Climbing and Columnar Cacti: New Arid Land Fruit Crops

Total Page:16

File Type:pdf, Size:1020Kb

Climbing and Columnar Cacti: New Arid Land Fruit Crops Reprinted from: Perspectives on new crops and new uses. 1999. J. Janick (ed.), ASHS Press, Alexandria, VA. Climbing and Columnar Cacti: New Arid Land Fruit Crops Yosef Mizrahi and Avinoam Nerd* In Israel, scarcity of water, high input prices, and market competition limit the number of orchard crops that can be grown profitably. Our approach to the further development of the horticultural industry in the dry regions of Israel—the Negev and Judean deserts—is thus to establish new crops that will demand high prices in the export markets (Mizrahi and Nerd 1996). To this end, about 40 species of rare or wild fruit trees were introduced by us into these dry regions in a number of locations that differed in terms of soil, water, and climate (Nerd et al. 1990; Mizrahi and Nerd 1996). Emphasis was placed on candidates of the Cactaceae because of their high water-use efficiency (5–10 times higher than that of most conventional crops), resulting in low water requirement (Nobel 1988, 1994). The high water-use efficiency of cacti is provided by their unique photosynthetic pathway—crassulacean acid metabolism (CAM). In CAM plants, the stomata open and CO2 uptake takes place during the night when evaporation is low. Among the Cactaceae, there are about 35 species that have a potential for cultivation as fruit, vegetable, or forage crop species (Nobel 1994; Mizrahi et al. 1997). Starting in 1984, we have introduced, for investigation as potential crop species, 17 members of the subfamily Cactoidae (Nerd et al. 1990; Mizrahi and Nerd 1996). Among these, four climbing (epiphytic) species and one columnar species have already been planted as commercial crops, and their fruits are being exported successfully to European markets as exotic fruits from Israel. The main reasons that these crops have made their way onto the market within so short a time after introduction are their precocious early yield- ing (three to four years after seeding or one to three years after propagation from cuttings) and their accept- ability in the markets. At present, our studies are aimed at examining the environmental adaptations of the species and their reproductive biology mode and at developing appropriate agrotechnological practices. In addition, a breeding program accompanied by cytological and molecular studies is being carried out in order to develop improved clones for cultivation. This review is divided into two parts. The first part deals with the climbing cacti of the genera Selenicereus and Hylocereus and the other with the columnar cactus Cereus peruvianus. CLIMBING (EPIPHYTIC) CACTI Taxonomy We collected wild or cultivated types of climbing cacti from a variety of sources—amateur cactus lovers, growers, botanical gardens, and backyards. We very soon realized that there is tremendous confusion about the taxonomic identity of these cacti: accessions with the same name were found to be of different species. We are currently applying cytological and molecular techniques to determine the proper taxonomic identities of the species that we have introduced (Lichtenzveig 1997). These species belong to at least to two different genera, Selenicereus and Hylocereus. From the genus Selenicereus we will elaborate here only on one species S. megalanthus, currently grown in Israel and in Colombia, where it is known as yellow pitaya (Hunt 1989; Barthlott and Hunt 1993), Acces- sions of S. megalanthus were introduced by us as H. triangularis or H. undatus and were later classified as S. megalanthus (Weiss et al. 1995; Mizrahi et al. 1997). We have 37 selected clones from this species. From the genus Hylocereus, we have introduced the following species, some with a number of clones (Table 1): H. undatus, H. polyrhizus, H. purpusii, H. ocamponis, and H. costaricensis (Britton and Rose 1963; Barthlott and Hunt 1993). In addition, we have introduced some promising unidentified clones of Hylocereus (Hylocereus sp.), the best of which was designated as 10487. Of these species, only the ones that are currently being grown in Israel for export are described in this paper, as follows: H. undatus, H. polyrhizus, and Hylocereus *The authors thank the Fleischer Foundation and Harry-Stern & Hellen-Zoref Fund for Applied Research at BGU, for supporting this program. Special thanks to Mrs. Inez Mureinik for editing the manuscript. 358 sp. The later two species are not cultivated any where else in the world to the best of our knowledge. Some of these and other species are grown elsewhere: H. costaricensis, ( several commercial clones) as grown in Nica- ragua (known as red pitaya); H. undatus, in Mexico (known as pitahaya), in other Latin American countries (known as pitaya), in Vietnam (known as dragon pearl fruit or thang loy) (Mizrahi et al. 1997), and according to colleagues there, in Guatemala. Horticulture At the beginning of our program, there was very little information available in the scientific literature on cultivation and biological background of these cacti. This information was mainly in Spanish in the form of hard-to-get dissertations and professional brochures (Mizrahi et al. 1997). We thus set out to investigate both horticultural and physiological aspects of climbing cacti and the results of our studies have been published in the professional literature, as follows: reproductive biology (Weiss et al. 1991, 1994a,b; Nerd and Mizrahi 1997), shading requirements (Raveh et al. 1993, 1996, 1998), and fruit development, ripening, and post-har- vest handling (Nerd and Mizrahi 1998, 1999). Here, we will summarize some of the results and give details of new unpublished data to provide an up-to-date picture of the state-of-the-art know-how and marketing. Light tolerance. The climbing cacti originate in shady habitats of subtropical and tropical America. In Israel, the canopy suffers from bleaching and die back when these species are grown outdoors as a result of the intensive irradiation (noon photosynthetic photon flux densities can reach as much as 2200 mmol photons m-2 s-1). Our studies showed that for optimal development they have to be planted in nethouses and the re- quired shade level (ranging between 30–60%) depends on the particular species as well as on the location (Fig. 1) (Raveh et al. 1996, 1998). H. polyrhizus and H. costaricensis are the most light tolerant, probably because of their unique skin characteristics (a wax cover and a thick skin). The radiation stress is exacerbated by high temperatures, as discussed below. Temperature tolerance. Sub-freezing temperatures damage the climbing cacti, and for most species 0°C is the minimal threshold for cultivation. Among the investigated species, Hylocereus sp. (10487) was the most sensitive to low temperatures and suffered cold injury when the temperature fell below 4°C. In the areas of the Negev with low night temperatures, the climbing cacti have to be cultivated in plastic- or glass-houses. Symptoms of cold injury are round lesions that expand along the stems. Plants recover easily when tempera- ture increases. Our long-term observations showed that in the hottest parts of the Negev (Arava and Jordan valleys), where extreme summer temperatures (Fig. 3, 4) may rise up to 45°C, (average 39°C), annual flower produc- 40 Plastic only 30 +Net 20 10 Shoot damage (m) 0 H. polyrhizus H. undatus H. sp. (10487) Species Fig. 2. Heat and radiation damage to three Hylocereus species growing in a greenhouse in Beer-Sheva in the summer of 1998. The damage was estimated as the length (m) of stem that was liquefied along the trellis system. The net pro- vided over 60% shade. Selenicereus megalanthus was not damaged by the high temperature. The Fig. 1. Cactus grown in a nethouse. numbers are averages per plant ± SE. 359 tion was very low, being about 15–20% of that obtained in areas with more moderate temperatures (where the average summer temperatures are lower by approximately 7°C). The timing of flowering was also affected by temperature. In areas with more moderate temperatures, flushes of flowers appeared in Hylocereus species from May to November and in S. megalanthus from September to December. Table 1. Species of the crawling cacti Hylocereus and In the hotter areas, flowering of both gen- Selenicereus introduced by Ben-Gurion University of the era was restricted mainly to the cool sea- Negev sons, May and Oct./Nov. for Hylocereus species and Nov./Dec. for S. megalanthus. No. of clones In physical terms, H. undatus showed the Grown greatest sensitivity to the extremely high Species Introduced commercially temperatures of the hot valleys: segments of stems at the surface of the shrubs turned H. costaricensis (Weber) 1 brown and became liquefied. The spell of Britton & Rose unusually high temperatures during the past H. ocamponis (Salm-Dyck) 1 summer in Beer-Sheva (4–5°C above the Britton & Rose multiannual average) (Fig. 3, 4) resulted in H. polyrhizus Weber 7 2 extensive damage to H. undatus, but very H. purpusii Weingart 1 small to the other species and nil to Hylocereus sp. 8 2 Selenicereus megalanthus (Fig 2). The H. undatus (Haworth) 27 3 damage becomes more intensive when Briton & Rose combined with high light radiation (Fig 2). S. megalanthus (Schum.) 37 6 Raveh et al. (1995) also reported physi- Britton & Rose ological damage to Hylocereus undatus Total 82 13 when grown under 35/45°C night/day tem- perature regime. The results of these stud- Outdoor Greenhouse-Beer Sheva ies indicate that these climbing cacti should 40 40 not be planted in extremely hot areas. H. Maximum Maximum undatus should be avoided, others may be manipulated with different shading regimes 30 30 and/or other agrotechniques, the feasibil- 20 20 ity of which should be tested. Minimum Reproductive biology. Studies on the Minimum Average temp (˚C) 10 10 reproductive biology of these cacti, includ- Qetura 1998 ing the work of Weiss et al.
Recommended publications
  • Pitahaya (Hylocereus Spp.): a New Fruit Crop, a Market with a Future
    Review Pitahaya (Hylocereus spp.): a new fruit crop, a market with a future a* b c Fabrice LE BELLEC , Fabrice VAILLANT , Eric IMBERT a Cirad, UPR Production Pitahaya (Hylocereus spp.): a new fruit crop, a market with a future. fruitière, Stn. de Neufchâteau, Capesterre B/E, Guadeloupe, Abstract –– Introduction. Still practically unknown in the mid-1990s in Europe, pitahaya F-97130 France, (Hylocereus spp.) is now a full member of the ‘small exotic fruits’ category in shops. Never- [email protected] theless, these species are not very well known. The aims of our work were first to evaluate thoroughly the literature currently available on Hylocereus and secondly to supplement this b Cirad, UPR Qualité des review by agronomic works not yet published. Knowledge of Hylocereus. The study inclu- aliments, Cita, Univ. Costa des a presentation of the origin, botany, morphology and floral biology of the principal spe- Rica, 2060 San José, cies cultivated within the Hylocereus genus and suggests a key for determination. Costa Rica Cultivation techniques. The agronomical practices used in Hylocereus orchards are broa- ched: multiplication, cultivation practices (supports, density, pruning, mineral nutrition, irriga- c Cirad, UPR bananes et tion, etc.), pollination and harvest. Pests and diseases are cited too. Physico-chemical ananas, Blvd. La Lironde, TA 50 /PS 4, composition of fruits. This work draws up a review of different studies regarding pitahaya Montpellier Cedex 5, composition, micronutrients and pigments. Post-harvest and processing. The life of the F-34398 France fruit after harvest (conservation and storage life) is approached as well as the various possibi- lities of processing.
    [Show full text]
  • LA INFLUENCIA De FRANCISCO HERNÁNDEZ En La CONSTITUCIÓN De La BOTÁNICA MATERIA MÉDICA MODERNAS
    JOSÉ MARíA LÓPEZ PIÑERO JOSÉ PARDO TOMÁS LA INFLUENCIA de FRANCISCO HERNÁNDEZ (1515-1587) en la CONSTITUCIÓN de la BOTÁNICA y la MATERIA MÉDICA MODERNAS INSTITUTO DE ESTUDIOS DOCUMENTALES E HISTÓRICOS SOBRE LA CIENCIA UNIVERSITAT DE VALENCIA - C. S. 1. C. VALENCIA, 1996 La influencia de Francisco Hernández (1515·1587) en la constitución de la botánica y la materia médica modernas CUADERNOS VALENCIANOS DE HISTORIA DE LA MEDICINA y DE LA CIENCIA LI SERIE A (MONOGRAFÍAS) JOSÉ MARÍA LÓPEZ PIÑERO JOSÉ PARDO TOMÁS La influencia de Francisco Hernández (1515-1587) en la constitución de la botánica y la materia médica modernas INSTITUTO DE ESTUDIOS DOCUMENTALES E HISTÓRICOS SOBRE LA CIENCIA UNIVERSITAT DE VALENCIA - C.S.I.C. VALENCIA, 1996 IMPRESO EN ESPA~A PRINTED IN SPAIN I.S.B.N. 84-370-2690-3 DEPÓSITO LEGAL: v. 3.795 - 1996 ARTES GRÁFICAS SOLER, S. A. - LA OLlVERETA, 28 - 46018 VALENCIA Sumario Los estudios sobre Francisco Hernández y su obra ...................................... 9 El marco histórico de la influencia de Hernández: la constitución de la botánica y de la materia médica modernas ........................................ 21 Francisco Hernández y su Historia de las plantas de Nueva España .......................................................................................... 35 El conocimiento de las plantas americanas en la Europa de la transición de los siglos XVI al XVII ........................................................... 113 La edición de materiales de la Historia de las plantas de Nueva España durante la primera
    [Show full text]
  • Caryophyllales 2018 Instituto De Biología, UNAM September 17-23
    Caryophyllales 2018 Instituto de Biología, UNAM September 17-23 LOCAL ORGANIZERS Hilda Flores-Olvera, Salvador Arias and Helga Ochoterena, IBUNAM ORGANIZING COMMITTEE Walter G. Berendsohn and Sabine von Mering, BGBM, Berlin, Germany Patricia Hernández-Ledesma, INECOL-Unidad Pátzcuaro, México Gilberto Ocampo, Universidad Autónoma de Aguascalientes, México Ivonne Sánchez del Pino, CICY, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México SCIENTIFIC COMMITTEE Thomas Borsch, BGBM, Germany Fernando O. Zuloaga, Instituto de Botánica Darwinion, Argentina Victor Sánchez Cordero, IBUNAM, México Cornelia Klak, Bolus Herbarium, Department of Biological Sciences, University of Cape Town, South Africa Hossein Akhani, Department of Plant Sciences, School of Biology, College of Science, University of Tehran, Iran Alexander P. Sukhorukov, Moscow State University, Russia Michael J. Moore, Oberlin College, USA Compilation: Helga Ochoterena / Graphic Design: Julio C. Montero, Diana Martínez GENERAL PROGRAM . 4 MONDAY Monday’s Program . 7 Monday’s Abstracts . 9 TUESDAY Tuesday ‘s Program . 16 Tuesday’s Abstracts . 19 WEDNESDAY Wednesday’s Program . 32 Wednesday’s Abstracs . 35 POSTERS Posters’ Abstracts . 47 WORKSHOPS Workshop 1 . 61 Workshop 2 . 62 PARTICIPANTS . 63 GENERAL INFORMATION . 66 4 Caryophyllales 2018 Caryophyllales General program Monday 17 Tuesday 18 Wednesday 19 Thursday 20 Friday 21 Saturday 22 Sunday 23 Workshop 1 Workshop 2 9:00-10:00 Key note talks Walter G. Michael J. Moore, Berendsohn, Sabine Ya Yang, Diego F. Registration
    [Show full text]
  • Postharvest Disease Development  Postharvest • Elazar Fallik Elazar •
    Postharvest Development Disease • Elazar Fallik Postharvest Disease Development Edited by Elazar Fallik Printed Edition of the Special Issue Published in Horticulturae www.mdpi.com/journal/horticulturae Postharvest Disease Development Postharvest Disease Development Pre and/or Postharvest Practices Editor Elazar Fallik MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Elazar Fallik ARO-the Volcani Center, Department of Postharvest Science Israel Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Horticulturae (ISSN 2311-7524) (available at: https://www.mdpi.com/journal/horticulturae/special issues/postharvest disease). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-0302-8 (Hbk) ISBN 978-3-0365-0303-5 (PDF) Cover image courtesy of Elazar Fallik. © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Preface to ”Postharvest Disease Development” ............................ ix Natalia Besil, Veronica´ Cesio, Eleana Luque, Pedro Pintos, Fernando Rivas and Horacio Heinzen Dissipation of Pre-Harvest Pesticides on ‘Clementine’ Mandarins after Open Field Application, and Their Persistence When Stored under Conventional Postharvest Conditions Reprinted from: Horticulturae 2018, 4, 55, doi:10.3390/horticulturae4040055 ...........
    [Show full text]
  • Acanthocereus Tetragonus SCORE: 16.0 RATING: High Risk (L.) Hummelinck
    TAXON: Acanthocereus tetragonus SCORE: 16.0 RATING: High Risk (L.) Hummelinck Taxon: Acanthocereus tetragonus (L.) Hummelinck Family: Cactaceae Common Name(s): barbed-wire cactus Synonym(s): Acanthocereus occidentalis Britton & Rose chaco Acanthocereus pentagonus (L.) Britton & Rose sword-pear Acanthocereus pitajaya sensu Croizat triangle cactus Cactus pentagonus L. Cactus tetragonus L. Assessor: Chuck Chimera Status: Assessor Approved End Date: 1 Nov 2018 WRA Score: 16.0 Designation: H(HPWRA) Rating: High Risk Keywords: Spiny, Agricultural Weed, Environmental Weed, Dense Thickets, Bird-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y
    [Show full text]
  • There Are Other Species That Have Thin Trailing Stems, with Spine Clusters
    There are other species that have thin MottramPhoto: Roy Mottram Photo: Roy trailing stems, with spine clusters, and look like a normal cactus, for example Aporocactus (the Rat’s Tail Cactus, easy to grow and spectacular in a hanging basket) (Fig. 3) and Selenicereus (the Queen of the Night) (Fig. 4). This plant likes to climb and scramble along the rafters of a greenhouse, but be careful as it can push through vents. The flowers are produced throughout the summer and take several weeks to develop. The flowers begin to open around 8.00pm and are finished by 8.00am the next day, but it is worth staying up to see them. Around 230mm (9”) diameter, they form creamy white trumpets with brownish thin outer petals and are slightly scented. A third interesting genus is Rhipsalis with a profusion of, mainly, small flow- ers and colourful berries (Figs. 5a–c). It is a good idea to give all epiphytes a Fig. 3 Aporocactus flagelliformis, the Rat’s Tail Cactus spell outside during the frost free months of the summer. Hanging baskets can be hung under trees, where the dappled shade is ideal. Pots of epicacti like a shady wall, and will often set fruit. Suitable composts include any rich in humus or peat, preferably slightly acidic and with very good drainage by the liberal addition of grit, gravel and/or sharp sand. They often have quite small root systems, particularly schlumbergeras, so when repotting, choose a pot only a little larger than their current one. As for other cacti, leave dry for a week after repotting, and longer if there is any root damage or rot.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    SYSTEMATICS OF TRIBE TRICHOCEREEAE AND POPULATION GENETICS OF Haageocereus (CACTACEAE) By MÓNICA ARAKAKI MAKISHI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 © 2008 Mónica Arakaki Makishi 2 To my parents, Bunzo and Cristina, and to my sisters and brother. 3 ACKNOWLEDGMENTS I want to express my deepest appreciation to my advisors, Douglas Soltis and Pamela Soltis, for their consistent support, encouragement and generosity of time. I would also like to thank Norris Williams and Michael Miyamoto, members of my committee, for their guidance, good disposition and positive feedback. Special thanks go to Carlos Ostolaza and Fátima Cáceres, for sharing their knowledge on Peruvian Cactaceae, and for providing essential plant material, confirmation of identifications, and their detailed observations of cacti in the field. I am indebted to the many individuals that have directly or indirectly supported me during the fieldwork: Carlos Ostolaza, Fátima Cáceres, Asunción Cano, Blanca León, José Roque, María La Torre, Richard Aguilar, Nestor Cieza, Olivier Klopfenstein, Martha Vargas, Natalia Calderón, Freddy Peláez, Yammil Ramírez, Eric Rodríguez, Percy Sandoval, and Kenneth Young (Peru); Stephan Beck, Noemí Quispe, Lorena Rey, Rosa Meneses, Alejandro Apaza, Esther Valenzuela, Mónica Zeballos, Freddy Centeno, Alfredo Fuentes, and Ramiro Lopez (Bolivia); María E. Ramírez, Mélica Muñoz, and Raquel Pinto (Chile). I thank the curators and staff of the herbaria B, F, FLAS, LPB, MO, USM, U, TEX, UNSA and ZSS, who kindly loaned specimens or made information available through electronic means. Thanks to Carlos Ostolaza for providing seeds of Haageocereus tenuis, to Graham Charles for seeds of Blossfeldia sucrensis and Acanthocalycium spiniflorum, to Donald Henne for specimens of Haageocereus lanugispinus; and to Bernard Hauser and Kent Vliet for aid with microscopy.
    [Show full text]
  • Got Cuttings?
    Epi News San Diego Epiphyllum Society, Inc. March, 2014 Volume 39 Number 3 March, 2014 SDES Epi News Page 2 President’s Corner: SDES Calendar of Events It turns out that extremely warm 2014 winter weather and very little rain (unfortunately) seems to equal early March flower bud development in our epies. Who knew? 1 Work Party at the Safari Park It appears spring is already here although 1-2 Del Mar Spring Hm/Gdn Show technically spring doesn’t arrive officially until 15-16 Tomatomania and Herb Sale March 20th. San Diego Botanic Garden May March is traditionally the beginning of the busy 3 Cuyamaca Spring Gdn Sale epi season for the San Diego Epiphyllum Society 3-4 SDES Plant Sale– Safari Park and this year it’s no exception. Please check in 4 SBES Show with our intrepid Sales Events Coordinator, Cindy 10-11 Mother’s Day Plant Sale Decker if you are interested in helping out with nd 11 Mother’s Day Show any of our sales. Our 2 Vice President and 17 EpiCon XIV hosted by ESA Mother’s Day Chairperson, Sandra Chapin and 18 ESA Show her cohort in crime, Mother’s Day Co-Chair, September Patricia Frank can use any help they can get with 13-14-15 Del Mar Fall Hm/Gdn Show the organization of the Mother’s Day Show. There will be sign up sheets at the next couple of General Meetings if you are interested in participating. It’s now time to start planning your Mother’s Day display. Remember it can be a Inside This Issue small, simple display or a huge elaborate one or Calendar of Events 2 anything in between.
    [Show full text]
  • Vine Cacti (Hylocereus Species): an Emerging Fruit Crop
    Review n. 32 – Italus Hortus 24 (2), 2017: 19-24 doi: 10.26353/j.itahort/2017.2.1924 Vine cacti ( Hylocereus species): an emerging fruit crop Noemi Tel-Zur The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Israel Ricezione: 19 novembre 2017; Accettazione: 12 gennaio 2018 Vine cacti (specie Hylocereus ): una Hylocereus species as good candidates for dryland coltura emergente agriculture Riassunto. I cactus di vite del genere Hylocereus , Global warming and diminishing fresh water originari delle regioni tropicali del Nord America del resources are among the major factors impacting the Sud, dell'America centrale e del Messico, costituis - future of agricultural and food production worldwide. cono un gruppo di piante emipifitiche contenenti frutti A challenge of supreme importance for farmers and commestibili esotici. I frutti, noti come pitahaya o frut - agricultural researchers alike is, therefore, to intro - to del drago, hanno una polpa dolce e succosa con duce, domesticate and develop new crop candidates piccoli semi neri croccanti. Praticamente sconosciuto with high water-use efficiency and improved resis - tre decenni fa, oggi queste colture stanno occupando tance to adverse conditions, especially drought. Such una nicchia in crescita nei mercati di frutta esotica in newly developed crops will slot into the overall map tutto il mondo. Attualmente sono coltivati in Messico, Colombia, Ecuador, Stati Uniti, Israele, Tailandia, of food production as low-volume but high-value Australia, Cina e Vietnam, l'ultimo dei quali è il più crops for specific niches where traditional agriculture grande paese esportatore.
    [Show full text]
  • Botanic Garden News
    Spring 2010 Page 1 Botanic Garden News The Botanic Garden Volume 13, No. 1 of Smith College Spring 2010 Floral Radiography Madelaine Zadik E veryone loves flowers, but imagine how they would appear if you had x -ray vision. Our latest exhibition, The Inner Beauty of Flowers, presents just that. Once radiologist Merrill C. Raikes retired, he turned his x-rays away from diagnostic medicine and instead focused them on flowers. The resulting floral radiographs bring to light the inner structure of flowers that normally remains invisible to us. It wasn’t easy for Dr. Raikes to figure out the exact techniques that would produce the desired results, but he finally discovered how to get the detail he was after. He uses equipment that is no longer manufactured, since current day medical x-ray equipment doesn’t produce x-rays suitable for this kind of work. Combined with his artful eye, the results are extraordinary and reveal an amazing world of delicacy and beauty. I was very impressed by Dr. Raikes’ artwork when he first showed it to me, and I wanted to create an educational exhibit that Sunflower with seeds would display his magnificent floral radiography. Through a collaboration with University of Massachusetts physics professor Robert B. Hallock, we were able to produce an exhibit that not only showcases Dr. Raikes’ art but also explains the science behind the images. Visitors have the opportunity to learn about the way light works, how the eye sees, what x-rays are, and how x-ray technology can be used to create beyond the surface of objects and enable botanical art.
    [Show full text]
  • Dragon Fruit & APPLIED SCIENCES FS 5 - 21
    UNIVERSITY OF GUAM Cooperative Extension & Outreach COLLEGE OF NATURAL Dragon Fruit & APPLIED SCIENCES FS 5 - 21 Dragon Fruit Chelsea Taitano, AJ Ilai, Stewart Johnny, Mark Acosta, and Joe Tuquero Cooperative Extension & Outreach, College of Natural & Applied Sciences, University of Guam Introduction Color Dragon fruit, also known as strawberry pear, pitaya, and pitahaya, is a tropical, climbing vine-like cactus native Species Peel Pulp to the Tropical Central Americas (Crane & Balerdi, Hylocereus undatus Red White 2019). There are over 15 species of dragon fruit (USDA, Hylocereus triangularis Yellow White 2019). In Guam, at least three species can be found in cultivation: Hylocereus undatus, Hylocereus megalanthus Hylocereus contaricenes Red Red (Selenicereus megalanthus), and Hylocereus spp. Hylocereus monacanthus Red Red (unidentified species) (Bamba, personal communication, Hylocereus ocamponis Red Red February 17, 2017). With many varieties and cultivars, in some cases it is difficult to determine species. Depending Hylocereus megalanthus Yellow White on species and varieties, dragon fruit have several Cereus triangularis Yellow White combinations of colors of skin and flesh of mature fruits. Common combinations include red or pink skin with Acanthocereus pitajaya Yellow White white flesh, red skin with pink or red flesh, and yellow Cereus ocamponis Red Red skin with white flesh. Figure 1 depicts common colors of fruits of H.undatus, H. megalanthus, and H. polyrhizus. Table 01. Several species of dragon fruit with skin (peel) and pulp (flesh) color (Crane and Balerdi, 2019). Table 1 lists skin/flesh colors of several species of dragon fruit. Dragon fruit has become a popular fruit in recent years to Guam markets, and has the potential to be a Growing Dragon Fruit profitable commercial local crop.
    [Show full text]
  • Overall Dragon Fruit Production and Global Marketing Robert E Paull, and Nancy Jung Chen Tropical Plant & Soil Sciences University of Hawaii at Manoa
    Overall Dragon Fruit Production and Global Marketing Robert E Paull, and Nancy Jung Chen Tropical Plant & Soil Sciences University of Hawaii at Manoa Presentation 1. World-wide production 2. Taxonomy in transition 3. Dragon fruit – the Future Market Expansion a. Needs b. Flavour – sweetness c. Postharvest handling Recognized - Yosef Mizrahi, 2015 Countries Growing Hylocereus Gaps? https://cactus-epiphytes.eu/z_page_fruit_dragon_californie_01.html Production Vietnam ~50,000 ha, producing ~1 million metric tons (MT) valued at US$ 895.70 million (2016). 22-35 MT/ha/year PR China expanding possibly exceeds 40,000 ha. Guangxi Indonesia started in 2000, now reported to be 4,300 ha. Malaysia had 1,641 ha in production in 2013 and produced of 11,000 MT with acreage increasing. Thailand In 2013 acreage reported ~1,000 ha, 6,451 kg/ha. Philippines, the area planted increased from 182 hectares (ha) in 2012 to 450 ha in 2018, producing 1,463 metric tons. United States production limited to Florida, California and Hawaii. Acreage is increasing. California to 150 ha, Florida 160 ha and ~80 ha in Hawaii. Production & Trade Production data for most new and expanding tropical fruit is rarely available. Available evidence from individual countries suggests the Dragon fruit production is expanding. Expanding production in many countries including: Vietnam, China, Mexico, Colombia, Nicaragua, Ecuador, Thailand, Malaysia, Indonesia, Australia and United States. Dragon fruit is the fifth most imported tropical fruit from Asia exported to China. China imported 533 MT in 2017. Mostly white fleshed fruit from Vietnam US consumers mainly Asian and Latin Americans, sales until now mainly in specialty stores and at farmers markets.
    [Show full text]