Borel Superrigidity for Actions of Low Rank Lattices

Total Page:16

File Type:pdf, Size:1020Kb

Borel Superrigidity for Actions of Low Rank Lattices BOREL SUPERRIGIDITY FOR ACTIONS OF LOW RANK LATTICES BY SCOTT SCHNEIDER A dissertation submitted to the Graduate School—New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Mathematics Written under the direction of Simon Thomas and approved by New Brunswick, New Jersey October, 2009 ABSTRACT OF THE DISSERTATION Borel Superrigidity for Actions of Low Rank Lattices by Scott Schneider Dissertation Director: Simon Thomas A major recent theme in Descriptive Set Theory has been the study of countable Borel equivalence relations on standard Borel spaces, including their structure under the partial ordering of Borel reducibility. We shall contribute to this study by proving Borel incomparability results for the orbit equivalence relations arising from Bernoulli, profinite, and linear actions of certain subgroups of P SL2(R). We employ the techniques and general strategy pioneered by Adams and Kechris in [3], and develop purely Borel versions of cocycle superrigidity results arising in the dynamical theory of semisimple groups. Specifically, using Zimmer’s cocycle superrigidity theorems [58], we will prove Borel superrigidity results for suitably chosen actions of groups of the form P SL2(O), where O is the ring of integers inside a multi-quadratic number field. In particular, for suitable primes p 6= q, we prove that the orbit equivalence relations arising from the √ natural actions of P SL2(Z[ q]) on the p-adic projective lines are incomparable with respect to Borel reducibility as p, q vary. Furthermore, we also obtain Borel non- reducibility results for orbit equivalence relations arising from Bernoulli actions of the groups P SL2(O). In particular, we show that if Ep denotes the orbit equivalence re- √ lation arising from a nontrivial Bernoulli action of P SL2(Z[ p ]), then Ep and Eq are incomparable with respect to Borel reducibility whenever p 6= q. ii Acknowledgements This thesis would not have been possible without the dedicated assistance of my advisor, Simon Thomas, to whom I express my deepest gratitude. I am also extremely grateful for the countless mathematical interactions I have had with Samuel Coskey, with whom, and often from whom, I have learned the subject. Additionally I would like to thank Gregory Cherlin, Paul Ellis, Alex Furman, Richard Lyons, and Chuck Weibel for many helpful discussions. Finally I would like to thank my family for all the support they have given me over the years, and I would like to extend a special word of thanks to Tamar Swerdel for assistance in all matters non-mathematical during the time in which this thesis was written. iii Table of Contents Abstract ........................................ ii Acknowledgements ................................. iii 1. Introduction to countable Borel equivalence relations ......... 1 1.1. Background from Descriptive Set Theory . 1 1.2. Classification problems and equivalence relations . 3 1.3. Borel reducibility . 4 1.4. Borel equivalence relations and the ≤B partial order . 7 1.5. Countable Borel equivalence relations . 8 1.6. Superrigidity: a first glance . 10 1.7. The basic structure of countable Borel equivalence relations under Borel reducibility . 11 1.8. Outline of thesis . 14 2. Precise statements of main results ..................... 15 2.1. Profinite and linear actions of SL2(O)................... 15 2.2. A Borel superrigidity theorem . 19 2.3. Bernoulli actions of P SL2(O)........................ 22 2.4. A more abstract Borel superrigidity theorem . 24 2.5. Notation . 25 3. Some preliminaries from the theory of algebraic groups ........ 27 3.1. Polish groups and Haar measure . 27 3.2. Semisimple Lie groups and lattice subgroups . 29 3.3. Amenability . 33 iv 3.4. Property (T ) and property (τ) ....................... 34 3.5. Totally real number fields . 36 3.6. A measure classification theorem . 39 4. Some preliminaries from measurable dynamics ............. 42 4.1. Ergodicity . 42 4.2. Strong ergodicity . 47 4.3. Isomorphism, factor, and quotient . 50 4.4. Bernoulli actions . 52 4.5. Entropy . 54 5. Superrigidity ................................... 57 5.1. Orbit equivalence and Borel reducibility . 57 5.2. Borel cocycles . 59 5.3. Induced spaces, actions, and cocycles . 63 5.4. Zimmer superrigidity . 66 5.5. E0-ergodicity, 1-amenability, and the cocycle hypothesis . 68 6. Proof of Theorem 2.4.1 ............................ 74 6.1. An application of Zimmer cocycle superrigidity . 75 6.2. Adjusting a permutation group homomorphism . 78 6.3. Coming down on the left . 82 7. Proofs of Theorems 2.2.1 and 2.3.1 ..................... 85 7.1. Some computations involving subgroups of P SL2(R) . 86 7.2. Proof of Theorem 2.3.1 . 89 7.2.1. E0-ergodicity of orbit equivalence relations arising from Bernoulli actions . 89 7.2.2. Irreducibility of spaces induced from Bernoulli actions . 90 7.2.3. Entropy and factors of Bernoulli shifts . 92 7.2.4. Studying the image of f˜ in Yˆ ................... 92 v 7.2.5. Untwisting (f,˜ ϕ)........................... 93 7.3. Proof of Theorem 2.2.1 . 94 7.3.1. Property (τ) and E0-ergodicity . 95 7.3.2. Controlling the factors of ΛS y K(J)/L . 96 7.3.3. Studying the image of f˜ in Yˆ .................... 99 7.3.4. Obtaining the virtual isomorphism . 100 7.4. Suggestions for future research . 102 References ....................................... 104 Vita ........................................... 108 vi 1 Chapter 1 Introduction to countable Borel equivalence relations This thesis is a contribution to the study of Borel equivalence relations on standard Borel spaces. The organizing framework for this theory comes from Descriptive Set Theory, which classically has consisted of the study of definable sets and functions in complete, separable metric spaces. Recently a new direction of research has emerged in the field, aimed at understanding the definable equivalence relations on these spaces together with their resulting quotients. As we will see, such quotients arise naturally as spaces of invariants for classification problems in many different areas of mathematics. When realized in this way as definable equivalence relations, such classification prob- lems admit a natural notion of “relative complexity” that induces a partial pre-ordering on the collection of all such definable equivalence relations. While applications to the complexity theory of classification problems constitute an important, and indeed moti- vating, branch of the subject, much recent attention has been focused on understanding the structure of the partial ordering of the complexity classes itself. This thesis con- tributes to the study of this structure, and to the development of techniques for its continued study. In this introductory chapter we will develop preliminary notions and provide a context for our results by highlighting some elements of the basic theory of countable Borel equivalence relations. We begin with some elementary definitions and facts from Descriptive Set Theory. 1.1 Background from Descriptive Set Theory Formally, a Polish space is a topological space that admits a complete, separable metric, and a standard Borel space is a measurable space (X, B) that admits a Polish topology 2 whose σ-algebra of Borel sets is B. If (X, B) and (Y, C) are standard Borel spaces, then a function f : X → Y is called Borel if f −1(C) ∈ B for every C ∈ C.A Borel isomorphism is a bijective function f : X → Y such that both f and f −1 are Borel. By a classical theorem due to Kuratowski, any two uncountable standard Borel spaces are Borel isomorphic. Examples of standard Borel spaces include the unit interval [0, 1], the analytic spaces n R, R , and C, the p-adic numbers Qp, and also the descriptive set-theoretic spaces such as Baire space NN and Cantor space 2N = P(N). Any Borel set A ⊆ X in a standard Borel space (X, B) can be regarded as a standard Borel space in its own right with the induced σ-algebra B A = {B ∩ A | B ∈ B}, although in general it may be necessary to take a different underlying Polish topology. For instance, the open unit interval (0, 1) ⊆ R with its subspace σ-algebra is standard Borel, even though it is not complete in the subspace topology. Informally, we think of Borel sets and functions as those that are “explicitly” con- structed or defined, and we think of the unique (up to isomorphism) uncountable stan- dard Borel space as the abstract setting in which “explicit” or “concretely definable” mathematics takes place. Working in the Borel setting will often resemble working without the full power of the Axiom of Choice. If (X, B) and (Y, C) are standard Borel spaces, then X ×Y is a standard Borel space in the product σ-algebra B ×C, which coincides with the Borel σ-algebra of the product topology τ × σ for any Polish topologies τ and σ that generate B and C, respectively. In particular, an equivalence relation E ⊆ X × X on the standard Borel space X is called Borel if E is Borel in the product space X × X. Furthermore, if X and Y are standard Borel spaces then a function f : X → Y is Borel if and only if its graph is Borel as a subset of X × Y (for instance, see [49, 4.5.2]). For general background from Descriptive Set Theory see [30] or [49]. 3 1.2 Classification problems and equivalence relations Abstractly, we might say that a “classification problem” in mathematics consists of: (1) a collection of mathematical objects to be classified, and (2) some notion of equivalence up to which the classification is to be made. For example, we might wish to classify some collection of groups up to group isomor- phism, or graphs up to graph isomorphism, or topological spaces up to homeomorphism. The study of definable equivalence relations on standard Borel spaces is motivated by the fact that for many such abstract classification problems, the collection of objects to be classified can be given the structure of a standard Borel space, on which the given notion of equivalence is a definable equivalence relation.
Recommended publications
  • Mostow Type Rigidity Theorems
    Handbook of c Higher Education Press Group Actions (Vol. IV) and International Press ALM41, Ch. 4, pp. 139{188 Beijing-Boston Mostow type rigidity theorems Marc Bourdon ∗ Abstract This is a survey on rigidity theorems that rely on the quasi-conformal geometry of boundaries of hyperbolic spaces. 2010 Mathematics Subject Classification: 20F65, 20F67, 20F69, 22E40, 30C65, 30L10. Keywords and Phrases: Hyperbolic groups and nonpositively curved groups, asymptotic properties of groups, discrete subgroups of Lie groups, quasiconformal mappings. 1 Introduction The Mostow celebrated rigidity theorem for rank-one symmetric spaces states that every isomorphism between fundamental groups of compact, negatively curved, lo- cally symmetric manifolds, of dimension at least 3, is induced by an isometry. In his proof, Mostow exploits two major ideas: group actions on boundaries and reg- ularity properties of quasi-conformal homeomorphisms. This set of ideas revealed itself very fruitful. It forms one of the bases of the theory of Gromov hyperbolic groups. It also serves as a motivation to develop quasi-conformal geometry on metric spaces. The present text attempts to provide a synthetic presentation of the rigidity theorems that rely on the quasi-conformal geometry of boundaries of hyperbolic spaces. Previous surveys on the subject include [74, 34, 13, 102, 80]. The orig- inality of this text lies more in its form. It has two objectives. The first one is to discuss and prove some classical results like Mostow's rigidity in rank one, Ferrand's solution of Lichn´erowicz's conjecture, the Sullivan-Tukia and the Pansu ∗Universit´eLille 1, D´epartement de math´ematiques, Bat.
    [Show full text]
  • Perspectives on Geometric Analysis
    Surveys in Differential Geometry X Perspectives on geometric analysis Shing-Tung Yau This essay grew from a talk I gave on the occasion of the seventieth anniversary of the Chinese Mathematical Society. I dedicate the lecture to the memory of my teacher S.S. Chern who had passed away half a year before (December 2004). During my graduate studies, I was rather free in picking research topics. I[731] worked on fundamental groups of manifolds with non-positive curva- ture. But in the second year of my studies, I started to look into differential equations on manifolds. However, at that time, Chern was very much inter- ested in the work of Bott on holomorphic vector fields. Also he told me that I should work on Riemann hypothesis. (Weil had told him that it was time for the hypothesis to be settled.) While Chern did not express his opinions about my research on geometric analysis, he started to appreciate it a few years later. In fact, after Chern gave a course on Calabi’s works on affine geometry in 1972 at Berkeley, S.Y. Cheng told me about these inspiring lec- tures. By 1973, Cheng and I started to work on some problems mentioned in Chern’s lectures. We did not realize that the great geometers Pogorelov, Calabi and Nirenberg were also working on them. We were excited that we solved some of the conjectures of Calabi on improper affine spheres. But soon after we found out that Pogorelov [563] published his results right be- fore us by different arguments. Nevertheless our ideas are useful in handling other problems in affine geometry, and my knowledge about Monge-Amp`ere equations started to broaden in these years.
    [Show full text]
  • Rigidity, Locally Symmetric Varieties and the Grothendieck-Katz Conjecture
    Rigidity, locally symmetric varieties and the Grothendieck-Katz Conjecture Benson Farb and Mark Kisin ∗ May 8, 2009 Abstract Using Margulis’s results on lattices in semisimple Lie groups, we prove the Grothendieck- Katz p-Curvature Conjecture for many locally symmetric varieties, including Hilbert- Blumenthal modular varieties and the moduli space of abelian varieties Ag when g > 1. 1 Introduction In this paper we prove certain cases of the well-known p-curvature conjecture of Grothendieck- Katz stated below. The conjecture posits that one can deduce algebraic solutions of certain differential equations when one has solutions after reducing modulo a prime for almost every prime. Our main purpose is to point out that rigidity theorems from the theory of discrete subgroups of Lie groups can be fruitfully applied to this problem. More precisely, let X be a smooth connected variety over C and let V be a vector bundle on X equipped with an integrable connection ∇. Then there is a finitely generated Z-algebra R ⊂ C such that X arises from a smooth R-scheme and (V, ∇) descends to a vector bundle with integrable connection on this R-scheme. We will again denote by X and (V, ∇) the corresponding objects over R. For any maximal ideal p of R, we can reduce mod p to obtain a differential equation (V/pV, ∇) on a smooth scheme over a finite field of characteristic p > 0. Attached to this system is an invariant, the p-curvature of (V/pV, ∇), which is an OX -linear map ψ (V, ∇) : Der(O ⊗ R/p, O ⊗ R/p) → End (V/p,V/p) p X X OX where Der denotes the sheaf of derivations.
    [Show full text]
  • Issue 118 ISSN 1027-488X
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY S E European M M Mathematical E S Society December 2020 Issue 118 ISSN 1027-488X Obituary Sir Vaughan Jones Interviews Hillel Furstenberg Gregory Margulis Discussion Women in Editorial Boards Books published by the Individual members of the EMS, member S societies or societies with a reciprocity agree- E European ment (such as the American, Australian and M M Mathematical Canadian Mathematical Societies) are entitled to a discount of 20% on any book purchases, if E S Society ordered directly at the EMS Publishing House. Recent books in the EMS Monographs in Mathematics series Massimiliano Berti (SISSA, Trieste, Italy) and Philippe Bolle (Avignon Université, France) Quasi-Periodic Solutions of Nonlinear Wave Equations on the d-Dimensional Torus 978-3-03719-211-5. 2020. 374 pages. Hardcover. 16.5 x 23.5 cm. 69.00 Euro Many partial differential equations (PDEs) arising in physics, such as the nonlinear wave equation and the Schrödinger equation, can be viewed as infinite-dimensional Hamiltonian systems. In the last thirty years, several existence results of time quasi-periodic solutions have been proved adopting a “dynamical systems” point of view. Most of them deal with equations in one space dimension, whereas for multidimensional PDEs a satisfactory picture is still under construction. An updated introduction to the now rich subject of KAM theory for PDEs is provided in the first part of this research monograph. We then focus on the nonlinear wave equation, endowed with periodic boundary conditions. The main result of the monograph proves the bifurcation of small amplitude finite-dimensional invariant tori for this equation, in any space dimension.
    [Show full text]
  • Description of My Research Dave Witte Morris Contents 0. Remarks for the Non-Expert 2 0.1. Actions on the Circle 2 0.2. Superrig
    Description of my Research Dave Witte Morris Contents 0. Remarks for the non-expert 2 0.1. Actions on the circle 2 0.2. Superrigidity 3 0.3. Tessellations of homogeneous spaces 5 0.4. Unipotent dynamics 6 0.5. Hamiltonian cycles in Cayley graphs 8 0.6. Miscellaneous work 9 1. Actions on the circle 9 1.1. Algebraic formulation 10 1.2. S-arithmetic groups 11 1.3. Actions on circle bundles 11 1.4. Actions on codimension-one foliations 12 2. Superrigidity 12 2.1. Superrigid subgroups of solvable Lie groups 13 2.2. Superrigidity of lattices in general Lie groups 13 2.3. Mostow Rigidity for solvable Lie groups 13 2.4. Application to foliations of solvmanifolds 14 2.5. Superrigidity of S-arithmetic groups 15 2.6. Cocycle superrigidity for non-semisimple groups 15 2.7. Actions on compact principal bundles 15 2.8. Rigidity of some characteristic-p nillattices 15 3. Tessellations of homogeneous spaces 16 3.1. Homogeneous spaces of SL(3, R)17 3.2. Homogeneous spaces of SO(2,n) and SU(2,n)17 4. Unipotent dynamics 19 4.1. Isomorphisms 19 4.2. Measurable quotients 19 5. Hamiltonian cycles in Cayley graphs 19 5.1. Cyclic commutator subgroup of prime-power order 20 5.2. Sums of hamiltonian cycles 20 5.3. p-groups and torus grids 20 5.4. Circulant digraphs 20 5.5. Transitive groups of prime-squared degree 21 6. Miscellaneous work 21 6.1. Q-forms of real representations 21 6.2. Homogeneous Lorentz manifolds 22 References 23 1 Page 2 0.
    [Show full text]
  • OPEN PROBLEMS in DYNAMICS and RELATED FIELDS This Paper
    OPEN PROBLEMS IN DYNAMICS AND RELATED FIELDS ALEXANDER GORODNIK Contents 1. Local rigidity 2 2. Global rigidity 3 3. Measure rigidity 5 4. Equidistribution 8 5. Divergent trajectories 12 6. Symbolic coding 13 7. Polygonal billiards 14 8. Arithmeticity 15 9. Diophantine analysis 15 10. Quantum ergodicity and quantum chaos 20 11. Andr¶e-Oortconjecture 24 References 26 This paper contains a collection of open problems from the the workshop \Emerging applications of measure rigidity" held at the American Institute of Mathematics in June, 2004. During the workshop researchers in dynamical systems, number theory, arithmetic geometry, and mathematical physics had a unique opportunity to discuss new links between these already richly connected subjects. We hope that this collection will give a snapshot of the active and rapidly developing ¯eld of modern dynamics and its applications. The presented open problems were collected from the participants of the workshop. I also tried to include current status of the problems as well as related references, and I am greatly in debt to the participants for providing this information. I apologize for all omissions and inaccuracies which are solely due to my lack of knowledge. I would like to thank to the participants of the workshop for contributing the problems and for numerous comments/suggestions, and the American Institute of Mathematics and the National Science Foundation for the ¯nancial support of the workshop. The author was partially supported by NSF DMS-0400631 and by AIM. 1 OPEN PROBLEMS 2 1. Local rigidity We refer to [79] for a recent comprehensive survey on local rigidity.
    [Show full text]
  • Math.GR] 19 May 2019
    Épijournal de Géométrie Algébrique epiga.episciences.org Volume 3 (2019), Article Nr. 6 p-adic lattices are not Kähler groups Bruno Klingler Abstract. We show that any lattice in a simple p-adic Lie group is not the fundamental group of a compact Kähler manifold, as well as some variants of this result. Keywords. Kähler groups; lattices in Lie groups 2010 Mathematics Subject Classification. 57M05; 32Q55 [Français] Titre. Les réseaux p-adiques ne sont pas des groupes kählériens Résumé. Dans cette note, nous montrons qu’un réseau d’un groupe de Lie p-adique simple n’est pas le groupe fondamental d’une variété kählérienne compacte, ainsi que des variantes de ce résultat. arXiv:1710.07945v3 [math.GR] 19 May 2019 Received by the Editors on September 21, 2018, and in final form on January 22, 2019. Accepted on March 21, 2019. Bruno Klingler Humboldt-Universität zu Berlin, Germany e-mail: [email protected] B.K.’s research is supported by an Einstein Foundation’s professorship © by the author(s) This work is licensed under http://creativecommons.org/licenses/by-sa/4.0/ 2 1. Results Contents 1. Results ................................................... 2 2. Reminder on lattices ........................................... 3 3. Proof of Theorem 1.1 ........................................... 4 1. Results 1.A. A group is said to be a Kähler group if it is isomorphic to the fundamental group of a connected compact Kähler manifold. In particular such a group is finitely presented. As any finite étale cover of a compact Kähler manifold is still a compact Kähler manifold, any finite index subgroup of a Kähler group is a Kähler group.
    [Show full text]
  • 22 Jan 2021 Length Functions on Groups and Rigidity
    Length functions on groups and rigidity Shengkui Ye January 25, 2021 Abstract Let G be a group. A function l : G → [0, ∞) is called a length function if (1) l(gn)= |n|l(g) for any g ∈ G and n ∈ Z; (2) l(hgh−1)= l(g) for any h, g ∈ G; and (3) l(ab) ≤ l(a)+ l(b) for commuting elements a, b. Such length functions exist in many branches of mathematics, mainly as stable word lengths, stable norms, smooth measure-theoretic entropy, translation lengths on CAT(0) spaces and Gromov δ-hyperbolic spaces, stable norms of quasi-cocycles, rotation numbers of circle homeomorphisms, dynamical degrees of birational maps and so on. We study length functions on Lie groups, Gromov hyperbolic groups, arithmetic subgroups, matrix groups over rings and Cremona groups. As applica- tions, we prove that every group homomorphism from an arithmetic subgroup of a simple algebraic Q-group of Q-rank at least 2, or a finite-index subgroup of the elementary group En(R) (n ≥ 3) over an associative ring, or the Cremona group 2 Bir(PC) to any group G having a purely positive length function must have its image finite. Here G can be outer automorphism group Out(Fn) of free groups, mapping classes group MCG(Σg), CAT(0) groups or Gromov hyperbolic groups, or the group Diff(Σ,ω) of diffeomorphisms of a hyperbolic closed surface preserving an area form ω. 0.1 Introduction The rigidity phenomena have been studied for many years. The famous Margulis super- rigidity implies any group homomorphism between irreducible lattices in semisimple Lie groups of real rank rkR(G) ≥ 2 are virtually induced by group homomorphisms between the Lie groups.
    [Show full text]
  • Shimura Varieties and Moduli
    Shimura Varieties and Moduli J.S. Milne April 30, 2011, v2.00 Abstract Connected Shimura varieties are the quotients of hermitian symmetric domains by discrete groups defined by congruence conditions. We examine their relation with moduli varieties. Contents Notations . .4 1 Elliptic modular curves 5 Definition of elliptic modular curves . .5 Elliptic modular curves as moduli varieties . .6 2 Hermitian symmetric domains 9 Preliminaries on Cartan involutions and polarizations . .9 Definition of hermitian symmetric domains . 10 Classification in terms of real groups . 11 Classification in terms of root systems . 12 Example: the Siegel upper half space . 13 3 Discrete subgroups of Lie groups 14 Lattices in Lie groups . 14 Arithmetic subgroups of algebraic groups . 15 Arithmetic lattices in Lie groups . 16 Congruence subgroups of algebraic groups . 18 4 Locally symmetric varieties 18 Quotients of hermitian symmetric domains . 18 The algebraic structure on the quotient . 19 Chow’s theorem . 19 The Baily-Borel theorem . 19 Borel’s theorem . 19 Locally symmetric varieties . 20 Example: Siegel modular varieties . 20 1 CONTENTS 2 5 Variations of Hodge structures 21 The Deligne torus . 21 Real Hodge structures . 22 Rational Hodge structures . 23 Polarizations . 23 Local systems and vector sheaves with connection . 23 Variations of Hodge structures . 24 6 Mumford-Tate groups and their variation in families 24 The conditions (SV) . 24 Definition of Mumford-Tate groups . 25 Special Hodge structures . 27 The generic Mumford-Tate group . 28 Variation of Mumford-Tate groups in families . 29 Proof of (a) of Theorem 6.19 . 30 Proof of the first statement of (b) of Theorem 6.19 .
    [Show full text]
  • Arxiv:2011.01829V2 [Math.GR] 2 Feb 2021
    GOOD MODELS, INFINITE APPROXIMATE SUBGROUPS AND APPROXIMATE LATTICES SIMON MACHADO University of Cambridge Abstract. We investigate the notion of good models of approximate sub- groups that stems from the work of Hrushovski, and Breuillard, Green and Tao. Our goal is twofold: we first give simple criteria showing existence of a good model, related for instance to amenability or compactness; we then study consequences of the existence of a good model for a given approximate subgroup. This leads to generalisations of a variety of classical facts about groups to the setting of approximate subgroups. As a first application, we prove an approximate subgroup version of Car- tan’s closed-subgroup theorem. Which in turn yields a classification of closed approximate subgroups of Euclidean spaces and a structure theorem for com- pact approximate subgroups. We then use this and a suitable notion of amenability for closed approximate subgroups to address questions about the approximate lattices defined by Bj¨orklund and Hartnick. We show the equiva- lence between the viewpoint of good models and the cut-and-project schemes from aperiodic order theory. This allows us to extend to all amenable groups a structure theorem for mathematical quasi-crystals due to Meyer, and to prove results concerning intersections of radicals of Lie groups and approximate lat- tices generalising theorems due to Auslander, Bieberbach and Mostow. Contents 1. Introduction 1 2. Preliminaries 6 3. Good models : definition, first properties and examples 8 4. A closed-approximate-subgroup theorem 19 arXiv:2011.01829v2 [math.GR] 2 Feb 2021 5. Amenable approximate subgroups 23 6. Generalisation of theorems of Mostow and Auslander 32 References 38 1.
    [Show full text]
  • JHEP09(2020)147 Or Local Springer April 30, 2020 = 2 Effective : August 25, 2020 : N Killing Vector
    Published for SISSA by Springer Received: April 30, 2020 Accepted: August 25, 2020 Published: September 22, 2020 Special geometry and the swampland JHEP09(2020)147 Sergio Cecotti SISSA, via Bonomea 265, I-34100 Trieste, Italy E-mail: [email protected] Abstract: In the context of 4d effective gravity theories with 8 supersymmetries, we propose to unify, strenghten, and refine the several swampland conjectures into a single statement: the structural criterion, modelled on the structure theorem in Hodge theory. In its most abstract form the new swampland criterion applies to all 4d N = 2 effective theories (having a quantum-consistent UV completion) whether supersymmetry is local or rigid: indeed it may be regarded as the more general version of Seiberg-Witten geometry which holds both in the rigid and local cases. As a first application of the new swampland criterion we show that a quantum- consistent N = 2 supergravity with a cubic pre-potential is necessarily a truncation of a higher-N sugra. More precisely: its moduli space is a Shimura variety of `magic' type. In all other cases a quantum-consistent special K¨ahlergeometry is either an arithmetic quotient of the complex hyperbolic space SU(1; m)=U(m) or has no local Killing vector. Applied to Calabi-Yau 3-folds this result implies (assuming mirror symmetry) the validity of the Oguiso-Sakurai conjecture in Algebraic Geometry: all Calabi-Yau 3-folds X without rational curves have Picard number ρ = 2; 3; in facts they are finite quotients of Abelian varieties. More generally: the K¨ahlermoduli of X do not receive quantum corrections if and only if X has infinite fundamental group.
    [Show full text]
  • Superrigidity, Weyl Groups, and Actions on the Circle
    SUPERRIGIDITY, WEYL GROUPS, AND ACTIONS ON THE CIRCLE URI BADER, ALEX FURMAN, AND ALI SHAKER Abstract. We propose a new approach to superrigidity phenomena and im- 1 plement it for lattice representations and measurable cocycles with Homeo+(S ) as the target group. We are motivated by Ghys’ theorem stating that any rep- 1 resentation % :Γ → Homeo+(S ) of an irreducible lattice Γ in a semi-simple real Lie group G of higher rank, either has a finite orbit or, up to a semi-conjugacy, extends to G which acts through an epimorphism G → PSL2(R). Our approach, based on the study of abstract boundary theory and, specifi- cally, on the notion of a generalized Weyl group, allows: (A) to prove a similar superrigidity result for irreducible lattices in products G = G1 ×· · · Gn of n ≥ 2 general locally compact groups, (B) to give a new (shorter) proof of Ghys’ theo- rem, (C) to establish a commensurator superrigidity for general locally compact groups, (D) to prove first superrigidity theorems for A˜2 groups. This approach generalizes to the setting of measurable circle bundles; in this context we prove cocycle versions of (A), (B) and (D). This is the first part of a broader project of studying superrigidity via generalized Weyl groups. Dedicated to Ali (A.F. and U.B.) 1. Introduction and Statement of the Main Results Celebrated Superrigidity theorem of Margulis is one of the central results on lattices in semi-simple Lie groups; it gives a complete description of the linear representations of higher rank lattices and allows to classify such lattices via Mar- gulis’ Arithmeticity theorem ([31]).
    [Show full text]