Rapidly Growing Epstein-Barr Virus-Associated Pulmonary Lymphoma After Heart Transplantation

Total Page:16

File Type:pdf, Size:1020Kb

Rapidly Growing Epstein-Barr Virus-Associated Pulmonary Lymphoma After Heart Transplantation Eur Respir J., 1994, 7, 612–616 Copyright ERS Journals Ltd 1994 DOI: 10.1183/09031936.94.07030612 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 CASE REPORT Rapidly growing Epstein-Barr virus-associated pulmonary lymphoma after heart transplantation M. Schwend*, M. Tiemann**, H.H. Kreipe**, M.R. Parwaresch**, E.G. Kraatz+, G. Herrmann++, R.P. Spielmann$, J. Barth* Rapidly growing Epstein-Barr virus-associated pulmonary lymphoma after heart trans- Dept of *Internal Medicine, **Hemato- plantation. M. Schwend, M. Tiemann, H.H. Kreipe, M.R. Parwaresch, E.G. Kraatz, G. pathology, +Cardiovascular Surgery, Herrmann, R.P. Spielmann, J. Barth. ERS Journals Ltd 1994. ++Cardiology, and $Radiographic Diagnostics, ABSTRACT: There is strong evidence to show an association of Epstein-Barr virus Christian-Albrechts-University of Kiel, Kiel, Germany. (EBV) infection with the development of post-transplant lymphoproliferative dis- ease. We report the rapid development of a malignant lymphoma in a heart trans- Correspondence: J. Barth plant recipient, which occurred within less than eight weeks. I. Medizinische Universitätsklinik The diagnosis of this malignant high grade B-cell lymphoma was established by Schittenhelmstr. 12 open lung biopsy, and classified as centroblastic lymphoma of polymorphic subtype. D-24105 Kiel Immunohistochemically, the lymphoma showed reactivity with the B-cell markers Germany L-26 (CD20) and Ki-B5 and with the activation marker Ber-H2 (CD30). Furthermore, an expression of the bcl-2 oncoprotein was detected. Monoclonal JH gene rearrange- Keywords: Epstein-Barr virus ment was demonstrated by polymerase chain reaction (PCR), indicating monoclonal heart transplantation pulmonary lymphoma proliferation of B-blasts. Although serum EBV immunoglobulin M (IgM) antibodies were negative, the Received: July 1 1993 association to an EBV infection could be demonstrated by EBV immunostaining Accepted after revision November 5 1993 pattern which revealed an expression of the latent membrane protein (LMP) of EBV in the atypical blasts. The results give clear evidence of an EBV association of this rapidly growing lym- phoma developed after heart transplantation. Eur Respir J., 1994, 7, 612–616. The advances in immunosuppression in the past decade We report the case of a rapidly growing pulmonary have greatly improved the feasibility of transplantation lymphoma classified by immunohistochemical methods medicine. Whereas successful immunosuppression pre- and polymerase chain reaction (PCR) analysis. vents rejection of the transplant and maintains the func- tion of the organ, it also is the basis of transplantation associated complications, which mostly affect the lung Case report [1]. In permanent contact with the external milieu, the lung is especially prone to infections in immunosup- A 51 year old male with a New York Heart Association pressed patients [2]. Furthermore, an increase of pri- class IV dilated cardiomyopathy underwent orthotopic mary and secondary malignancies of the lung occurs in heart transplantation in September 1990. Postoperatively, transplantation patients, which may cause considerable immunosuppressive therapy was started with antithy- differential diagnostic difficulties due to rapid tumour mocyte globulin, followed by a triple combination of growth or unusual clinical and radiographic manifesta- cyclosporin A, azathioprine and methylprednisolone. An tions [1, 2]. Although the incidence of common carci- endomyocardial biopsy performed eight weeks after trans- nomas is not increased, there is a considerable increase plantation revealed no histological evidence of allograft of lymphomas occurring after transplantation [3, 4]. The rejection, and a chest roentgenogram displayed no abnor- Epstein-Barr virus (EBV) plays a crucial role in the patho- malities of the lung structure. After another two months, genesis of post-transplantational lymphoproliferative dis- myocardial biopsy still failed to display any evidence of ease [5–8]. a rejection, whereas a subsequent chest X-ray revealed Before the introduction of modern immunohisto- symmetrical, patchy infiltrates in both lungs, mainly occur- chemical and molecular biological techniques with ring in the middle and lower fields (fig. 1). The patient appropriate monoclonal antibodies and gene probes, it was free of symptoms; specifically, he had no history was difficult to characterize the malignant tumour and of fever, weight loss, nocturnal sweat, or dyspnoea. to support the proposed association of post-transplant Physical examination demonstrated only slight high lymphomas to an EBV infection. pitched crackles over both lungs. The erythrocyte EBV-ASSOCIATED PULMONARY LYMPHOMA POST-TRANSPLANT 613 Fig. 1. – Chest X-ray after a routine myocardial biopsy, accidentally Fig. 2. – Computer tomography of the thorax showing multiple pul- demonstrating infiltrates over both lungs. monary nodules with preference to the middle fields of both lungs. sedimentation rate (ESR) was 50/77 mm, haemoglobin Open lung biopsy demonstrated a high grade malignant 11.2 g·dl-1, urea 92.6 mg·dl-1, and creatinine 1.69 mg·dl-1. B-cell lymphoma, which was classified immunohisto- Lactate dehydrogenase was increased at 274 U·l-1 (nor- chemically as a centroblastic lymphoma of polymorphic mal <240 U·l-1). Normal values were found for other subtype (high grade germinal centre lymphoma). A serum enzymes, serum electrophoresis and the tumour monoclonal light chain expression was not found. markers alpha-fetoprotein (AFP), carbohydrate antigenic Azathioprine therapy was stopped and the dosage of determinant 19-9 (CA 19-9) and carcinoembryonic anti- cyclosporin A was decreased. Subsequently, combi- gen (CEA). Paraproteins were not detectable in serum nation chemotherapy with cyclophosphamide, doxoru- and urine. Sputum and gastric juice samples were free bicin, vincristine and prednisolone was initiated. The from tuberculosis bacteria. Antibody screening was nega- patient died unexpectedly because of cardiorespiratory tive for EBV immunoglobulin M (IgM) and showed no failure shortly after the first therapy cycle was com- evidence of a fresh EBV infection; however, it revealed pleted. Permission for autopsy was not obtained. a past primary EBV infection. From cultures and sero- logical tests there was no evidence of a current infection with other pneumotropic viruses, Candida, Aspergillus, Immunohistochemical and molecular analysis Legionella pneumophila or Mycoplasma. A computed tomography (CT)-scan of the thorax visualized multiple pulmonary nodules, mainly in the middle fields (fig. 2). Material and methods Lung function tests revealed a restrictive pattern, with a decreased vital capacity of 3.2 l (predicted 4.47 l) and Immunohistochemistry of lymphoma tissue was per- a decreased arterial oxygen tension (PaO2) of 54 mmHg formed with the alkaline phosphatase and anti-alkaline (7.2 kPa). The single-breath diffusing capacity of the phosphatase (APAAP) staining system, according to lungs for carbon monoxide (DLCO) was reduced to 3.67 CORDELL et al. [9], with a monoclonal antibody against mmol·min-1·kPa-1 (46% predicted). Fibreoptic broncho- EBV latent membrane antigen (LMP-1) encoded by the scopy showed a low grade inflammation without circum- BNLF1 gene of the EBV virus, which is expressed in script alterations of the bronchial system. Transbronchial EBV-infected cells (Dako, Hamburg, FRG) [10]. Further- biopsies revealed an interstitial fibrosis without evidence more, staining with the bcl-2 oncoprotein antibody (Dako, of a specific pneumonia or malignancy. Hamburg, FRG) was performed, marking an antigen The bronchoalveolar lavage fluid contained 64% macro- which is expressed in germinal centre cell lymphoma phages, 35% lymphocytes and 1% granulocytes. The with the 14;18 translocation [11]. The B-cell nature of analysis of lymphocyte subpopulations displayed 89% the lymphoma was demonstrated by staining with the CD3, 44% CD4, 48% CD8, and 4% CD19 positive B- monoclonal B-cell antibodies Ki-B5 [12] (Parwaresch, lymphocytes. The CD4/CD8 ratio was 0.92. Immuno- Kiel, FRG) and L-26 (CD20, Dako, Hamburg, FRG) staining for pneumocystis carinii and cytomegalovirus [13]. An anti CD3 polyclonal antibody was also obtained (CMV) early antigen was negative. Further investiga- (Dako, Hamburg, FRG), whereas the Ber-H2 monoclonal tions, including abdominal ultrasound and bone marrow antibody, which recognizes an activation antigen (CD30), biopsies, revealed no pathological findings leading to a also expressed in EBV infected cells, was obtained by diagnosis. Stein (Berlin, FRG) [14]. Deoxyribonucleic acid (DNA) 614 M. SCHWEND ET AL. was studied by polymerase chain reaction (PCR) tech- Table 1. – Immunoreactivity pattern of lymphoma cells nique for IgH rearrangement. DNA was extracted from paraffin blocks, as described by WAN et al. [15]. After Antibody Cluster Immunoreactivity Source PCR, mineral oil was removed and samples were ex- tracted with chloroform. Five microlitres of each sam- L-26 CD20 + Dako, Hamburg, FRG ple was loaded onto a polyacrylamide gel for 100 min Ki-B5 - + Parwaresch, Kiel, FRG Ber-H2 CD30 + Stein, Berlin, FRG at 400 V over a temperature gradient of T1 10°C and T2 Anti-CD3 CD3 - Dako, Hamburg, FRG 60°C. After electrophoresis, fractions were stained using bcl-2 - + Dako, Hamburg, FRG a silver-staining procedure, according to ROSENBAUM and LMP - + Dako, Hamburg, FRG RIESNER [16]. LMP: latent membrane protein. Results and interpretation The regular B-cell antigens,
Recommended publications
  • Medical Policy
    Medical Policy Joint Medical Policies are a source for BCBSM and BCN medical policy information only. These documents are not to be used to determine benefits or reimbursement. Please reference the appropriate certificate or contract for benefit information. This policy may be updated and is therefore subject to change. *Current Policy Effective Date: 5/1/21 (See policy history boxes for previous effective dates) Title: Composite Tissue Allotransplantation Description/Background Composite tissue allotransplantation refers to the transplantation of histologically different tissue that may include skin, connective tissue, blood vessels, muscle, bone, and nerve tissue. The procedure is also known as reconstructive transplantation. To date, primary applications of this type of transplantation have been of the hand and face (partial and full), although there are also reported cases of several other composite tissue allotransplantations, including that of the larynx, knee, and abdominal wall. The first successful partial face transplant was performed in France in 2005, and the first complete facial transplant was performed in Spain in 2010. In the United States, the first facial transplant was done in 2008 at the Cleveland Clinic; this was a near-total face transplant and included the midface, nose, and bone. The first hand transplant with short-term success occurred in 1998 in France. However, the patient failed to follow the immunosuppressive regimen, which led to graft failure and removal of the hand 29 months after transplantation. The
    [Show full text]
  • MSBCBS Prior Authorization List: Codes to Be Deleted 9/27/10
    MSBCBS Prior Authorization List: Codes to be Deleted 9/27/10 FOREHEAD FLAP WITH PRESERVATION OF VASCULAR PEDICLE (EG, AXIAL PATTERN 1 15731 FLAP) ABLATION, CRYOSURGICAL, OF FIBROADENOMA, INCLUDING ULTRASOUND 2 19105 GUIDANCE, EACH FIBROADENOMA COMPUTER-ASSISTED SURGICAL NAVIGATIONAL PROCEDURE FOR MUSCULOSKELETAL PROCEDURES, IMAGE-LESS (LIST SEPARATELY IN ADDITION TO CODE FOR PRIMARY 3 20985 PROCEDURE) 4 21125 AUGMENTATION, MANDIBULAR BODY OR ANGLE; PROSTHETIC MATERIAL AUGMENTATION, MANDIBULAR BODY OR ANGLE; WITH BONE GRAFT, ONLAY OR 5 21127 INTERPOSITIONAL (INCLUDES OBTAINING AUTOGRAFT) 6 21137 REDUCTION FOREHEAD; CONTOURING ONLY REDUCTION FOREHEAD; CONTOURING AND APPLICATION OF PROSTHETIC MATERIAL 7 21138 OR BONE GRAFT (INCLUDES OBTAINING AUTOGRAFT) REDUCTION FOREHEAD; CONTOURING AND SETBACK OF ANTERIOR FRONTAL SINUS 8 21139 WALL 9 21210 GRAFT, BONE; NASAL, MAXILLARY AND MALAR AREAS (INCLUDES OBTAINING GRAFT) 10 21215 GRAFT, BONE; MANDIBLE (INCLUDES OBTAINING GRAFT) ARTHROPLASTY, TEMPOROMANDIBULAR JOINT, WITH OR WITHOUT AUTOGRAFT 11 21240 (INCLUDES OBTAINING GRAFT) 12 21740 RECONSTRUCTIVE REPAIR OF PECTUS EXCAVATUM OR CARINATUM; OPEN RECONSTRUCTION REPAIR OF PECTUS EXCAVATUM OR CARINATUM; MINIMALLY 13 21742 INVASIVE APPROACH (NUSS PROCEDURE), WITHOUT THORACOSCOPY RECONSTRUCTIVE REPAIR OF PECTUS EXCAVATUM OR CARINATUM; MINIMALLY 14 21743 INVASIVE APPROACH (NUSS PROCEDURE), WITH THORACOSCOPY EXTRACORPOREAL SHOCK WAVE, HIGH ENERGY, PERFORMED BY A PHYSICIAN, REQUIRING ANESTHESIA OTHER THAN LOCAL, INCLUDING ULTRASOUND GUIDANCE, 15 28890 INVOLVING
    [Show full text]
  • CIBMTR Scientific Working Committee Research Portfolio July 1, 2018
    CIBMTR Scientific July 1, Working Committee 2018 Research Portfolio Milwaukee Campus Minneapolis Campus Medical College of Wisconsin National Marrow Donor Program/ 9200 W Wisconsin Ave, Suite Be The Match – 500 N 5th St C5500 Minneapolis, MN 55401-9959 USA Milwaukee, WI 53226 USA (763) 406-5800 (414) 805-0700 cibmtr.org CIBMTR Scientific Working Committee Research Portfolio: July 1, 2018 TABLE OF CONTENTS 1.0 OVERVIEW .................................................................................................................................................................. 1 1.1 Membership ........................................................................................................................................................... 2 1.2 Leadership .............................................................................................................................................................. 2 1.3 Productivity ............................................................................................................................................................ 3 1.4 How to Get Involved ............................................................................................................................................ 3 2.0 ACUTE LEUKEMIA WORKING COMMITTEE .................................................................................................. 6 2.1 Leadership .............................................................................................................................................................
    [Show full text]
  • Value of Donor–Specific Anti–HLA Antibody Monitoring And
    CLINICAL RESEARCH www.jasn.org Value of Donor–Specific Anti–HLA Antibody Monitoring and Characterization for Risk Stratification of Kidney Allograft Loss † †‡ | Denis Viglietti,* Alexandre Loupy, Dewi Vernerey,§ Carol Bentlejewski, Clément Gosset,¶ † † †‡ Olivier Aubert, Jean-Paul Duong van Huyen,** Xavier Jouven, Christophe Legendre, † | † Denis Glotz,* Adriana Zeevi, and Carmen Lefaucheur* Departments of *Nephrology and Kidney Transplantation and ¶Pathology, Saint Louis Hospital and Departments of ‡Kidney Transplantation and **Pathology, Necker Hospital, Assistance Publique Hôpitaux de Paris, Paris, France; †Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale, UMR-S970, Paris, France; §Methodology Unit (EA 3181) CHRU de Besançon, France; and |University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania ABSTRACT The diagnosis system for allograft loss lacks accurate individual risk stratification on the basis of donor– specific anti–HLA antibody (anti-HLA DSA) characterization. We investigated whether systematic moni- toring of DSA with extensive characterization increases performance in predicting kidney allograft loss. This prospective study included 851 kidney recipients transplanted between 2008 and 2010 who were systematically screened for DSA at transplant, 1 and 2 years post-transplant, and the time of post– transplant clinical events. We assessed DSA characteristics and performed systematic allograft biopsies at the time of post–transplant serum evaluation. At transplant, 110 (12.9%) patients had DSAs; post- transplant screening identified 186 (21.9%) DSA-positive patients. Post–transplant DSA monitoring im- proved the prediction of allograft loss when added to a model that included traditional determinants of allograft loss (increase in c statisticfrom0.67;95%confidence interval [95% CI], 0.62 to 0.73 to 0.72; 95% CI, 0.67 to 0.77).
    [Show full text]
  • Comprehensive Review of the Role of Rituximab in Pediatric Cardiac Transplantation
    Central Journal of Pharmacology & Clinical Toxicology Review Research *Corresponding author Alfred Asante-Korang, Division of Cardiology, Johns Hopkins All Children’s Hospital, 601 5th Street South, Saint Comprehensive Review of the Petersburg, Florida 33701, Tel: 1-727-767-4772; Email: [email protected] Submitted: 22 June 2020 Role of Rituximab in Pediatric Accepted: 07 July 2020 Published: 10 July 2020 Cardiac Transplantation ISSN: 2333-7079 Copyright Amy L. Kiskaddon1 and Alfred-Asante Korang2* © 2020 Kiskaddon AL, et al. 1Department of Pharmacy, Johns Hopkins All Children’s Hospital, USA OPEN ACCESS 2Division of Cardiology, Johns Hopkins All Children’s Hospital, USA Keywords • Rituximab Abstract • Pediatric cardiac transplantation Rituximab is a chimeric anti-CD20 monoclonal antibody approved for the treatment of CD20 positive B cell malignancies. In the transplant context, rituximab has been used to prevent and treat antibody-mediated allograft rejection, minimize systemic toxicities secondary to chemotherapy, treat autoimmune anemias, and as a strategy for managing post-transplant lymphoproliferative disorders (PTLD). However, information in the pediatric cardiac transplant patient population is limited. This review summarizes the use of rituximab in the pediatric cardiac transplant population. ABBREVIATIONS polyangiitis, and pemphigus vulgaris. Generally, a rituximab dose of 375 mg/m2 weekly, depending on the indication it is utilized ADCC: Antibody-Dependent Cell Mediated Cytotoxicity; AIC: for, and has minimal reported side effects
    [Show full text]
  • Report: Rs04328‐R1328 North Carolina Department of Health and Human Services Physician Fee Schedule As Of:12/11/2018
    REPORT: RS04328‐R1328 NORTH CAROLINA DEPARTMENT OF HEALTH AND HUMAN SERVICES PHYSICIAN FEE SCHEDULE AS OF:12/11/2018 Physician Fee Schedule Provider Specialty 001 Effective Date: 1/1/2018 The inclusion of a rate on this table does not guarantee that a service is covered. Please refer to the Medicaid Billing Guide and the Medicaid and Health Choice Clinical Policies on the DMA Web Site. Providers should always bill their usual and customary charges. Please use the monthly NC Medicaid Bulletins for additions, changes and deletion to this schedule. Medicaid Maximum Allowable NON-FACILITY PROCEDURE CODE MODIFIER PROCEDURE DESCRIPTION FACILITY RATE RATE EFFECTIVE DATE 01967 NEURAXIAL LABOR ANALGESIA/ANESTHESIA FOR $ 209.63 $ 209.63 01996 DAILY HOSPITAL MANAGEMENT OF EPIDURAL OR $ 38.93 $ 38.93 10021 FINE NEEDLE ASPIRATION; WITHOUT IMAGING $ 52.36 $ 100.48 10022 FINE NEEDLE ASPIRATION; WITH IMAGING GUI $ 51.97 $ 103.17 10030 GUIDE CATHET FLUID DRAINAGE $ 126.07 $ 615.23 10035 PERQ DEV SOFT TISS 1ST IMAG $ 74.46 $ 437.80 10036 PERQ DEV SOFT TISS ADD IMAG $ 37.49 $ 379.35 10040 ACNE SURGERY $ 63.53 $ 72.20 10060 DRAINAGE OF ABSCESS $ 67.39 $ 77.74 10061 DRAINAGE OF ABSCESS $ 120.14 $ 133.85 10080 DRAINAGE OF PILONIDAL CYST $ 68.87 $ 114.75 10081 DRAINAGE OF PILONIDAL CYST $ 120.71 $ 181.14 10120 FOREIGN BODY REMOVAL, SKIN $ 66.08 $ 94.90 10121 FOREIGN BODY REMOVAL, SKIN $ 135.29 $ 185.09 Printed 12/11/2018 Page 1 of 329 REPORT: RS04328‐R1328 NORTH CAROLINA DEPARTMENT OF HEALTH AND HUMAN SERVICES PHYSICIAN FEE SCHEDULE AS OF:12/11/2018 10140 DRAINAGE
    [Show full text]
  • Clinical Guidelines for Organ Transplantation from Deceased Donors Version 1.5 – April 2021
    The Transplantation Society of Australia and New Zealand Clinical Guidelines for Organ Transplantation from Deceased Donors Version 1.5 – April 2021 Produced in partnership with Version 1.0 of the Clinical Guidelines for Organ Transplantation from Deceased Donors (the Clinical Guidelines) was released in April 2016. Updates were made in May 2017 (Version 1.1), December 2018 (Version 1.2), May 2019 (Version 1.3), and July 2020 (Version 1.4). The current document, Version 1.5 (April 2021), replaces these previous versions of the Clinical Guidelines. Version control Version # Changes made Approved by Date 1.5 Updated advice related COVID-19 (section 2.3.2.1). Australasian Transplant 28 April 2021 Addition of advice in the event of reactive screening antibody Coordinators Association results (section 2.3.2.9). (ATCA), Transplant Society of Australia and New Zealand Addition of section 2.5 on Risks related to other donor (TSANZ) and Organ and conditions. Tissue Authority (OTA). Updates relating to the Australian and New Zealand paired Kidney Exchange Program (ANZKX) (sections 5.2.5 and 5.4.4). 1.4 Chapter 11 (Paediatric Donors) was added to the Guidelines, Paediatric Donor Working 24 July 2020 providing organ-specific advice on acceptability and allocation Group. Australasian of organs from paediatric donors. Each of the organ- Transplant Coordinators specific chapters in Part B were updated to reflect the new Association (ATCA), recommendations for paediatric donors. Transplant Society of Australia and New Zealand Addition of advice on COVID-19 screening in deceased (TSANZ) and Organ and donors. Tissue Authority (OTA) 1.3 Broad revisions to section 2.3 (Donor assessment) and Australasian Transplant 31 May 2019 section 2.4 (Donor transmitted infectious disease).
    [Show full text]
  • Allotransplantation of Cryopreserved Parathyroid Tissue for Severe Hypocalcemia in a Renal Transplant Recipient
    American Journal of Transplantation 2010; 10: 2061–2065 C 2010 The Authors Wiley Periodicals Inc. Journal compilation C 2010 The American Society of Transplantation and the American Society of Transplant Surgeons doi: 10.1111/j.1600-6143.2010.03234.x Allotransplantation of Cryopreserved Parathyroid Tissue for Severe Hypocalcemia in a Renal Transplant Recipient S. M. Flechnera,*,E.Berberb, M. Askarc, Introduction B. Stephanya,A.Agarwala and Mira Milasb Hypercalcemia due to tertiary hyperparathyroidism is fre- aGlickman Urological and Kidney Institute, bEndocrine quently encountered in patients with end stage renal dis- Surgery Department, Endocrinology and Metabolism ease (ESRD). It is successfully treated by subtotal parathy- Institute, cAllogen Laboratories, Transplant Center roidectomy, and if needed autotransplant of a small amount Cleveland Clinic Foundation, Cleveland, OH of residual parathyroid tissue. However, in 1–2% of pa- *Corresponding author: Stuart M. Flechner, tients severe hypocalcemia can occur, creating a difficult fl[email protected] clinical problem (1). Herein we report the successful allo- transplantation of cryopreserved parathyroid tissue to re- We report the successful allotransplantation of cryo- verse hypocalcemia in an immunosuppressed kidney trans- preserved parathyroid tissue to reverse hypocalcemia plant recipient. This was done after all standard attempts in a kidney transplant recipient. A 36-year-old male re- to treat symptomatic hypocalcemia failed. ceived a second deceased donor kidney transplant, and 6 weeks later developed severe bilateral leg numb- ness and weakness, inability to walk, acute pain in the left knee and wrist tetany. His total calcium was Methods 2.6 mg/dL and parathormone level 5 pg/mL (normal 10–60 pg/mL).
    [Show full text]
  • The Biology of Bone Grafts
    12 The Biology of Bone Grafts Carlos Roberto Galia and Luis Fernando Moreira Rio Grande do Sul Federal University, Porto Alegre, RS, Brazil School of Medicine, Post-Graduate Programme of Surgery and Hospital de Clinicas University Hospital Department of Surgery 1Division of Orthopaedics and 2Division of Surgical Oncology Brazil 1. Introduction The use of bone transplants in orthopaedic procedures has become crucial to treat a great number of bone diseases including bone tumour operations, knee or total hip revision arthroplasty and even beyond the orthopaedic scope such as in craniomaxillofacial surgery. Approximately 10% to 15% of the orthopaedic procedures carried out every year in the U.S.A. employ some kind of musculoskeletal transplant. Annually, about 650 thousand bone-based grafts are distributed by the American Tissue Banks, which clearly shows the importance of processing, controlling and storage of this type of material. As opposed to other organs such as heart, liver or kidneys and most of the soft tissues, the bone can be processed by many ways, can be stored longer and has been implanted till recently without prior testing compatibility. Moreover, the grafts can be obtained from oneself, living or cadaver donors, or derived from other species or even from non organic biomaterials. However, the offer for grafts is far behind the demand. Despite the success rate of about 85% with the use of bone grafts in orthopaedic surgery, patient waiting list for these grafts keep growing day by day either in the public or private health service. The homologous deep-frozen grafts have been frequently used, although availability is very limited and a certain risk of transmitting contagious diseases cannot be thoroughly ruled out.
    [Show full text]
  • Twenty Years of Clinical Islet Transplantation at the Diabetes Research Institute – University of Miami
    1 CHAPTER Twenty Years of Clinical Islet Transplantation at the Diabetes Research Institute – University of Miami A. Pileggi, C. Ricordi, N.S. Kenyon, T. Froud, D.A. Baidal, A. Kahn, G. Selvaggi, and R. Alejandro Clinical Islet Transplant Program and Cell Transplant Center, Diabetes Research Institute, University of Miami - Leonard Miller School of Medicine, Miami, Florida Intensive insulin therapy with the goal of maintain- lowing pancreatectomy due to pain associated with ing blood glucose concentrations close to the normal chronic pancreatitis, benign neoplasm, or trauma)(9-15). range can delay or prevent the onset of diabetes compli- Transplantation of allogeneic islets is mainly performed cations in patients with type 1 diabetes mellitus in patients with T1DM: allogeneic islets have been trans- (T1DM)(1). This goal is difficult to achieve in the major- planted in patients with end-stage renal disease (ESRD) ity of patients and is associated with a three-fold increase together with the kidney (simultaneous islet and kidney; in severe hypoglycemia. Transplantation of pancreatic SIK) and in patients with a stable kidney allograft (islet islets in patients with T1DM can restore β–cell function after kidney; IAK)(16-22). In recent years, transplanta- and provide a more physiological glycemic control than tion of allogeneic islets has also been performed as islet ISLETS - MIAMI, FLORIDA exogenous insulin administration (2). transplantation alone (ITA) in patients with brittle diabe- Steady progress in the field of β–cell replacement tes characterized by hypoglycemia unawareness and has been observed in recent years (2, 3), starting from progressive diabetes complications for which the risk of the seminal work by Lacy, et al (4, 5) in the late 1960s life-threatening hypoglycemia overweighed those of the demonstrating reversal of hyperglycemia by islet trans- transplantation procedure and chronic immunosuppres- plantation in diabetic rodents.
    [Show full text]
  • Bone Allografts in Dentistry
    tistr Den y Malinin et al., Dentistry 2014, 4:2 Dentistry DOI: 10.4172/2161-1122.1000199 ISSN: 2161-1122 Review Article Open Access Bone Allografts in Dentistry: A Review Malinin TI1*, Temple HT2 and Garg AK3,4 1Emeritus Professor of Orthopaedics, University of Miami Miller School of Medicine, Miami, FL, USA 2Professor of Orthopaedics and Director, Tissue Bank, University of Miami Miller School of Medicine, Miami, FL, USA 3Director, Center for Dental Implants of South Florida, Aventura, FL, USA 4Clinical Professor, University of Florida, School of Dentistry, Gainesville, FL, USA Abstract Transplantation of bone allografts is an accepted procedure in dentistry as it is in many surgical specialties. Despite wide acceptance and ready access to a number of bone allografts, there is often insufficient knowledge of the origin of these allografts and the processing methods. This brief review paper summarizes contemporary knowledge of the biologic properties of bone transplants used in dentistry and discusses their safety. It is intended to aid dental practitioners in selecting suitable bone allograft materials for their patients. It does not deal with bone autografts nor does it compare autografts and allografts. Long-term clinical results with allografts processed by different methods are also outside of the scope of this review. Keywords: Bone allografts; Bone banking; Recipient safety; Freeze- The decision making process regarding allograft transplantation is drying; Allograft sterilization; Allograft processing a complex one, and must be based on a fundamental understanding of bone allograft biology. Once familiarity with the subject is gained, Introduction the dental practitioner will be in a position to determine whether or Dental practitioners perform more bone allograft transplants than not transplantation of an allograft will be beneficial for a particular any other surgical specialists.
    [Show full text]
  • Complex Facial Reconstruction by Vascularized Composite Allotransplantation: the first Belgian Case* Nathalie A
    Journal of Plastic, Reconstructive & Aesthetic Surgery (2015) 68, 362e371 Complex facial reconstruction by vascularized composite allotransplantation: The first Belgian case* Nathalie A. Roche a,*, Hubert F. Vermeersch b, Filip B. Stillaert a, Kevin T. Peters a, Jan De Cubber c, Kristiane Van Lierde d, Xavier Rogiers e, Luc Colenbie e, Patrick C. Peeters f, Gilbert M.D. Lemmens g, Phillip N. Blondeel a a Department of Plastic and Reconstructive Surgery, University Hospital, De Pintelaan 185, 9000 Ghent, Belgium b Department of Head and Neck Surgery, University Hospital, De Pintelaan 185, 9000 Ghent, Belgium c Center for Craniofacial Epithetics, Guldendelle 35, 1930 Zaventem, Belgium d Department of Speech, Language and Hearing Sciences, University Hospital, De Pintelaan 185, 9000 Ghent, Belgium e Department of Transplant Surgery, University Hospital, De Pintelaan 185, 9000 Ghent, Belgium f Department of Nephrology, University Hospital, De Pintelaan 185, 9000 Ghent, Belgium g Department of Psychiatry and Medical Psychology, University Hospital, De Pintelaan 185, 9000 Ghent, Belgium Received 5 June 2014; accepted 8 November 2014 KEYWORDS Summary Introduction: Complex injuries to the central part of the face are difficult to Vascularized reconstruct with the current plastic surgery methods. The ultimate one-staged approach to composite restore anatomy and vital facial functions is to perform a vascularized composite allotrans- allotransplantation; plantation (VCA). Face transplant; Methods: A 54-year-old man suffered from a high-energy ballistic injury, resulting in a large 3D CT modeling; central facial defect. A temporary reconstruction was performed with a free plicated antero- Multidisciplinary lateral thigh (ALT) flap. Considering the goal to optimally restore facial function and aes- team approach thetics, VCA was considered as an option for facial reconstruction.
    [Show full text]