Positions Education Honors & Awards
    Katherine S. Pollard Gladstone Institutes ● University of California ● Chan Zuckerberg Biohub 1650 Owens Street, San Francisco, CA 94158 http://docpollard.org/ Research Positions Gladstone Institutes. Director, Institute of Data Science & Biotechnology, 2016–present. Senior Investigator, 2014–present. Associate Investigator, 2008–2014. UC San Francisco. Director, Bioinformatics Graduate Program, 2019–present. Professor, 2014–present. Associate Professor, 2008–2014. Chan Zuckerberg Biohub. Investigator, 2018–present. Simons Institute for the Theory of Computing. Visiting Professor. 2016. UC Davis. Assistant Professor. 2005–2008. UC Santa Cruz. Postdoctoral Fellow. 2003–2005. Mentors: David Haussler & Todd Lowe. UC Berkeley. Graduate Student. 1998–2003. Mentors: Mark van der Laan & Sandrine Dudoit. Chiron Corporation. Intern. 1999–2003. U of Bristol and United Medical & Dental Schools, UK. Research Assistant. 1996-1998. Education UC Berkeley, MA and PhD in Biostatistics. 1998–2003. Pomona College, BA Summa Cum Laude in Anthropology and Mathematics. 1991–1995. Johns Hopkins School of Public Health, Summer Graduate Program in Epidemiology. 1995. Mills College, Summer Math Institute. 1994. Honors & Awards Fellow, International Society for Computational Biology. 2020. UC Davis Storer Distinguished Lecture. 2020. Gladstone Mentoring Award. 2019. Chan Zuckerberg Biohub Investigator. 2017–present. Fellow, California Academy of Sciences. 2013–present. Women Who Lead in the Life Sciences. SF Business Times. 2018. 75 Most Influential Alumni, UC Berkeley School of Public Health. 2018. Best Scientific Visualizations of the Year, Wired Magazine. 2013. Alumna of the Year, UC Berkeley School of Public Health. 2013. Life Sciences Distinguished Lecturer, Brandeis University, 2013. Edward H. Birkenmeier Distinguished Lecturer, Jackson Laboratory, 2013. Breakthrough Biomedical Research Award, UCSF. 2009–2010. Sloan Research Fellowship, Alfred P.
    [Show full text]
  • The Making of the Biohub
    news feature Sundry Photography / Alamy Stock Photo. The making of the Biohub The Chan Zuckerberg Biohub is both an institute and an academic network devoted to accelerating research via cutting edge technologies and open science. Its focus on single-cell analysis and infectious disease has placed it front and center in the pandemic. Laura DeFrancesco global pandemic is something Joe Before long, the virus had arrived on The pivot on a dime was possible DeRisi has been preparing for his his doorstep in San Francisco, California, because the Biohub is funded by the Aentire career. What he didn’t expect and DeRisi and his colleagues pivoted to Chan Zuckerberg Initiative (CZI) — a was that the viral scourge would ravage so throw their considerable technological philanthropy set up by pediatrician Priscilla close to home. DeRisi was in the process of expertise and infrastructure at it. They Chan and tech titan Mark Zuckerberg to standing up sequencing technology to help set up a COVID-19 testing lab and leverage technology, community-based researchers in ten low- to middle-income recruited several hundred skilled volunteer solutions and collaboration to accelerate countries detect known, emerging or novel researchers from around the Bay Area. education, justice, opportunity and pathogens. In early January, during a visit to With the help of California governor Gavin science. Together with Steve Quake of one such station in Phnom Penh, Cambodia, Newsom, as well as the administrators at Stanford University, DeRisi is co-president his cloud-based IDseq tool, developed for their sister institution the University of of CZI Science’s Biohub, the first major scanning metagenomics data, sequenced California, San Francisco (UCSF), collaboration to come out of CZI’s Science the first full length COVID-19 genome in the necessary permits were acquired initiative.
    [Show full text]
  • O Research Development Office
    Research Development RDO Office OCTOBER 2016 BI-MONTHLY EMAIL NEWSLETTER VOLUME 2, NUMBER 5 The RDO serves at the nexus of research and research administration, acting as a catalyst for the UCSF research enterprise by facilitating productive research collaboration, early pilot funding, and effective proposal development. • RAP: Resource Allocation Program • SSP: Special Strategic Projects • LSP: Limited Submission Program • LGDP: Large Grant Development Program • TSRIP: Team Science for Research Innovation Program • RDO Team News and Outreach Activities • Research Development Internship Opportunity RAP: Resources Allocation Program The Fall 2016 Cycle applications are now under review! The results of this competition will be available before the Winter break. All applicants will receive written feedback along with their final scores. The next call for applications will go out January 2017. The program website provides useful “Resources” including tips on “How to Apply” and be successful. If you are interested in a face-to-face meeting to learn more about RAP opportunities, don’t hesitate to contact us at [email protected] . RAP has a new Program Coordinator: Patty Hoppe joined the team this October. Patty comes to RAP with extensive academic experience and we are thrilled to have her on board! SSP: Special Strategic Projects Marcus Program in Precision Medicine Innovation (MPPMI): The RDO, in partnership with the Precision Medicine Platform Committee and the Vice Chancellor for Science Policy and Strategy’s Office, developed and launched the George and Judy Marcus Program in Precision Medicine Innovation (MPPMI) in early 2016. As part of the programmatic goal to foster new and innovative collaborations, the RDO’s Team Science for Research Innovation Program hosted the Marcus Mixer on October 13th.
    [Show full text]
  • UCSF Diversity, Equity and Inclusion Annual Report 2018-2019
    UCSF DIVERSITY, EQUITY AND INCLUSION ANNUAL REPORT 2018-2019 This past year was full of initiatives to advance our PRIDE Values as well as the Chancellor’s Pillar of Equity and Inclusion. As we began the year, and in partnership with School of Medicine Differences Matter Initiative, the Office of Diversity and Outreach gathered stakeholders from across UCSF to take stock WELCOME of our achievements and areas for improvement, and update the 2013 Roadmap to Inclusive Excellence: Strategic Plan for Diversity, Equity, and Inclusion. At the retreat, we heard the need for continued climate improvements and for wider, more standardized diversity, equity, and inclusion (DEI) training, and have initiated two task forces to address these issues. As part of the climate task force, we plan to conduct a climate survey in the fall of 2020 to assess where we are and what improvements we have made since the While many of our shared values are currently under last survey was administered in 2012-2013. The Office of Diversity attack on the national stage, the UCSF community Throughout the year, the Multicultural Resource Center continues to live our commitment to diversity, equity, supported students, staff, and faculty members with a and Outreach drives the and inclusion. As we begin a new academic year, wide variety of programming and educational sessions University’s efforts to create this report highlights some of the major activities dedicated to nurturing the diverse UCSF community. The in support of diversity and inclusion at UCSF during LGBT Resource Center launched the highly successful a culture of inclusion for all.
    [Show full text]
  • WCSJ2017 Final Report
    Bridging Science & Societies FINAL REPORT THE 10TH WORLD CONFERENCE OF SCIENCE JOURNALISTS — WAS BROUGHT TO YOU BY... TABLE OF CONTENTS Organizers WCSJ2017 in Review 04 Attendees from Around the World 06 Total Registrants 07 The Council for the Advancement of Science Writing (CASW) is a In 1934, a dozen pioneering science reporters established the National non-profit panel of distinguished journalists, science communications Association of Science Writers (NASW) at a meeting in New York City. Quotes from Attendees 08 specialists, and scientists committed to improving the quality and quantity They wanted a forum in which to join forces to improve their craft and Favorite Tweets 12 of science news reaching the public. Founded in 1959, CASW develops encourage conditions that promote good science writing. Today, NASW and funds programs to help reporters and writers produce accurate and has more than 2,000 members. The association charter is to “foster the Conference Program 14 informative stories about developments in science, technology, medicine, dissemination of accurate information regarding science through all and the environment. Its flagship program is the New Horizons in Science media normally devoted to informing the public.” Over the years, NASW Conference Website 22 briefing, now in its 56th year. CASW honors superior writing by bestowing officers have included both freelancers and employees of most of the the Victor Cohn Prize for Excellence in Medical Science Reporting and major newspapers, wire services, magazines, and broadcast outlets in the Student Newsroom 23 the Evert Clark/Seth Payne Award for a Young Science Journalist. The country. Above all, NASW fights for the free flow of science news.
    [Show full text]