Copy No. 1 Assessment of Sound Insulation

Total Page:16

File Type:pdf, Size:1020Kb

Copy No. 1 Assessment of Sound Insulation Project No. 02-31 COPY NO._1_ ASSESSMENT OF SOUND INSULATION TREATMENTS FINAL REPORT Prepared for ACRP Transportation Research Board of The National Academies Ben H. Sharp Yuriy A. Gurovich Ferdows K. Fazeli Wyle Arlington, VA Eric Miller Architectural Testing York, PA September 2013 ACKNOWLEGMENT OF SPONSORSHIP This section reserved for future use. DISCLAIMER This is an uncorrected draft as submitted by the research agency. The opinion and conclusions expressed or implied in the report are those of the research agency. They are not necessarily those of the Transportation Research Board, the national Academies, or the program sponsors. Project No. 02-09 COPY NO._1_ ASSESSMENT OF SOUND INSULATION TREATMENTS FINAL REPORT Prepared for ACRP Transportation Research Board of The National Academies Ben H. Sharp Yuriy A. Gurovich Ferdows K. Fazeli Wyle Arlington, VA Eric Miller Architectural Testing York, PA September CONTENTS LIST OF FIGURES AND TABLES ......................................................................................................... vi ACKNOWLEDGEMENTS ...................................................................................................................... ix EXECUTIVE SUMMARY ....................................................................................................................... xi CHAPTER 1 Introduction .................................................................................................................... 1-1 CHAPTER 2 Literature Review .......................................................................................................... 2-1 2.1. Scope of the Review ............................................................................................................. 2-1 2.2. Sound Insulation Studies and Research ................................................................................ 2-1 2.3. Testing Standards .................................................................................................................. 2-5 2.3.1. Acoustic Test Procedures .......................................................................................... 2-5 2.3.2. Laboratory Test Procedures ....................................................................................... 2-5 2.3.3. Field Test Procedures ................................................................................................ 2-6 2.3.4. Single Number Sound Transmission Loss Metrics ............................................... ....2-9 2.3.5. AAMA Test Standards for Building Elements ........................................................ 2-11 2.3.6. Summary.…………………………………………………………………..... ....... .2-13 2.4. Federal Policies and Regulations ......................................................................................... 2-13 2.4.1. An Historical Overview........................................................................................... 2-13 2.4.2. Criteria for Sound Insulation Programs ................................................................... 2-16 2.4.3. Summary ................................................................................................................. 2-19 2.5. Airport Implementation ...................................................................................................... 2-19 2.6. Evaluation of Sound Insulation Programs …………………………………...….… ........ .2-22 2.7. Deterioration of Building Elements………………………………………………… ........ 2-24 2.8. Guidance……………………………………………………………………………. ........ 2-27 2.9. Summary……………………………………………………………………...…….. ........ 2-28 CHAPTER 3 Sound Insulation Program Data Collection ................................................................ 3-1 3.1. Introduction........................................................................................................................... 3-1 3.2. Program Data Required ........................................................................................................ 3-1 3.3. Selection of Airport Programs to be Assessed……………………………………… .......... 3-2 3.4. Sound Insulation Program Database ………………………………………..……… .......... 3-4 CHAPTER 4 Sound Insulation Performance Measurements ........................................................... 4-1 4.1. Introduction........................................................................................................................... 4-1 4.2. Measurement Program Objectives……………………………………………….…. .......... 4-1 4.3. Airport Selection Rationale and Prioritization ...................................................................... 4-1 4.4. Selection of Dwellings to be Evaluated ................................................................................ 4-2 4.5. Homeowner Approach .......................................................................................................... 4-2 i 4.6. Acoustic Test Procedures ..................................................................................................... 4-3 4.7. Inspection Procedure ............................................................................................................ 4-4 CHAPTER 5 Noise Reduction Measurements in Residences Exposed to Aircraft Noise ................ 5-1 5.1. Introduction........................................................................................................................... 5-1 5.2. Uncertainty in the Test Results ............................................................................................. 5-1 5.3. Boston Logan International Airport ...................................................................................... 5-1 5.4. Conclusion.………………….…………………………………………….... ................... .5-18 5.5. City of Inglewood………………………………... ........................................................... .5-19 5.6. Summary of Acoustic Performance Measurements ............................................................ 5-21 CHAPTER 6 Evolution of the Sound Insulation Process………………………………….. ............. .6-1 6.1. Product Problems Encountered…………………………………………………….. .......... 6-1 6.2. Quality Assurance and Control in Manufacturing………………………………….. .......... 6-6 6.3. Quality Control During Construction……………………………………………… .......... .6-6 6.4. Building Codes and Testing Standards…………………………………………… ............. 6-8 6.5. Summary…………………………………………………………………….……… .......... 6-9 REFERENCES………………………………………………………………………………… ............ R-1 ii LIST OF FIGURES AND TABLES LIST OF FIGURES Figure 5-1 Noise Reduction Measured at BOS 01, Bedroom……………………………………….. .... 5-5 Figure 5-2 Bottom Condition of Second Window for Retesting (view from inside of bedroom)……. .. 5-6 Figure 5-3 Windows and Walls at BOS 01………………………………………………………...... .... 5-7 Figure 5-4 Noise Reduction Measured at BOS 01 Living Room………………………………….…... 5-7 Figure 5-5 BOS 01 Living Room Windows and Walls………………………………………………… 5-8 Figure 5-6 Windows at BOS 03: (a) Exterior Views; (b) Interior Views…………………………….. .. 5-9 Figure 5-7 Noise Reduction Measured at BOS 03 Living Room……………………………….……...5-10 Figure 5-8 Sliding Glass Door at BOS 03, Dining Room/Kitchen…………………………….…..……5-11 Figure 5-9 Noise Reduction Measured at BOS 03 Dining Room/Kitchen…………………….…..……5-11 Figure 5-10 Second Floor Living Room Bay Window at BOS 08 .......................................................... 5-12 Figure 5-11 Noise Reduction Measured at BOS 08 1st Floor Living Room…………….……………… 5-13 Figure 5-12 Noise Reduction Measured at BOS 08 2nd Floor Living Room, Windows 19, 20 and 21……………………………………...…………………………. .... 5-14 Figure 5-13 Noise Reduction Measured at BOS 14 Mechanical Room………………………………. .. 5-15 Figure 5-14 Exterior (a) and Interior (b) Views of the Mechanical Room Façade at BOS 14………..... 5-15 Figure 5-15 Noise Reduction Measured at BOS 14 Living Room, Windows 2, 3 and 4……..…….. ..... 5-15 Figure 5-16 Bedroom Façade at BOS 15…………….………………………………………………..... 5-16 Figure 5-17 Noise Reduction Measured at BOS 15 1st Floor Bedroom………………………………. .. 5-17 Figure 5-18 Second Bedroom Façade at BOS 15…………………………………………………….. ... 5-17 Figure 5-19 Noise Reduction Measured at BOS 15 2nd Floor Bedroom .................................................. 5-18 LIST OF TABLES Table 2-1 Chronology of US Airport Sound Insulation Programs…………………………….……... 2-21 Table 4-1 List of Tier 1 Airports Identified for Measurements .............................................................. 4-2 Table 5-1 Acoustic Test Data for Residences in Boston……………………………………...…….. .... 5-3 Table 5-2 Noise Test Results for Inglewood Program…………………………………….…..…….. 5-20 iii AKNOWLEDGEMENTS The authors would like to express their gratitude to the engineers and technicians at Architectural Testing who assisted in the noise tests and architectural surveys in Boston, MA, and Inglewood, CA, and also to their Wyle colleagues for their hours of dedication to this research. The opinions and conclusions expressed or implied in this paper are those of the researchers. They are not necessarily those of the TRB, the National Research Council, or the U.S. Government. iv EXECUTIVE SUMMARY This research funded by the Airport Cooperative Research Program of the National Academy of Science is in response to a concern as to whether the acoustic performance achieved in early airport sound insulation programs has met the test of time and still provides the same protection as when it was first introduced. Although no exhaustive studies have been performed, there have been reports that the acoustical performance of treatments applied
Recommended publications
  • EN 300 676 V1.2.1 (1999-12) European Standard (Telecommunications Series)
    Draft ETSI EN 300 676 V1.2.1 (1999-12) European Standard (Telecommunications series) Electromagnetic compatibility and Radio spectrum Matters (ERM); Ground-based VHF hand-held, mobile and fixed radio transmitters, receivers and transceivers for the VHF aeronautical mobile service using amplitude modulation; Technical characteristics and methods of measurement 2 Draft ETSI EN 300 676 V1.2.1 (1999-12) Reference REN/ERM-RP05-014 Keywords Aeronautical, AM, DSB, radio, testing, VHF ETSI Postal address F-06921 Sophia Antipolis Cedex - FRANCE Office address 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.:+33492944200 Fax:+33493654716 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Internet [email protected] Individual copies of this ETSI deliverable can be downloaded from http://www.etsi.org If you find errors in the present document, send your comment to: [email protected] Important notice This ETSI deliverable may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European
    [Show full text]
  • Laser Linewidth, Frequency Noise and Measurement
    Laser Linewidth, Frequency Noise and Measurement WHITEPAPER | MARCH 2021 OPTICAL SENSING Yihong Chen, Hank Blauvelt EMCORE Corporation, Alhambra, CA, USA LASER LINEWIDTH AND FREQUENCY NOISE Frequency Noise Power Spectrum Density SPECTRUM DENSITY Frequency noise power spectrum density reveals detailed information about phase noise of a laser, which is the root Single Frequency Laser and Frequency (phase) cause of laser spectral broadening. In principle, laser line Noise shape can be constructed from frequency noise power Ideally, a single frequency laser operates at single spectrum density although in most cases it can only be frequency with zero linewidth. In a real world, however, a done numerically. Laser linewidth can be extracted. laser has a finite linewidth because of phase fluctuation, Correlation between laser line shape and which causes instantaneous frequency shifted away from frequency noise power spectrum density (ref the central frequency: δν(t) = (1/2π) dφ/dt. [1]) Linewidth Laser linewidth is an important parameter for characterizing the purity of wavelength (frequency) and coherence of a Graphic (Heading 4-Subhead Black) light source. Typically, laser linewidth is defined as Full Width at Half-Maximum (FWHM), or 3 dB bandwidth (SEE FIGURE 1) Direct optical spectrum measurements using a grating Equation (1) is difficult to calculate, but a based optical spectrum analyzer can only measure the simpler expression gives a good approximation laser line shape with resolution down to ~pm range, which (ref [2]) corresponds to GHz level. Indirect linewidth measurement An effective integrated linewidth ∆_ can be found by can be done through self-heterodyne/homodyne technique solving the equation: or measuring frequency noise using frequency discriminator.
    [Show full text]
  • Acoustical Engineering
    National Aeronautics and Space Administration Engineering is Out of This World! Acoustical Engineering NASA is developing a new rocket called the Space Launch System, or SLS. The SLS will be able to carry astronauts and materials, known as payloads. Acoustical engineers are helping to build the SLS. Sound is a vibration. A vibration is a rapid motion of an object back and forth. Hold a piece of paper up right in front of your lips. Talk or sing into the paper. What do you feel? What do you think is causing the vibration? If too much noise, or acoustical loading, is ! caused by air passing over the SLS rocket, the vehicle could be damaged by the vibration! NAME: (Continued from front) Typical Sound Levels in Decibels (dB) Experiment with the paper. 130 — Jet takeoff Does talking louder or softer change the vibration? 120 — Pain threshold 110 — Car horn 100 — Motorcycle Is the vibration affected by the pitch of your voice? (Hint: Pitch is how deep or 90 — Power lawn mower ! high the sound is.) 80 — Vacuum cleaner 70 — Street traffic —Working area on ISS (65 db) Change the angle of the paper. What 60 — Normal conversation happens? 50 — Rain 40 — Library noise Why do you think NASA hires acoustical 30 — Purring cat engineers? (Hint: Think about how loud 20 — Rustling leaves rockets are!) 10 — Breathing 0 — Hearing Threshold How do you think the noise on an airplane compares to the noise on a rocket? Hearing protection is recommended at ! 85 decibels. NASA is currently researching ways to reduce the noise made by airplanes.
    [Show full text]
  • Suburban Noise Control with Plant Materials and Solid Barriers
    Suburban Noise Control with Plant Materials and Solid Barriers by DAVID I. COOK and DAVID F. Van HAVERBEKE, respectively professor of engineering mechanics, University of Nebraska, Lin- coln; and silviculturist, USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colo. ABSTRACT.-Studies were conducted in suburban settings with specially designed noise screens consisting of combinations of plant inaterials and solid barriers. The amount of reduction in sound level due to the presence of the plant materials and barriers is re- ported. Observations and conclusions for the measured phenomenae are offered, as well as tentative recommendations for the use of plant materials and solid barriers as noise screens. YOUR$50,000 HOME IN THE SUB- relocated truck routes, and improved URBS may be the object of an in- engine muffling can be helpful. An al- vasion more insidious than termites, and ternative solution is to create some sort fully as damaging. The culprit is noise, of barrier between the noise source and especially traffic noise; and although it the property to be protected. In the will not structurally damage your house, Twin Cities, for instance, wooden walls it will cause value depreciation and dis- up to 16 feet tall have been built along comfort for you. The recent expansion Interstate Highways 35 and 94. Al- of our national highway systems, and though not esthetically pleasing, they the upgrading of arterial streets within have effectively reduced traffic noise, the city, have caused widespread traffic- and the response from property owners noise problems at residential properties. has been generally favorable.
    [Show full text]
  • Realisation of the First Sub Shot Noise Wide Field Microscope
    Realisation of the first sub shot noise wide field microscope Nigam Samantaray1,2, Ivano Ruo-Berchera1, Alice Meda1, , Marco Genovese1,3 1 INRIM, Strada delle Cacce 91, I-10135 Torino, ∗Italy 2 Politecnico di Torino, Corso Duca degli Abruzzi, 24 - I-10129 Torino, Italy and 3 INFN, Via P. Giuria 1, I-10125 Torino, Italy ∗ ∗ Correspondence: Alice Meda, Email: [email protected], Tel: +390113919245 In the last years several proof of principle experiments have demonstrated the advantages of quantum technologies respect to classical schemes. The present challenge is to overpass the limits of proof of principle demonstrations to approach real applications. This letter presents such an achievement in the field of quantum enhanced imaging. In particular, we describe the realization of a sub-shot noise wide field microscope based on spatially multi-mode non-classical photon number correlations in twin beams. The microscope produces real time images of 8000 pixels at full resolution, for (500µm)2 field-of-view, with noise reduced to the 80% of the shot noise level (for each pixel), suitable for absorption imaging of complex structures. By fast post-elaboration, specifically applying a quantum enhanced median filter, the noise can be further reduced (less than 30% of the shot noise level) by setting a trade-off with the resolution, demonstrating the best sensitivity per incident photon ever achieved in absorption microscopy. Keywords: imaging, sub shot noise, microscopy, parametric down conversion 1 INTRODUCTION Sensitivity in standard optical imaging and sensing, the ones exploiting classical illuminating fields, is fundamentally lower bounded by the shot noise, the inverse square root of the number of photons used.
    [Show full text]
  • Standing Waves and Sound
    Standing Waves and Sound Waves are vibrations (jiggles) that move through a material Frequency: how often a piece of material in the wave moves back and forth. Waves can be longitudinal (back-and- forth motion) or transverse (up-and- down motion). When a wave is caught in between walls, it will bounce back and forth to create a standing wave, but only if its frequency is just right! Sound is a longitudinal wave that moves through air and other materials. In a sound wave the molecules jiggle back and forth, getting closer together and further apart. Work with a partner! Take turns being the “wall” (hold end steady) and the slinky mover. Making Waves with a Slinky 1. Each of you should hold one end of the slinky. Stand far enough apart that the slinky is stretched. 2. Try making a transverse wave pulse by having one partner move a slinky end up and down while the other holds their end fixed. What happens to the wave pulse when it reaches the fixed end of the slinky? Does it return upside down or the same way up? Try moving the end up and down faster: Does the wave pulse get narrower or wider? Does the wave pulse reach the other partner noticeably faster? 3. Without moving further apart, pull the slinky tighter, so it is more stretched (scrunch up some of the slinky in your hand). Make a transverse wave pulse again. Does the wave pulse reach the end faster or slower if the slinky is more stretched? 4. Try making a longitudinal wave pulse by folding some of the slinky into your hand and then letting go.
    [Show full text]
  • Nuclear Acoustic Resonance Investigations of the Longitudinal and Transverse Electron-Lattice Interaction in Transition Metals and Alloys V
    NUCLEAR ACOUSTIC RESONANCE INVESTIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERACTION IN TRANSITION METALS AND ALLOYS V. Müller, G. Schanz, E.-J. Unterhorst, D. Maurer To cite this version: V. Müller, G. Schanz, E.-J. Unterhorst, D. Maurer. NUCLEAR ACOUSTIC RESONANCE INVES- TIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERAC- TION IN TRANSITION METALS AND ALLOYS. Journal de Physique Colloques, 1981, 42 (C6), pp.C6-389-C6-391. 10.1051/jphyscol:19816113. jpa-00221175 HAL Id: jpa-00221175 https://hal.archives-ouvertes.fr/jpa-00221175 Submitted on 1 Jan 1981 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE CoZZoque C6, suppZe'ment au no 22, Tome 42, de'cembre 1981 page C6-389 NUCLEAR ACOUSTIC RESONANCE INVESTIGATIONS OF THE LONGITUDINAL AND TRANSVERSE ELECTRON-LATTICE INTERACTION IN TRANSITION METALS AND ALLOYS V. Miiller, G. Schanz, E.-J. Unterhorst and D. Maurer &eie Universit8G Berlin, Fachbereich Physik, Kiinigin-Luise-Str.28-30, 0-1000 Berlin 33, Gemany Abstract.- In metals the conduction electrons contribute significantly to the acoustic-wave-induced electric-field-gradient-tensor (DEFG) at the nuclear positions. Since nuclear electric quadrupole coupling to the DEFG is sensi- tive to acoustic shear modes only, nuclear acoustic resonance (NAR) is a par- ticularly useful tool in studying the coup1 ing of electrons to shear modes without being affected by volume dilatations.
    [Show full text]
  • Noise Reduction Technologies for Turbofan Engines
    NASA/TM—2007-214495 Noise Reduction Technologies for Turbofan Engines Dennis L. Huff Glenn Research Center, Cleveland, Ohio September 2007 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical NASA Scientific and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Officer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, • TECHNICAL TRANSLATION. English- thus providing one of the largest collections of language translations of foreign scientific and aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. Reports of completed research or a major significant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis. Includes compilations of significant • Access the NASA STI program home page at scientific and technical data and information http://www.sti.nasa.gov deemed to be of continuing reference value.
    [Show full text]
  • Time-Series Prediction of Environmental Noise for Urban Iot Based on Long Short-Term Memory Recurrent Neural Network
    applied sciences Article Time-Series Prediction of Environmental Noise for Urban IoT Based on Long Short-Term Memory Recurrent Neural Network Xueqi Zhang 1,2 , Meng Zhao 1,2 and Rencai Dong 1,* 1 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; [email protected] (X.Z.); [email protected] (M.Z.) 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-010-62849112 Received: 12 January 2020; Accepted: 6 February 2020; Published: 8 February 2020 Abstract: Noise pollution is one of the major urban environmental pollutions, and it is increasingly becoming a matter of crucial public concern. Monitoring and predicting environmental noise are of great significance for the prevention and control of noise pollution. With the advent of the Internet of Things (IoT) technology, urban noise monitoring is emerging in the direction of a small interval, long time, and large data amount, which is difficult to model and predict with traditional methods. In this study, an IoT-based noise monitoring system was deployed to acquire the environmental noise data, and a two-layer long short-term memory (LSTM) network was proposed for the prediction of environmental noise under the condition of large data volume. The optimal hyperparameters were selected through testing, and the raw data sets were processed. The urban environmental noise was predicted at time intervals of 1 s, 1 min, 10 min, and 30 min, and their performances were compared with three classic predictive models: random walk (RW), stacked autoencoder (SAE), and support vector machine (SVM).
    [Show full text]
  • Fault Location in Power Distribution Systems Via Deep Graph
    Fault Location in Power Distribution Systems via Deep Graph Convolutional Networks Kunjin Chen, Jun Hu, Member, IEEE, Yu Zhang, Member, IEEE, Zhanqing Yu, Member, IEEE, and Jinliang He, Fellow, IEEE Abstract—This paper develops a novel graph convolutional solving a set of nonlinear equations. To solve the multiple network (GCN) framework for fault location in power distri- estimation problem, it is proposed to use estimated fault bution networks. The proposed approach integrates multiple currents in all phases including the healthy phase to find the measurements at different buses while taking system topology into account. The effectiveness of the GCN model is corroborated faulty feeder and the location of the fault [2]. It is pointed by the IEEE 123 bus benchmark system. Simulation results show out in [15] that the accuracy of impedance-based methods can that the GCN model significantly outperforms other widely-used be affected by factors including fault type, unbalanced loads, machine learning schemes with very high fault location accuracy. heterogeneity of overhead lines, measurement errors, etc. In addition, the proposed approach is robust to measurement When a fault occurs in a distribution system, voltage drops noise and data loss errors. Data visualization results of two com- peting neural networks are presented to explore the mechanism can occur at all buses. The voltage drop characteristics for of GCNs superior performance. A data augmentation procedure the whole system vary with different fault locations. Thus, the is proposed to increase the robustness of the model under various voltage measurements on certain buses can be used to identify levels of noise and data loss errors.
    [Show full text]
  • New ELBRIGHT TOSHIBA HIGH SPEED ELEVATORS Concept of New ELBRIGHT
    New ELBRIGHT TOSHIBA HIGH SPEED ELEVATORS Concept of New ELBRIGHT New ELBRIGHT CONTENTS ●New ELBRIGHT Machine-Room TOSHIBA HIGH SPEED ELEVATORS PRODUCT CONCEPT New technology planning/Group control system Traffic New ELBRIGHT A new concept in high-speed elevators. Elevator technology ·· ❸~❹ Toshiba never stops introducing the latest tech- nologies and polishing its high-speed elevator expertise. Toshiba proves this again with THE GUIDE LINE-1 New ELBRIGHT : a new elevator for a new age. Traffic planning / Group control system ·· ❺~❽ Toshiba engineering has combined to produce the 1-1 Deciding speed ········ ❻ world’s first inverter-control high-speed elevator, SPACE SAVING 1-2 Deciding number of cars ········ ❻ 1-3 Deciding passenger capacity ········ ❼ with the high-efficiency control, energy efficiency, ●Conventional type up to 50% reduction 1-4 Deciding service floors ········ ❼ elevator machine-room in machine room space and quiet operation demanded by today’s society. 1-5 Deciding the layout ········ ❼ 1-6 Operating system ········ ❽ 1-7 Group control system (EJ-1000series) ········ ❽ Soundproofing and harmonic distortion measures THE GUIDE LINE-2 Providing environmentally conscious products (New ELBRIGHT) Toshiba elevator group is promoting the development of environmentally Soundproofing and conscious products, which involves environmentally conscious product design, harmonic distortion the assessment of environmental impact of products and disclosure of the measures ·· 10~14 environmental performance of products. Products are developed
    [Show full text]
  • A Mathematical and Physical Analysis of Circuit Jitter with Application to Cryptographic Random Bit Generation
    WJM-6500 BS2-0501 A Mathematical and Physical Analysis of Circuit Jitter with Application to Cryptographic Random Bit Generation A Major Qualifying Project Report: submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by _____________________________ Wayne R. Coppock _____________________________ Colin R. Philbrook Submitted April 28, 2005 1. Random Number Generator Approved:________________________ Professor William J. Martin 2. Cryptography ________________________ 3. Jitter Professor Berk Sunar 1 Abstract In this paper analysis of jitter is conducted to determine its suitability for use as an entropy source for a true random number generator. Efforts are taken to isolate and quantify jitter in ring oscillator circuits and to understand its relationship to design specifications. The accumulation of jitter via various methods is also investigated to determine whether there is an optimal accumulation technique for sampling the uncertainty of jitter events. Mathematical techniques are used to analyze the accumulation process and an attempt at modeling a signal with jitter is made. The physical properties responsible for the noise that causes jitter are also briefly investigated. 2 Acknowledgements We would like to thank our faculty advisors and our mentors at GD, without whom this project would not have been possible. Our advisors, Professor Bill martin and Professor Berk Sunar, were indispensable in keeping us focused on the tasks ahead as well as for providing background to help us explore new questions as they arose. Our mentors at GD were also key to the project’s success, and we owe them much for this.
    [Show full text]