NMR Properties of the Cyanide Anion, a Quasisymmetric Two-Faced Hydrogen Bonding Acceptor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proton-Coupled Reduction of N2 Facilitated by Molecular Fe Complexes
Proton-Coupled Reduction of N2 Facilitated by Molecular Fe Complexes Thesis by Jonathan Rittle In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2016 (Defended November 9, 2015) ii 2016 Jonathan Rittle All Rights Reserved iii ACKNOWLEDGEMENTS My epochal experience in graduate school has been marked by hard work, intellectual growth, and no shortage of deadlines. These facts leave little opportunity for an acknowledgement of those whose efforts were indispensable to my progress and perseverance, and are therefore disclosed here. First and foremost, I would like to thank my advisor, Jonas Peters, for his tireless efforts in molding me into the scientist that I am today. His scientific rigor has constantly challenged me to strive for excellence and I am grateful for the knowledge and guidance he has provided. Jonas has given me the freedom to pursue scientific research of my choosing and shown a remarkable degree of patience while dealing with my belligerent tendencies. Perhaps equally important, Jonas has built a research group that is perpetually filled with the best students and postdoctoral scholars. Their contributions to my graduate experience are immeasurable and I wish them all the best of luck in their future activities. In particular, John Anderson, Dan Suess, and Ayumi Takaoka were senior graduate students who took me under their wings when I joined the lab as a naïve first-year graduate student. I am grateful for the time and effort that they collectively spent in teaching me the art of chemical synthesis and for our unforgettable experiences outside of lab. -
Structural and Electronic Influences on Phosphite Basicity and Its Application to Heterogeneous and Homogeneous Catalysis David Evan Schiff Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1983 Structural and electronic influences on phosphite basicity and its application to heterogeneous and homogeneous catalysis David Evan Schiff Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Schiff, David Evan, "Structural and electronic influences on phosphite basicity and its application to heterogeneous and homogeneous catalysis " (1983). Retrospective Theses and Dissertations. 8960. https://lib.dr.iastate.edu/rtd/8960 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. -
Notable Reactivity of Acetonitrile Towards Li2o2/Lio2 Probed By
Topics in Catalysis https://doi.org/10.1007/s11244-018-1072-5 ORIGINAL ARTICLE Notable Reactivity of Acetonitrile Towards Li2O2/LiO2 Probed by NAP XPS During Li–O2 Battery Discharge Tatiana K. Zakharchenko1 · Alina I. Belova1 · Alexander S. Frolov1 · Olesya O. Kapitanova1 · Juan‑Jesus Velasco‑Velez2 · Axel Knop‑Gericke2,5 · Denis Vyalikh3,4 · Daniil M. Itkis1 · Lada V. Yashina1 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract One of the key factors responsible for the poor cycleability of Li–O2 batteries is a formation of byproducts from irreversible reactions between electrolyte and discharge product Li 2O2 and/or intermediate LiO2. Among many solvents that are used as electrolyte component for Li–O2 batteries, acetonitrile (MeCN) is believed to be relatively stable towards oxidation. Using near ambient pressure X-ray photoemission spectroscopy (NAP XPS), we characterized the reactivity of MeCN in the Li–O2 battery. For this purpose, we designed the model electrochemical cell assembled with solid electrolyte. We discharged it first in O2 and then exposed to MeCN vapor. Further, the discharge was carried out in O2 + MeCN mixture. We have dem- onstrated that being in contact with Li–O2 discharge products, MeCN oxidizes. This yields species that are weakly bonded to the surface and can be easily desorbed. That’s why they cannot be detected by the conventional XPS. Our results suggest that the respective chemical process most probably does not give rise to electrode passivation but can decrease considerably the Coulombic efficiency of the battery. Keywords Li–O2 battery · In situ NAP XPS · Acetonitrile · Side reactions 1 Introduction Li–O2 batteries promise extraordinary high specific energy that makes them interesting for the next generation power technologies [1, 2]. -
Hydrogen Isocyanide, HNC, in Titan's Ionosphere
EPSC Abstracts Vol. 8, EPSC2013-589, 2013 European Planetary Science Congress 2013 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2013 Hydrogen isocyanide, HNC, in Titan’s ionosphere V. Vuitton (1), R. V. Yelle (2), S. J. Klippenstein (3), P. Lavvas (4), S. M. Hörst (5) and A. Bazin (1) (1) IPAG, UMR CNRS 5274, Université Joseph Fourier Grenoble 1, France, (2) LPL, University of Arizona, Tucson AZ, USA, (3) Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL, USA, (4) GSMA, UMR CNRS 6089, Université de Reims Champagne-Ardenne, France, (5) CIRES, University of Colorado, Boulder CO, USA ([email protected]) to a lesser extent from N(4S) + CH HNC + H. It Abstract 2 → is mainly destroyed by its reaction with N(2D) above The first identification of hydrogen isocyanide, HNC, 1000 km and H at lower altitude. The column density 13 2 in Titan’s atmosphere has recently been reported. Us- obtained is 3.4 10 cm− , which is about 3 times × ing a coupled ion-neutral photochemical model, we higher than the value derived from the observations. It find that both neutral and ion chemistry contribute to is argued that this discrepancy can be explained by the the production and loss of HNC. According to our cal- poor knowledge of three key reactions: H + HNC 6 2 → culations, the HNC density reaches a peak of 10 H + HCN, H + H2CN HNC/HCN + H2 and N( D) 3 ∼ → cm− at an altitude of 950-1000 km. This translates + HNC CN2 + H / CH + N2. 13 2 → into a a column density of 1.8 10 cm− above 800 × km, in fair agreement with the observations. -
A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory
sensors Article A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory Niraj Verma 1,† , Yunwen Tao 1,†, Wenli Zou 2, Xia Chen 3, Xin Chen 4, Marek Freindorf 1 and Elfi Kraka 1,* 1 Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; [email protected] (N.V.); [email protected] (Y.T.); [email protected] (M.F.) 2 Institute of Modern Physics, Northwest University, Xi’an 710127, China; [email protected] 3 Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; [email protected] 4 Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 20 March 2020; Accepted: 15 April 2020; Published: 21 April 2020 Abstract: Over the past two decades, the vibrational Stark effect has become an important tool to measure and analyze the in situ electric field strength in various chemical environments with infrared spectroscopy. The underlying assumption of this effect is that the normal stretching mode of a target bond such as CO or CN of a reporter molecule (termed vibrational Stark effect probe) is localized and free from mass-coupling from other internal coordinates, so that its frequency shift directly reflects the influence of the vicinal electric field. However, the validity of this essential assumption has never been assessed. Given the fact that normal modes are generally delocalized because of mass-coupling, this analysis was overdue. -
High Energy Radical Chemistry Formation of HCN-Rich
www.nature.com/scientificreports Correction: Author Correction OPEN High Energy Radical Chemistry Formation of HCN-rich Atmospheres on early Earth Received: 9 February 2017 Martin Ferus1, Petr Kubelík1,2, Antonín Knížek1, Adam Pastorek1, John Sutherland3 & Accepted: 13 June 2017 Svatopluk Civiš1 Published: xx xx xxxx Recent results in prebiotic chemistry implicate hydrogen cyanide (HCN) as the source of carbon and nitrogen for the synthesis of nucleotide, amino acid and lipid building blocks. HCN can be produced during impact events by reprocessing of carbonaceous and nitrogenous materials from both the impactor and the atmosphere; it can also be produced from these materials by electrical discharge. Here we investigate the efect of high energy events on a range of starting mixtures representative of various atmosphere-impactor volatile combinations. Using continuously scanning time–resolved spectrometry, we have detected ·CN radical and excited CO as the initially most abundant products. Cyano radicals and excited carbon monoxide molecules in particular are reactive, energy-rich species, but are resilient owing to favourable Franck–Condon factors. The subsequent reactions of these frst formed excited species lead to the production of ground-state prebiotic building blocks, principally HCN. During the frst sixteen years of the 21st century, major progress in the synthesis of biological molecules under prebiotically plausible conditions has been reported1–6. Hydrogen cyanide (HCN) and its hydration product 5–10 formamide (HCONH2) are central to such syntheses . HCN exhibits many properties that make it an ideal building block, but above all it is a high energy compound – because of its triple bond – which has a propensity to form when organic matter is bombarded with excess energy11. -
Navigating the Chemical Space of HCN Polymerization and Hydrolysis: Guiding Graph Grammars by Mass Spectrometry Data
Entropy 2013, 15, 4066-4083; doi:10.3390/e15104066 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Navigating the Chemical Space of HCN Polymerization and Hydrolysis: Guiding Graph Grammars by Mass Spectrometry Data Jakob L. Andersen 1;2, Tommy Andersen 3, Christoph Flamm 4, Martin M. Hanczyc 3, Daniel Merkle 1;* and Peter F. Stadler 2;4;5;6;7;8 1 Department of Mathematics and Computer Science, University of Southern Denmark, Odense M DK-5230, Denmark; E-Mail: [email protected] 2 Max Planck Institute for Mathematics in the Sciences, Leipzig D-04103, Germany 3 Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M DK-5230, Denmark; E-Mails: [email protected] (T.A.); [email protected] (M.M.H.) 4 Institute for Theoretical Chemistry, University of Vienna, Wien A-1090, Austria; E-Mails: [email protected] (C.F.); [email protected] (P.F.S.) 5 Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig D-04107, Germany 6 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, D-04103, Germany 7 Center for non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg C DK-1870, Denmark 8 Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe NM 87501, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +45-6550-2322; Fax: +45-6550-2373. Received: 22 February 2013; in revised form: 10 September 2013 / Accepted: 11 September 2013 / Published: 25 September 2013 Abstract: Polymers of hydrogen cyanide and their hydrolysis products constitute a plausible, but still poorly understood proposal for early prebiotic chemistry on Earth. -
Development of a High-Density Initiation Mechanism for Supercritical Nitromethane Decomposition
The Pennsylvania State University The Graduate School DEVELOPMENT OF A HIGH-DENSITY INITIATION MECHANISM FOR SUPERCRITICAL NITROMETHANE DECOMPOSITION A Thesis in Mechanical Engineering by Christopher N. Burke © 2020 Christopher N. Burke Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2020 The thesis of Christopher N. Burke was reviewed and approved by the following: Richard A. Yetter Professor of Mechanical Engineering Thesis Co-Advisor Adrianus C. van Duin Professor of Mechanical Engineering Thesis Co-Advisor Jacqueline A. O’Connor Professor of Mechanical Engineering Karen Thole Professor of Mechanical Engineering Mechanical Engineering Department Head ii Abstract: This thesis outlines the bottom-up development of a high pressure, high- density initiation mechanism for nitromethane decomposition. Using reactive molecular dynamics (ReaxFF), a hydrogen-abstraction initiation mechanism for nitromethane decomposition that occurs at initial supercritical densities of 0.83 grams per cubic centimeter was investigated and a mechanism was constructed as an addendum for existing mechanisms. The reactions in this mechanism were examined and the pathways leading from the new initiation set into existing mechanism are discussed, with ab-initio/DFT level data to support them, as well as a survey of other combustion mechanisms containing analogous reactions. C2 carbon chemistry and soot formation pathways were also included to develop a complete high-pressure mechanism to compare to the experimental results of Derk. C2 chemistry, soot chemistry, and the hydrogen-abstraction initiation mechanism were appended to the baseline mechanism used by Boyer and analyzed in Chemkin as a temporal, ideal gas decomposition. The analysis of these results includes a comprehensive discussion of the observed chemistry and the implications thereof. -
Neutral Production of Hydrogen Isocyanide (HNC) and Hydrogen Cyanide (HCN) in Titan’S Upper Atmosphere
EPSC Abstracts Vol. 7 EPSC2012-692-1 2012 European Planetary Science Congress 2012 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2012 Neutral production of hydrogen isocyanide (HNC) and hydrogen cyanide (HCN) in Titan’s upper atmosphere E. Hébrard(1,2), M. Dobrijevic(1,2), J.C. Loison(3), A. Bergeat(3) and K.M. Hickson(3) (1) Université de Bordeaux, Laboratoire d’Astrophysique de Bordeaux, (2) CNRS/INSU, UMR 5804, BP 89, 33271 Floirac Cedex, France, (3) Institut des Sciences Moléculaires, UMR 5255, CNRS-Université de Bordeaux, 351 cours de la Libération, Talence Cedex, F-33405, France ([email protected]) Abstract tude would follow the typical profile for a polyatomic ion rather than a neutral molecule and that it might be Following the first detection of hydrogen isocyanide located mainly in the ionosphere with a peak of abun- (HNC) in Titan’s atmosphere, we have devised a new dance around 1200 km [10]. neutral chemical scheme for hydrogen cyanide (HCN) and hydrogen isocyanide (HNC) in the upper atmo- 2. Photochemical scheme sphere of Titan. To improvethe chemistry of HNC and HCN, a careful review of the literature has been per- Since the neutral composition of the atmosphere is a formed to retrieve critical reaction rates and to evaluate prerequisite for ionospheric models, it is of prime im- their uncertainty factors. We have also estimated the portance to study carefully the neutral processes lead- reaction rates of 48 new reactions using simple capture ing to the production and loss of both HCN and HNC. theory. Our photochemical model gives abundances In this present study, we have therefore focused on the of HNC and HCN in reasonable agreement with ob- reactions which are essential for the study of HCN servations. -
Evidence of Ammonium Salts in Comet 67P As Explanation for the Nitrogen Depletion in Cometary Comae
Evidence of ammonium salts in comet 67P as explanation for the nitrogen depletion in cometary comae Authors: K. Altwegg1*, H. Balsiger1, J.-J. Berthelier2, C. Briois3, M. Combi4, H. Cottin5, J. De Keyser6, F. Dhooghe6, B. Fiethe7, S. A. Fuselier8,9, T. I. Gombosi4, N. Hänni1, M. Rubin1, M. Schuhmann1, I. Schroeder1, T. Sémon1, S. Wampfler2 Affiliations: 1Physikalisches Institut, University of Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland. 2Center for Space and Habitability, University of Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland. 2LATMOS/IPSL-CNRS-UPMC-UVSQ, 4 Avenue de Neptune F-94100, Saint-Maur, France. 3Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), UMR CNRS 7328 – Université d'Orléans, France 4Department of Climate and Space Sciences and Engineering, University of Michigan, 2455 Hayward, Ann Arbor, MI 48109, USA. 5 LISA, UMR CNRS 7583, Université Paris-Est-Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), Créteil, France 6Royal Belgian Institute for Space Aeronomy, BIRA-IASB, Ringlaan 3, B-1180 Brussels, Belgium. 7Institute of Computer and Network Engineering (IDA), TU Braunschweig, Hans-Sommer- Straße 66, D-38106 Braunschweig, Germany. 8Space Science Directorate, Southwest Research Institute, 6220 Culebra Rd., San Antonio, TX 78228, USA. 9Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX, 78249 Cometary comae are generally depleted in nitrogen. The main carriers for volatile nitrogen in comets are NH3 and HCN. It is known that ammonia readily combines with many acids like e.g. HCN, HNCO, HCOOH, etc. encountered in the interstellar medium as well as in + - cometary ice to form ammonium salts (NH4 X ) at low temperatures. -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
Life in the Solar System
Adv. Space Res. Vol. 24, No. 4, pp. 417-433, 1999 Pergamon 0 1999 COSPAR. Published by Elsevier Science Ltd. AH rights reserved Printed in Great Britain 0273-1177/99 $20.00 + 0.00 www.elaevier.nl/locate/asr PII: SO273I 177(99)00457-3 LIFE IN THE SOLAR SYSTEM A. Brack Centre de Biophysique Moleculaire, CNRS, Rue Charles Sadron, Orleans, France. Fax: +33-2-38-63-15-17; brack@cnrs-orleansfr ABSTRACT Life, defined as a chemical system capable of transferring its molecular information via self-replication and also capable of evolving, must develop within a liquid to take advantage of the diffusion of complex molecules. On Earth, life probably originated from the evolution of reduced organic molecules in liquid water. Organic matter might have been formed in the primitive Earth’s atmosphere or near hydrothermal vents. A large fraction of prebiotic organic molecules might have been brought by extraterrestrial- meteoritic and cometary dust grains decelerated by the atmosphere. Any celestial body harboring permanent liquid water may therefore accumulate the ingredients that generated life on the primitive Earth. The possibility that life might have evolved on early Mars when water existed on the surface marks it as a prime candidate in a search for bacterial life beyond the Earth. Europa has an icy carapace. However, cryovolcanic flows at the surface point to a possible water subsurface region which might harbor a basic life form. The atmosphere and surface components of Titan are also of interest to exobiology for insight into a hydrocarbon-rich chemically evolving world. One-handed complex molecules and preferential isotopic fractionation of carbon, common to all terrestrial life forms, can be used as basic indicators when searching for life beyond the Earth.