BMT CTN Progress Report 2020 Table of Contents Table of Contents 1.0 Value the BMT CTN Brings to the Cellular Therapy Community

Total Page:16

File Type:pdf, Size:1020Kb

BMT CTN Progress Report 2020 Table of Contents Table of Contents 1.0 Value the BMT CTN Brings to the Cellular Therapy Community BMT CTN 2020 PROGRESS REPORT >100 presented >50 abstracts trials launched >12,000 patients accrued >400,000 biospecimens >100 manuscripts published Progress May 2019 – Report April 2020 www.bmtctn.net Center for International Blood and Marrow Transplant Research 9200 W. Wisconsin Avenue, Suite C5500, Milwaukee, WI 53226 USA Phone: (414) 805-0700 Fax: (414) 805-0714 The Emmes Company, LLC 401 N. Washington Street, Suite 700, Rockville, MD 20850 USA Phone: (301) 251-1161 Fax: (301) 251-1355 National Marrow Donor Program/Be The Match 500 N. 5th Street, Minneapolis, MN 55401 USA Phone: (763) 406-5800 Fax: (763) 406-4370 This is a publication of the Blood and Marrow Transplant Clinical Trials Network Data and Coordinating Center © 2020 All Rights Reserved BMT CTN Progress Report 2020 Table of Contents Table of Contents 1.0 Value the BMT CTN Brings to the Cellular Therapy Community .................................................................... 1 1.1 Areas of Study ...................................................................................................................................................... 2 1.2 Accrual Success .................................................................................................................................................... 4 1.3 Dissemination of Results ..................................................................................................................................... 4 1.3.1 Publications .................................................................................................................................................. 4 1.3.2 Presentations ................................................................................................................................................ 5 1.4 Significant Findings and Impact .......................................................................................................................... 5 1.5 Biorepository and Clinical Trial Data Resources ............................................................................................... 20 1.6 Funding Leverage .............................................................................................................................................. 20 1.7 Key Collaborations ............................................................................................................................................. 20 2.0 Organizational Overview............................................................................................................................ 21 2.1 Data and Coordinating Center .......................................................................................................................... 21 2.2 Clinical Centers .................................................................................................................................................. 21 2.2.1 Core Centers ............................................................................................................................................... 21 2.2.2 Affiliate Centers .......................................................................................................................................... 22 2.3 Committee Structure ......................................................................................................................................... 22 2.3.1 Biomarkers Committee .............................................................................................................................. 25 2.3.2 Clinical Research Associates Committee ................................................................................................... 25 2.3.3 Special Populations Committee ................................................................................................................. 25 2.3.4 Publications, Abstracts, and Presentations Committee ........................................................................... 25 2.3.5 BMT CTN Myeloma Intergroup .................................................................................................................. 25 2.3.6 Scientific Advisory Committees ................................................................................................................. 25 2.3.7 Evidence into Practice Task Force .............................................................................................................. 26 2.3.8 Consent Translations Task Force ............................................................................................................... 26 2.3.9 COVID-19 Funding Task Force .................................................................................................................... 27 3.0 Administrative Functions of the DCC .......................................................................................................... 28 3.1 DCC Partner Organizations ................................................................................................................................ 28 3.2 Specimen Repository Support .......................................................................................................................... 31 3.2.1 Specimen Collection ................................................................................................................................... 31 3.2.2 Research Sample Repository and Central Processing Lab ........................................................................ 33 3.2.3 Maximizing Sample Collection, Quality, and Availability .......................................................................... 33 3.3 Ancillary and Correlative Study Management ................................................................................................. 34 3.3.1 Ancillary and Correlative Studies in Progress ............................................................................................ 34 3.3.2 Completed Ancillary and Correlative Studies ............................................................................................ 42 3.3.3 Completed Correlative Studies Incorporated into Primary Trial Reports ................................................ 50 4.0 Protocol Descriptions ................................................................................................................................. 51 4.1 Protocols Open to Accrual ................................................................................................................................ 51 BMT CTN 1201 / Alliance A051301 ..................................................................................................................... 52 BMT CTN 1502 ..................................................................................................................................................... 54 i BMT CTN Progress Report 2020 Table of Contents BMT CTN 1503 ..................................................................................................................................................... 57 BMT CTN 1507 ..................................................................................................................................................... 60 BMT CTN 1601 / ECOG-ACRIN EA4151 ............................................................................................................... 62 BMT CTN 1702 ..................................................................................................................................................... 64 BMT CTN 1703 / 1801 ......................................................................................................................................... 67 BMT CTN 1704 ..................................................................................................................................................... 70 BMT CTN 1705 ..................................................................................................................................................... 72 BMT CTN 1706 / SWOG S1803 ............................................................................................................................ 74 BMT CTN 1802 ..................................................................................................................................................... 76 BMT CTN 1905 / ITN077AI .................................................................................................................................. 79 4.2 Protocols that Completed Accrual this Reporting Period ................................................................................ 81 BMT CTN 1506 ..................................................................................................................................................... 82 4.3 Protocols that Completed Accrual during a Previous Reporting Period ......................................................... 84 BMT CTN 0101 ..................................................................................................................................................... 87 BMT CTN 0102 ..................................................................................................................................................... 88 BMT CTN 0201 ..................................................................................................................................................... 89 BMT CTN 0202 ....................................................................................................................................................
Recommended publications
  • Medical Policy
    Medical Policy Joint Medical Policies are a source for BCBSM and BCN medical policy information only. These documents are not to be used to determine benefits or reimbursement. Please reference the appropriate certificate or contract for benefit information. This policy may be updated and is therefore subject to change. *Current Policy Effective Date: 5/1/21 (See policy history boxes for previous effective dates) Title: Composite Tissue Allotransplantation Description/Background Composite tissue allotransplantation refers to the transplantation of histologically different tissue that may include skin, connective tissue, blood vessels, muscle, bone, and nerve tissue. The procedure is also known as reconstructive transplantation. To date, primary applications of this type of transplantation have been of the hand and face (partial and full), although there are also reported cases of several other composite tissue allotransplantations, including that of the larynx, knee, and abdominal wall. The first successful partial face transplant was performed in France in 2005, and the first complete facial transplant was performed in Spain in 2010. In the United States, the first facial transplant was done in 2008 at the Cleveland Clinic; this was a near-total face transplant and included the midface, nose, and bone. The first hand transplant with short-term success occurred in 1998 in France. However, the patient failed to follow the immunosuppressive regimen, which led to graft failure and removal of the hand 29 months after transplantation. The
    [Show full text]
  • Rapidly Growing Epstein-Barr Virus-Associated Pulmonary Lymphoma After Heart Transplantation
    Eur Respir J., 1994, 7, 612–616 Copyright ERS Journals Ltd 1994 DOI: 10.1183/09031936.94.07030612 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 CASE REPORT Rapidly growing Epstein-Barr virus-associated pulmonary lymphoma after heart transplantation M. Schwend*, M. Tiemann**, H.H. Kreipe**, M.R. Parwaresch**, E.G. Kraatz+, G. Herrmann++, R.P. Spielmann$, J. Barth* Rapidly growing Epstein-Barr virus-associated pulmonary lymphoma after heart trans- Dept of *Internal Medicine, **Hemato- plantation. M. Schwend, M. Tiemann, H.H. Kreipe, M.R. Parwaresch, E.G. Kraatz, G. pathology, +Cardiovascular Surgery, Herrmann, R.P. Spielmann, J. Barth. ERS Journals Ltd 1994. ++Cardiology, and $Radiographic Diagnostics, ABSTRACT: There is strong evidence to show an association of Epstein-Barr virus Christian-Albrechts-University of Kiel, Kiel, Germany. (EBV) infection with the development of post-transplant lymphoproliferative dis- ease. We report the rapid development of a malignant lymphoma in a heart trans- Correspondence: J. Barth plant recipient, which occurred within less than eight weeks. I. Medizinische Universitätsklinik The diagnosis of this malignant high grade B-cell lymphoma was established by Schittenhelmstr. 12 open lung biopsy, and classified as centroblastic lymphoma of polymorphic subtype. D-24105 Kiel Immunohistochemically, the lymphoma showed reactivity with the B-cell markers Germany L-26 (CD20) and Ki-B5 and with the activation marker Ber-H2 (CD30). Furthermore, an expression of the bcl-2 oncoprotein was detected. Monoclonal JH gene rearrange- Keywords: Epstein-Barr virus ment was demonstrated by polymerase chain reaction (PCR), indicating monoclonal heart transplantation pulmonary lymphoma proliferation of B-blasts.
    [Show full text]
  • Enteric Alpha Defensins in Norm and Pathology Nikolai a Lisitsyn1*, Yulia a Bukurova1, Inna G Nikitina1, George S Krasnov1, Yuri Sykulev2 and Sergey F Beresten1
    Lisitsyn et al. Annals of Clinical Microbiology and Antimicrobials 2012, 11:1 http://www.ann-clinmicrob.com/content/11/1/1 REVIEW Open Access Enteric alpha defensins in norm and pathology Nikolai A Lisitsyn1*, Yulia A Bukurova1, Inna G Nikitina1, George S Krasnov1, Yuri Sykulev2 and Sergey F Beresten1 Abstract Microbes living in the mammalian gut exist in constant contact with immunity system that prevents infection and maintains homeostasis. Enteric alpha defensins play an important role in regulation of bacterial colonization of the gut, as well as in activation of pro- and anti-inflammatory responses of the adaptive immune system cells in lamina propria. This review summarizes currently available data on functions of mammalian enteric alpha defensins in the immune defense and changes in their secretion in intestinal inflammatory diseases and cancer. Keywords: Enteric alpha defensins, Paneth cells, innate immunity, IBD, colon cancer Introduction hydrophobic structure with a positively charged hydro- Defensins are short, cysteine-rich, cationic peptides philic part) is essential for the insertion into the micro- found in vertebrates, invertebrates and plants, which bial membrane and the formation of a pore leading to play an important role in innate immunity against bac- membrane permeabilization and lysis of the microbe teria, fungi, protozoa, and viruses [1]. Mammalian [10]. Initial recognition of numerous microbial targets is defensins are predominantly expressed in epithelial cells a consequence of electrostatic interactions between the of skin, respiratory airways, gastrointestinal and geni- defensins arginine residues and the negatively charged tourinary tracts, which form physical barriers to external phospholipids of the microbial cytoplasmic membrane infectious agents [2,3], and also in leukocytes (mostly [2,5].
    [Show full text]
  • GWG-Reappointment Bios
    Agenda Item # 12 6/22-3/11 ICOC Meeting Reappointment of Grants Working Group Scientific Members with Expiring Terms Scientific members of the Grants Working Group (GWG) are normally appointed for a period of six years. The original cohort of scientific members was appointed in May and June of 2005 and therefore their terms are now expiring. Since their original appointment, some of the original members have resigned their appointment from the GWG due to various reasons including other competing commitments. Dr. Alan Trounson and CIRM recommend the reappointment of the following members for an additional 6 year term based on their ongoing participation in CIRM reviews, their distinguished status in the stem cell field, continued interest in serving, and CIRM’s need for their review expertise. Susan Bonner-Weir, Ph.D. Dr. Bonner-Weir is Senior Investigator at the Joslin Diabetes Center and Professor of Medicine at Harvard Medical School in Boston. She received her B.A. degree from Rice University and a Ph.D. in biology from Case Western Reserve University. She then completed postdoctoral training in islet morphology at Harvard Medical School and Joslin. Research in her laboratory concerns the growth and differentiation of the insulin producing pancreatic beta cells. For over twenty-five years Dr. Bonner-Weir has focused on the endocrine pancreas (the islets of Langerhans) in three areas: 1) the architecture of the islet and its implications for function; 2) the in vivo regulation of beta-cell mass; and 3) the factors involved in islet growth and differentiation. Her focus now is how to make a reliable source of new beta-cells.
    [Show full text]
  • Downloaded from the Protein Data Bank (PDB
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.451411; this version posted July 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. CAT, AGTR2, L-SIGN and DC-SIGN are potential receptors for the entry of SARS-CoV-2 into human cells Dongjie Guo 1, 2, #, Ruifang Guo1, 2, #, Zhaoyang Li 1, 2, Yuyang Zhang 1, 2, Wei Zheng 3, Xiaoqiang Huang 3, Tursunjan Aziz 1, 2, Yang Zhang 3, 4, Lijun Liu 1, 2, * 1 College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China 2 Key Laboratory of Data Analytics and Optimization for Smart Industry (Ministry of Education), Northeastern University, Shenyang, Liaoning, China 3 Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, USA 4 Department of Biological Chemistry, University of Michigan, Ann Arbor, USA * Corresponding author. College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China. E-mail address: [email protected] (L. Liu) # These authors contributed equally to this work. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.451411; this version posted July 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Since December 2019, the COVID-19 caused by SARS-CoV-2 has been widely spread all over the world.
    [Show full text]
  • MSBCBS Prior Authorization List: Codes to Be Deleted 9/27/10
    MSBCBS Prior Authorization List: Codes to be Deleted 9/27/10 FOREHEAD FLAP WITH PRESERVATION OF VASCULAR PEDICLE (EG, AXIAL PATTERN 1 15731 FLAP) ABLATION, CRYOSURGICAL, OF FIBROADENOMA, INCLUDING ULTRASOUND 2 19105 GUIDANCE, EACH FIBROADENOMA COMPUTER-ASSISTED SURGICAL NAVIGATIONAL PROCEDURE FOR MUSCULOSKELETAL PROCEDURES, IMAGE-LESS (LIST SEPARATELY IN ADDITION TO CODE FOR PRIMARY 3 20985 PROCEDURE) 4 21125 AUGMENTATION, MANDIBULAR BODY OR ANGLE; PROSTHETIC MATERIAL AUGMENTATION, MANDIBULAR BODY OR ANGLE; WITH BONE GRAFT, ONLAY OR 5 21127 INTERPOSITIONAL (INCLUDES OBTAINING AUTOGRAFT) 6 21137 REDUCTION FOREHEAD; CONTOURING ONLY REDUCTION FOREHEAD; CONTOURING AND APPLICATION OF PROSTHETIC MATERIAL 7 21138 OR BONE GRAFT (INCLUDES OBTAINING AUTOGRAFT) REDUCTION FOREHEAD; CONTOURING AND SETBACK OF ANTERIOR FRONTAL SINUS 8 21139 WALL 9 21210 GRAFT, BONE; NASAL, MAXILLARY AND MALAR AREAS (INCLUDES OBTAINING GRAFT) 10 21215 GRAFT, BONE; MANDIBLE (INCLUDES OBTAINING GRAFT) ARTHROPLASTY, TEMPOROMANDIBULAR JOINT, WITH OR WITHOUT AUTOGRAFT 11 21240 (INCLUDES OBTAINING GRAFT) 12 21740 RECONSTRUCTIVE REPAIR OF PECTUS EXCAVATUM OR CARINATUM; OPEN RECONSTRUCTION REPAIR OF PECTUS EXCAVATUM OR CARINATUM; MINIMALLY 13 21742 INVASIVE APPROACH (NUSS PROCEDURE), WITHOUT THORACOSCOPY RECONSTRUCTIVE REPAIR OF PECTUS EXCAVATUM OR CARINATUM; MINIMALLY 14 21743 INVASIVE APPROACH (NUSS PROCEDURE), WITH THORACOSCOPY EXTRACORPOREAL SHOCK WAVE, HIGH ENERGY, PERFORMED BY A PHYSICIAN, REQUIRING ANESTHESIA OTHER THAN LOCAL, INCLUDING ULTRASOUND GUIDANCE, 15 28890 INVOLVING
    [Show full text]
  • CIBMTR Scientific Working Committee Research Portfolio July 1, 2018
    CIBMTR Scientific July 1, Working Committee 2018 Research Portfolio Milwaukee Campus Minneapolis Campus Medical College of Wisconsin National Marrow Donor Program/ 9200 W Wisconsin Ave, Suite Be The Match – 500 N 5th St C5500 Minneapolis, MN 55401-9959 USA Milwaukee, WI 53226 USA (763) 406-5800 (414) 805-0700 cibmtr.org CIBMTR Scientific Working Committee Research Portfolio: July 1, 2018 TABLE OF CONTENTS 1.0 OVERVIEW .................................................................................................................................................................. 1 1.1 Membership ........................................................................................................................................................... 2 1.2 Leadership .............................................................................................................................................................. 2 1.3 Productivity ............................................................................................................................................................ 3 1.4 How to Get Involved ............................................................................................................................................ 3 2.0 ACUTE LEUKEMIA WORKING COMMITTEE .................................................................................................. 6 2.1 Leadership .............................................................................................................................................................
    [Show full text]
  • Spain, France and Italy Are to Exchange Organs for Donation Chains
    Translation of an article published in the Spanish newspaper ABC on 10 October 2012 O.J.D.: 201504 Date: 10/10/2012 E.G.M.: 641000 Section: SOCIETY Pages: 38, 39 ----------------------------------------------------------------------------------------------------------------- This is what happened in Spain’s first ‘crossover’ transplant [For diagram see original article] Altruistic donor The chain started with the kidney donation from a ‘good Samaritan’ going to a recipient in a couple. The wife of the first recipient donated her kidney to a sick person in a second couple. The wife of the second recipient donated her kidney to a third patient on the waiting list. On the waiting list The final recipient, selected using medical criteria, was on the waiting list to receive a kidney from a deceased donor for three years. Spain, France and Italy are to exchange organs for donation chains ► The creation of this type of ‘common area’ in southern Europe will increase the chances of finding a donor match CRISTINA GARRIDO BRUSSELS | Stronger together. Although there are many things on which we find it difficult to agree, this time the strategy was clear. Spain, France and Italy have signed the Southern Europe Transplant Alliance to promote their successful donation and transplant system – which is public, coordinated and directly answerable to the Ministries of Health, as compared to the private models of central and northern Europe – to the international bodies. ‘We (Spain, France and Italy) decided that we had to do something together because we have similar philosophies, ethical criteria and structures and we could not each go our own way given how things are in the northern countries’, explained Dr Rafael Matesanz, Director of the Spanish National Transplant Organisation, at the seminar on donations and transplants organised by the European Commission in Brussels yesterday.
    [Show full text]
  • A New Vision of Iga Nephropathy: the Missing Link
    International Journal of Molecular Sciences Review A New Vision of IgA Nephropathy: The Missing Link Fabio Sallustio 1,2,* , Claudia Curci 2,3,* , Vincenzo Di Leo 3 , Anna Gallone 2, Francesco Pesce 3 and Loreto Gesualdo 3 1 Interdisciplinary Department of Medicine (DIM), University of Bari “Aldo Moro”, 70124 Bari, Italy 2 Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy; [email protected] 3 Nephrology, Dialysis and Transplantation Unit, DETO, University “Aldo Moro”, 70124 Bari, Italy; [email protected] (V.D.L.); [email protected] (F.P.); [email protected] (L.G.) * Correspondence: [email protected] (F.S.); [email protected] (C.C.) Received: 7 December 2019; Accepted: 24 December 2019; Published: 26 December 2019 Abstract: IgA Nephropathy (IgAN) is a primary glomerulonephritis problem worldwide that develops mainly in the 2nd and 3rd decade of life and reaches end-stage kidney disease after 20 years from the biopsy-proven diagnosis, implying a great socio-economic burden. IgAN may occur in a sporadic or familial form. Studies on familial IgAN have shown that 66% of asymptomatic relatives carry immunological defects such as high IgA serum levels, abnormal spontaneous in vitro production of IgA from peripheral blood mononuclear cells (PBMCs), high serum levels of aberrantly glycosylated IgA1, and an altered PBMC cytokine production profile. Recent findings led us to focus our attention on a new perspective to study the pathogenesis of this disease, and new studies showed the involvement of factors driven by environment, lifestyle or diet that could affect the disease.
    [Show full text]
  • Value of Donor–Specific Anti–HLA Antibody Monitoring And
    CLINICAL RESEARCH www.jasn.org Value of Donor–Specific Anti–HLA Antibody Monitoring and Characterization for Risk Stratification of Kidney Allograft Loss † †‡ | Denis Viglietti,* Alexandre Loupy, Dewi Vernerey,§ Carol Bentlejewski, Clément Gosset,¶ † † †‡ Olivier Aubert, Jean-Paul Duong van Huyen,** Xavier Jouven, Christophe Legendre, † | † Denis Glotz,* Adriana Zeevi, and Carmen Lefaucheur* Departments of *Nephrology and Kidney Transplantation and ¶Pathology, Saint Louis Hospital and Departments of ‡Kidney Transplantation and **Pathology, Necker Hospital, Assistance Publique Hôpitaux de Paris, Paris, France; †Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale, UMR-S970, Paris, France; §Methodology Unit (EA 3181) CHRU de Besançon, France; and |University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania ABSTRACT The diagnosis system for allograft loss lacks accurate individual risk stratification on the basis of donor– specific anti–HLA antibody (anti-HLA DSA) characterization. We investigated whether systematic moni- toring of DSA with extensive characterization increases performance in predicting kidney allograft loss. This prospective study included 851 kidney recipients transplanted between 2008 and 2010 who were systematically screened for DSA at transplant, 1 and 2 years post-transplant, and the time of post– transplant clinical events. We assessed DSA characteristics and performed systematic allograft biopsies at the time of post–transplant serum evaluation. At transplant, 110 (12.9%) patients had DSAs; post- transplant screening identified 186 (21.9%) DSA-positive patients. Post–transplant DSA monitoring im- proved the prediction of allograft loss when added to a model that included traditional determinants of allograft loss (increase in c statisticfrom0.67;95%confidence interval [95% CI], 0.62 to 0.73 to 0.72; 95% CI, 0.67 to 0.77).
    [Show full text]
  • Comprehensive Review of the Role of Rituximab in Pediatric Cardiac Transplantation
    Central Journal of Pharmacology & Clinical Toxicology Review Research *Corresponding author Alfred Asante-Korang, Division of Cardiology, Johns Hopkins All Children’s Hospital, 601 5th Street South, Saint Comprehensive Review of the Petersburg, Florida 33701, Tel: 1-727-767-4772; Email: [email protected] Submitted: 22 June 2020 Role of Rituximab in Pediatric Accepted: 07 July 2020 Published: 10 July 2020 Cardiac Transplantation ISSN: 2333-7079 Copyright Amy L. Kiskaddon1 and Alfred-Asante Korang2* © 2020 Kiskaddon AL, et al. 1Department of Pharmacy, Johns Hopkins All Children’s Hospital, USA OPEN ACCESS 2Division of Cardiology, Johns Hopkins All Children’s Hospital, USA Keywords • Rituximab Abstract • Pediatric cardiac transplantation Rituximab is a chimeric anti-CD20 monoclonal antibody approved for the treatment of CD20 positive B cell malignancies. In the transplant context, rituximab has been used to prevent and treat antibody-mediated allograft rejection, minimize systemic toxicities secondary to chemotherapy, treat autoimmune anemias, and as a strategy for managing post-transplant lymphoproliferative disorders (PTLD). However, information in the pediatric cardiac transplant patient population is limited. This review summarizes the use of rituximab in the pediatric cardiac transplant population. ABBREVIATIONS polyangiitis, and pemphigus vulgaris. Generally, a rituximab dose of 375 mg/m2 weekly, depending on the indication it is utilized ADCC: Antibody-Dependent Cell Mediated Cytotoxicity; AIC: for, and has minimal reported side effects
    [Show full text]
  • Ontogeny of the Intestinal Circadian Clock and Its Role in the Response to Clostridium Difficile Toxin B
    Ontogeny of the intestinal circadian clock and its role in the response to Clostridium difficile toxin B A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfilment of the requirements for the degree of Doctor of Philosophy In the Department of Pharmacology & Systems Physiology of the College of Medicine by Andrew Rosselot B.S. Biology, Wittenberg University October 2019 Committee Chair: Christian I. Hong Ph.D. Abstract: The endogenous clock of the intestine regulates physiological processes ranging from nutrient absorption to the pathogenic response. The developmental timepoint when the human intestinal clock becomes active is unknown. We investigated intestinal circadian clock ontogeny using in vitro samples that are representative of distinct developmental timepoints. Induced pluripotent stem cells (iPSCs) were differentiated into 3D human intestinal organoids (HIOs) to mimic intestinal embryonic development in vitro. HIOs were then matured beyond their early fetal state via kidney capsule transplantation. Differentiation of iPSCs into HIOs did not activate robust circadian clock activity. Enteroids isolated from kidney capsule matured HIOs possessed a functional circadian clock, similar to adult biopsy derived human intestinal enteroids (bHIEs). Samples were challenged with toxin B (TcdB) from Clostridium difficile to provide functional insights on intestinal clock activity. The necrotic cell death response to TcdB was clock phase- dependent in samples that possessed an active clock and anti-phasic between mouse enteroids and bHIEs. RNA-seq analysis of mouse enteroids and bHIEs showed both possess robust rhythmic gene expression with up to 20% and 8% of their transcriptome oscillating, respectively. The phase and identity of rhythmic genes was however species-dependent.
    [Show full text]