Cbdp Rdte Dw

Total Page:16

File Type:pdf, Size:1020Kb

Cbdp Rdte Dw UNCLASSIFIED Department of Defense Fiscal Year (FY) 2007 President's Budget February 2006 Research, Development, Test, and Evaluation, Defense-Wide Volume 4 Chemical Biological Defense Program (CBDP) UNCLASSIFIED THIS PAGE INTENTIONALLY LEFT BLANK Table of Contents DoD Joint Service Chemical and Biological Defense Program Fiscal Year (FY) 2007 Budget Request TABLE OF CONTENTS i CHEMICAL AND BIOLOGICAL DEFENSE PROGRAM RDT&E OVERVIEW iii R-1 EXHIBIT FOR CHEMICAL AND BIOLOGICAL DEFENSE PROGRAM vii BA1 - BASIC RESEARCH 1 BA2 - APPLIED RESEARCH 41 BA3 - ADVANCED TECHNOLOGY DEVELOPMENT (ATD) 131 BA4 - ADVANCED COMPONENT DEVELOPMENT AND PROTOTYPES (ACD&P) 217 BA5 - SYSTEM DEVELOPMENT AND DEMONSTRATION (SDD) 371 BA6 - RDT&E MGT SUPPORT 555 BA7 - OPERATIONAL SYSTEMS DEVELOPMENT 599 i THIS PAGE INTENTIONALLY LEFT BLANK ii Department of Defense Chemical/Biological Defense Program Overview Fiscal Year (FY) 2007 President's Budget The DoD Chemical and Biological (CB) Defense Program is a key part of a comprehensive national strategy to counter the threat of chemical and biological weapons as outlined in the National Strategy to Combat Weapons of Mass Destruction, December 2002. This national strategy is based on three principal pillars: (1) Counterproliferation to Combat WMD Use, (2) Strengthened Nonproliferation to Combat WMD Proliferation, and (3) Consequence Management to Respond to WMD Use. The DoD CB Defense Program (CBDP) provides research, development, and acquisition (RDA) programs primarily to support the first and third pillars. In support of counterproliferation, the DoD CBDP provides passive defenses tailored to the unique characteristics of the various chemical and biological weapons, including emerging threats. These capabilities provide U.S. forces the ability to rapidly and effectively mitigate the effects of a CB attack against our deployed forces. In support of counterproliferation, the DoD CBDP provides capabilities to respond to the effects of WMD use against our forces deployed abroad, and the homeland. The CBDP funds research to exploit leading edge technologies to ensure that U.S. forces are equipped with world class capabilities to defend against CB threats through the far term. This budget includes support of a comprehensive science and technology base program to ensure continued advances in CB defense capabilities. CBDP Basic Research provides core capabilities to ensure U.S. technological advantages through the far term, including research into advanced chemical and biological detection systems, advanced materials for improved filtration systems and protection systems, advanced decontaminants, investigations into the environmental fate of chemical warfare agents, advanced information technologies, medical biological defense research (including novel biodefense initiatives that focus on interrupting the disease cycle before and after exposure, as well as addressing the bioengineered threat), diagnostics, therapeutics, and vaccines for viral, bacterial, toxin, and novel threat agents), and medical chemical defense (including investigations of low level chemical warfare agent exposures, diagnostics, therapeutics, pretreatments for classical chemical warfare threats and novel threat agents). iii The CBDP also supports numerous Defense Technology Objectives (DTOs), which represent the key science and technology base programs for demonstrating advanced capabilities in the near and mid-term. During FY07, DTOs support operational capabilities to Sense (Reconnaissance, Detection and Identification), Shape (Battle Management), Shield (Individual & Collective Protection), and Sustain (Decontamination & Restoration) U.S. forces for passive defense, force protection, and consequence management missions. During FY07, the CBDP supports DTOs including capabilities for Environmental Fate of Nontraditional Agents, Low-Level Chemical Warfare Agent Exposure: Effects and Countermeasures, Chemical Warfare Agent Operational Exposure Hazard Assessment Research, Self-Detoxifying Materials for Chemical/Biological Protective Clothing, Advanced Air Purification System Model, Hazard Prediction with Nowcasting, Rapid Detection, Threat Assessment and Attribution of Genetically Engineered Biothreat Organisms Using Microarray-Based Resequencing Technologies, Methodology to Facilitate Development of Biological Warfare Threat Agent Detection and Medical Diagnostic Systems, Therapy for Smallpox and Other Pathogenic Orthopoxviruses, Western and Eastern Equine Encephalitis Vaccine Constructs for a Combined Equine Encephalitis Vaccine, Therapeutics for Ebola and Marburg Virus Infections, Lightweight Integrated Chemical/Biological Detection, and Multiagent (Molecular) Vaccines for Biowarfare Agents. Technologies currently Budget Activity 4 (Advanced Component Development and Prototypes) and Budget Activity 5 (System Development and Demonstration) provide leading edge tools that will enhance CB defense capabilities for U.S. forces in all CB defense missions in the near-term. As described in the National Strategy to Combat Weapons of Mass Destruction, the response to chemical and biological threats requires tailored approaches that recognize the fundamental differences between chemical and biological weapons (and even the different types of these threats). This budget details the comprehensive array of systems under development essential to support principles of contamination avoidance, protection, and decontamination. iv Key systems in Budget Activity 4 and Budget Activity 5 in FY07 include: the Joint Service Lightweight Standoff Chemical Agent Detector (JSLSCAD) for standoff chemical agent detection, Joint Chemical Agent Detector (JCAD) for portable point chemical agent detection, Joint Effects Model (JEM) and Joint Operational Effects Federation (JOEF) to provide risk management tools to the warfighter, Advanced Concept Technology Demonstrations (Chemical Biological Radiological Nuclear (CBRN) Unmanned Ground Reconnaissance (CUGR) and Situational Awareness and Response Network (STARNET)), Joint Service Transportable Decontamination System - Small Scale (JSTDS-SS), Joint Service Sensitive Equipment Decontamination (JSSED), Joint Service Personnel/Skin Decontamination System (JSPDS), Advanced Anticonvulsant System, Plasma and Recombinant Bioscavenger, Improved Nerve Agent Treatment System (INATS), biological defense vaccines (including recombinant botulinum vaccine and plague vaccine) as part of the Joint Vaccine Acquisition Program (JVAP), Critical Reagents Program (CRP) to support development of reagents for biological detection and diagnostic systems, Joint Biological Point Detection System (JBPDS), Joint Service Chemical/Biological/Radiological Agent Water Monitor (JCBRAWM), Joint Biological Standoff Detection System (JBSDS) Increment II, Joint Bio Tactical Detection System (JBTDS), Joint Biological Agent Identification and Diagnostic System (JBAIDS) Increment II, Joint Warning and Reporting Network (JWARN), Joint Collective Protection Equipment (JCPE), Joint Expeditionary Collective Protection, Joint Service Aircrew Mask (JSAM) and Medical Radiological Countermeasures. In FY07, the CBDP will start or continue procurement on a variety of CB defense systems intended to provide U.S. forces with the best available equipment to survive, fight, and win in CB contaminated environments. Systems beginning procurement in FY07 include JSPDS, JCAD, and JBAIDS Increment II. Systems continuing procurement in FY07 include Automatic Chemical Agent Detector and Alarm (ACADA), JSAM, Multi-Service Radiacs (MSR), Joint Service Transportable Decontamination System - Small Scale (JSTDS-SS), the Joint Effects Model (JEM), Joint Service General Purpose Mask (JSGPM), JWARN, JBAIDS, Joint Service Mask Leakage Tester (JSMLT), Joint Service Lightweight Integrated Suit Technology (JSLIST), the NBC Reconnaissance Vehicle (NBCRV), Joint Service Light NBC Reconnaissance System (JSLNBCRS), JSLSCAD, JBPDS, biological defense vaccines (Anthrax Vaccine Adsorbed), CB Protective Shelters (CBPS), Collective Protective Field Hospitals (CPFH), Collective Protection System Backfit (CPSBKFT), and chemical and biological defense equipment for installation force protection. v The FY07 program continues to support the consequence management (CM) mission. CM projects fund the development of the Unified Command Suite (UCS) and Analytical Laboratory System (ALS) Block upgrades. CM funding provides for the modernization to address objective operational capabilities for the National Guard WMD Civil Support Teams (CSTs), the Reserve Component (RC) Reconnaissance, and RC Decontamination Teams. It provides full funding for: (1) type-classified protection, detection, and training equipment; (2) development and fielding of upgraded analytical platforms for the detection, identification, and characterization of chemical, biological, and radiological agents used by terrorists in a civilian environment; (3) development and fielding of communication capabilities that are interoperable with other federal, state, and local agencies; (4) testing and evaluation to ensure that the systems fielded are safe and effective; and (5) program management funds. Overall, the FY 2007 President's Budget achieves a structured, executable, and integrated medical and non-medical joint CB Defense Program that balances urgent short-term procurement needs that include securing the homeland from terrorist attack, and long-term S&T efforts to mitigate future CB attacks. The primary area of increased emphasis in this year's
Recommended publications
  • The Science of the Bioeconomy
    The science of the Bioeconomy Dr. Henrike Gebhardt 05 December 2014 Our positioning Evonik is the creative industrial group from Germany and one of the world’s leading specialty chemicals companies. The Science of the Bioeconomy Page 3 Our credo The Bioeconomy is one driver to promote a more resource-efficient and sustainable economy. Industrial biotechnology is a key technology for realising the bioeconomy. The Science of the Bioeconomy Page 5 Overview Bioeconomy Biotechnology Genetic engineering The Science of the Bioeconomy Page 6 Definitions Bioeconomy Production of renewable biological resources and the conversion of these resources and waste streams into value added products, such as food, feed, and other industrial products and energy. COM(2012) 60, EU Commission, mod. Bio-basedBiotechnology products ProductsThe use whollyof living or organisms partly derived or their from components biomass. EN to16575 make products. Genetic engineering Any of various applications of biological science used in the manipulation of the genome of an organism The Science of the Bioeconomy Page 7 Bio-based products offered by Evonik Polyamids Polyesters VESTAMID ®Terra DYNACOLL ®Terra DYNAPOL ®Terra VISIOMER ®Terra Additives Amino acids Cosmetics BioMTBE Feed additives Health – purified TEGOSOFT ®MM bio-based AdditivesCleaning Health VISCOPLEX ® Series 10 Esterquats RESOMER ® bio- degradable The Science of the Bioeconomy Page 8 Evonik invests in high-growth chemical megatrends Lighthouse investment projects Lysine Russia Consumer Specialties China C4 Chemistry H O / HPPO Europe 2 2 Lysine Expansion China USA Crosslinkers, Isophorone China Consumer Specialties Superabsorbents Brazil Saudi Arabia Methionine Singapore Biodiesel catalysts Argentina Bioeconomy Lysine Traditional Brazil The Science of the Bioeconomy Page 9 Bioeconomy Press releases Company Raw Intermediate Product Material Date of Issue Volume Commissioning DSM/POET (USA) Cellulosics Ethanol Biofuels from corn Jan 2012 90 kta H1.2014 cobs Purac/BASF (ES) Cellulosics Succinic acid e.
    [Show full text]
  • Potential Applicability of Assembled Chemical Weapons Assessment Technologies to RCRA Waste Streams and Contaminated Media EPA 542-R-00-004 August 2000
    United States Solid Waste and EPA 542-R-00-004 Environmental Protection Emergency Response August 2000 Agency (5102G) www.epa.gov clu-in.org EPA Potential Applicability of Assembled Chemical Weapons Assessment Technologies to RCRA Waste Streams and Contaminated Media EPA 542-R-00-004 August 2000 POTENTIAL APPLICABILITY OF ASSEMBLED CHEMICAL WEAPONS ASSESSMENT TECHNOLOGIES TO RCRA WASTE STREAMS AND CONTAMINATED MEDIA U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC 20460 Potential Applicability of ACWA Technologies to RCRA Waste Streams and Contaminated Media NOTICE AND DISCLAIMER This document was prepared by the U.S. Environmental Protection Agency’s Technology Innovation Office with support under EPA Contract Number 68-W-99-003. It is intended to raise the awareness of the technologies included in the Assembled Chemical Weapons Assessment (ACWA) program, and presents an overview of each technology, including its applicability, performance, and other factors. Information about the technologies was obtained from the technology providers. No testing or evaluation was conducted by EPA during preparation of this document, and an independent assessment of this information was beyond EPA’s scope. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. For more information about this project, please contact: John Kingscott, U.S. Environmental Protection Agency, Technology Innovation Office, Ariel Rios Building, 1200 Pennsylvania Avenue, N.W. (MS 5102G), Washington, D.C., 20460; (703) 603-7189; e-mail: [email protected]. This document may be obtained from EPA’s web site at www.epa.gov/tio, or at clu-in.org.
    [Show full text]
  • International Handbook of Foodborne Pathogens
    INTERNATIONAL HANDBOOK OF FOODBORNE PATHOGENS EDITED BY MARIANNE D. MILIOTIS U.S. Food and Drug Administration College Park, Maryland, U.S.A. JEFFREY W. BIER Food Safety Consultant Alexandria, Virginia, U.S.A. MARCEL H MARCEL DEKKER, INC. NEW YORK • BASEL Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved. Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress. ISBN: 0-8247-0685-4 This book is printed on acid-free paper. Headquarters Marcel Dekker, Inc. 270 Madison Avenue, New York, NY 10016 tel: 212-696-9000; fax: 212-685-4540 Eastern Hemisphere Distribution Marcel Dekker AG Hutgasse 4, Postfach 812, CH-4001 Basel, Switzerland tel: 41-61-260-6300; fax: 41-61-260-6333 World Wide Web http://www.dekker.com The publisher offers discounts on this book when ordered in bulk quantities. For more information, write to Special Sales/Professional Marketing at the headquarters address above. Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. Current printing (last digit): 10987654321 PRINTED IN THE UNITED STATES OF AMERICA Copyright 2003 by Marcel Dekker, Inc. All Rights Reserved. FOOD SCIENCE AND TECHNOLOGY A Series of Monographs, Textbooks, and Reference Books EDITORIAL BOARD Senior Editors Owen R. Fennema University of Wisconsin-Madison Y. H. Hui Science Technology System Marcus Karel Rutgers University (emeritus) Pieter Walstra Wagenmgen University John R.
    [Show full text]
  • Verification of Chemical Warfare Agent Exposure in Human Samples
    Toxichem Krimtech 2013;80(Special Issue):288 Verification of chemical warfare agent exposure in human samples Paul W. Elsinghorst, Horst Thiermann, Marianne Koller Institut für Pharmakologie und Toxikologie der Bundeswehr, München Abstract Aim: This brief presentation provides an overview of methods that have been developed for the verification of human exposure to chemical warfare agents. Methods: GC–MS detection of nerve agents (V- and G-type) has been carried out with respect to unreacted agents as well as enzyme-bound species and metabolites. Methods involving di- rect SPE from plasma, fluoride-induced release of protein-bound nerve agents in plasma and analysis of their metabolites in plasma and urine have been developed. Exposure to blistering agents, i.e., sulfur mustard, has been verified by GC–MS detection of the unreacted agent in plasma and by LC– and GC–MS analysis of its metabolites in urine. Results: After incorporation nerve agents quickly bind to proteins, e.g., acetylcholinesterase, butyrylcholinesterase or serum albumin, and only small parts remain freely circulating for a few hours (G-type) or up to 2 days (V-type). Concurrently they are converted to O-alkyl methylphosphonic acids by phosphotriesterases and/or simply by aqueous hydrolysis. As a re- sult, different biomarkers can be detected depending on the time passed between exposure and sampling. Unreacted V-type agents can be detected in plasma for 2 days, the O-alkyl methyl- phosphonic acids in plasma for about 2–4 days and in urine for up to 1 week. Fluoride-indu- ced release of protein-bound nerve agents can be carried out until 3 weeks post exposure.
    [Show full text]
  • Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
    This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles.
    [Show full text]
  • Warning: the Following Lecture Contains Graphic Images
    What the новичок (Novichok)? Why Chemical Warfare Agents Are More Relevant Than Ever Matt Sztajnkrycer, MD PHD Professor of Emergency Medicine, Mayo Clinic Medical Toxicologist, Minnesota Poison Control System Medical Director, RFD Chemical Assessment Team @NoobieMatt #ITLS2018 Disclosures In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards, the American Nurses Credentialing Center’s Commission (ANCC) and the Commission on Accreditation for Pre-Hospital Continuing Education (CAPCE), states presenters must disclose the existence of significant financial interests in or relationships with manufacturers or commercial products that may have a direct interest in the subject matter of the presentation, and relationships with the commercial supporter of this CME activity. The presenter does not consider that it will influence their presentation. Dr. Sztajnkrycer does not have a significant financial relationship to report. Dr. Sztajnkrycer is on the Editorial Board of International Trauma Life Support. Specific CW Agents Classes of Chemical Agents: The Big 5 The “A” List Pulmonary Agents Phosgene Oxime, Chlorine Vesicants Mustard, Phosgene Blood Agents CN Nerve Agents G, V, Novel, T Incapacitating Agents Thinking Outside the Box - An Abbreviated List Ammonia Fluorine Chlorine Acrylonitrile Hydrogen Sulfide Phosphine Methyl Isocyanate Dibotane Hydrogen Selenide Allyl Alcohol Sulfur Dioxide TDI Acrolein Nitric Acid Arsine Hydrazine Compound 1080/1081 Nitrogen Dioxide Tetramine (TETS) Ethylene Oxide Chlorine Leaks Phosphine Chlorine Common Toxic Industrial Chemical (“TIC”). Why use it in war/terror? Chlorine Density of 3.21 g/L. Heavier than air (1.28 g/L) sinks. Concentrates in low-lying areas. Like basements and underground bunkers. Reacts with water: Hypochlorous acid (HClO) Hydrochloric acid (HCl).
    [Show full text]
  • A Thermophilic Bacterial Esterase for Scavenging Nerve Agents: a Kinetic, Biophysical and Structural Study
    molecules Article A Thermophilic Bacterial Esterase for Scavenging Nerve Agents: A Kinetic, Biophysical and Structural Study Janek Bzdrenga , Elodie Trenet, Fabien Chantegreil , Kevin Bernal, Florian Nachon * and Xavier Brazzolotto Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France; [email protected] (J.B.); [email protected] (E.T.); [email protected] (F.C.); [email protected] (K.B.); [email protected] (X.B.) * Correspondence: fl[email protected] Abstract: Organophosphorous nerve agents (OPNA) pose an actual and major threat for both military and civilians alike, as an upsurge in their use has been observed in the recent years. Currently available treatments mitigate the effect of the nerve agents, and could be vastly improved by means of scavengers of the nerve agents. Consequently, efforts have been made over the years into investigating enzymes, also known as bioscavengers, which have the potential either to trap or hydrolyze these toxic compounds. We investigated the previously described esterase 2 from Thermogutta terrifontis (TtEst2) as a potential bioscavenger of nerve agents. As such, we assessed its potential against G-agents (tabun, sarin, and cyclosarin), VX, as well as the pesticide paraoxon. We report that TtEst2 is a good bioscavenger of paraoxon and G-agents, but is rather slow at scav- enging VX. X-ray crystallography studies showed that TtEst2 forms an irreversible complex with the aforementioned agents, and allowed the identification of amino-acids, whose mutagenesis could lead to better scavenging properties for VX. In conjunction with its cheap production and purification Citation: Bzdrenga, J.; Trenet, E.; processes, as well as a robust structural backbone, further engineering of TtEst2 could lead to a Chantegreil, F.; Bernal, K.; Nachon, F.; stopgap bioscavenger useful for in corpo scavenging or skin decontamination.
    [Show full text]
  • Nerve Agent Hydrolysis Activity Designed Into a Human Drug Metabolism Enzyme
    Nerve Agent Hydrolysis Activity Designed into a Human Drug Metabolism Enzyme Andrew C. Hemmert1, Tamara C. Otto2, Roberto A. Chica3¤, Monika Wierdl4, Jonathan S. Edwards1, Steven L. Lewis1, Carol C. Edwards4, Lyudmila Tsurkan4, C. Linn Cadieux2, Shane A. Kasten2, John R. Cashman5, Stephen L. Mayo3, Philip M. Potter4, Douglas M. Cerasoli2, Matthew R. Redinbo1* 1 Department of Biochemistry/Biophysics and Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 2 United States Army Medical Research Institute for Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America, 3 Department of Biology and Chemistry, California Institute of Technology, Pasadena, California, United States of America, 4 Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America, 5 Human BioMolecular Research Institute, San Diego, California, United States of America Abstract Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme’s native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates.
    [Show full text]
  • Organic & Biomolecular Chemistry
    Organic & Biomolecular Chemistry Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/obc Page 1 of 7 Organic & Biomolecular Chemistry Journal Name RSCPublishing ARTICLE Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) Cite this: DOI: 10.1039/x0xx00000x with a unique probe based on a boron dipyrromethene (BODIPY) dye Manuscript Received 00th January 2012, Accepted 00th January 2012 Andrea Barba-Bon,a,b Ana M. Costero,a,b* Salvador Gil,a,b Ramón Martínez- a,c,d a,c,d DOI: 10.1039/x0xx00000x Máñez, * and Félix Sancenón www.rsc.org/ A novel colorimetric probe (P4) for the selective differential detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) was prepared.
    [Show full text]
  • Soman Is a Human-Made Chemical Warfare Agent Classified As a Nerve Agent
    District Health Department #2 Soman Fact Sheet RCP-AP-06l SOMAN WHAT YOU SHOULD KNOW What is Soman? Soman is a human-made chemical warfare agent classified as a nerve agent. Nerve agents are the most toxic and rapidly acting of known chemical warfare agents. Soman is a tasteless, odorless, clear liquid with a slight camphor odor (similar to vapor rub). How Can People Be Exposed to Soman? Following a release of Soman into the air, people can be exposed through skin contact, eye contact, or inhalation. Soman also mixes easily with water so it is possible that it could be used as a poison through the water. What Are The Symptoms of Soman? Individuals who are exposed to a low or moderate dose of soman by inhalation, ingestion, or skin absorption may experience some or all of the following symptoms within seconds to a few hours after exposure: runny nose, watery eyes, small pupils, eye pain, blurred vision, drooling and excessive sweating, cough, chest tightness, rapid breathing, diarrhea, increased urination, confusion, drowsiness, weakness, headache, nausea/vomiting, slow or fast heart rate, and abnormally high or low blood pressure. A large dose of Soman may lead to loss of consciousness, convulsions, paralysis, and respiratory failure leading to death. What are the Long-term Effects of Soman Exposure? Mild or moderately exposed people usually recover completely. Severely exposed people are not likely to survive. Can Soman Be Treated? Treatment consists of removing Soman as soon as possible and providing supportive medical care in a hospital setting. Antidotes are available for Soman.
    [Show full text]
  • Chapter 6 PRETREATMENT for NERVE AGENT EXPOSURE
    Pretreatment for Nerve Agent Exposure Chapter 6 PRETREATMENT FOR NERVE AGENT EXPOSURE MICHAEL A. DUNN, M.D., FACP*; BRENNIE E. HACKLEY, JR., PH.D.†; AND FREDERICK R. SIDELL, M.D.‡ INTRODUCTION AGING OF NERVE AGENT–BOUND ACETYLCHOLINESTERASE PYRIDOSTIGMINE, A PERIPHERALLY ACTING CARBAMATE COMPOUND Efficacy Safety Wartime Use Improved Delivery CENTRALLY ACTING NERVE AGENT PRETREATMENTS NEW DIRECTIONS: BIOTECHNOLOGICAL PRETREATMENTS SUMMARY *Colonel, Medical Corps, U.S. Army; Director, Clinical Consultation, Office of the Assistant Secretary of Defense (Health Affairs), Washing- ton, D.C. 20301-1200; formerly, Commander, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Mary- land 21010-5425 †Scientific Advisor, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland 21010-5425 ‡Formerly, Chief, Chemical Casualty Care Office, and Director, Medical Management of Chemical Casualties Course, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland 21010-5425; currently, Chemical Casualty Consultant, 14 Brooks Road, Bel Air, Maryland 21014 181 Medical Aspects of Chemical and Biological Warfare INTRODUCTION Nerve agents are rapidly acting chemical com- cal as well and may impair physical and mental pounds that can cause respiratory arrest within performance. A pretreatment must be administered minutes of absorption. Their speed of action im- to an entire force under a nerve agent threat. Any poses a need for rapid and appropriate reaction by resulting performance decrement, even a compara- exposed soldiers, their buddies, or medics, who tively minor one, would make pretreatment use must administer antidotes quickly enough to save unacceptable in battlefield situations requiring lives. A medical defense against nerve agents that maximum alertness and performance for survival.
    [Show full text]
  • 2015Suspension 2008Registere
    LIST OF SEC REGISTERED CORPORATIONS FY 2008 WHICH FAILED TO SUBMIT FS AND GIS FOR PERIOD 2009 TO 2013 Date SEC Number Company Name Registered 1 CN200808877 "CASTLESPRING ELDERLY & SENIOR CITIZEN ASSOCIATION (CESCA)," INC. 06/11/2008 2 CS200719335 "GO" GENERICS SUPERDRUG INC. 01/30/2008 3 CS200802980 "JUST US" INDUSTRIAL & CONSTRUCTION SERVICES INC. 02/28/2008 4 CN200812088 "KABAGANG" NI DOC LOUIE CHUA INC. 08/05/2008 5 CN200803880 #1-PROBINSYANG MAUNLAD SANDIGAN NG BAYAN (#1-PRO-MASA NG 03/12/2008 6 CN200831927 (CEAG) CARCAR EMERGENCY ASSISTANCE GROUP RESCUE UNIT, INC. 12/10/2008 CN200830435 (D'EXTRA TOURS) DO EXCEL XENOS TEAM RIDERS ASSOCIATION AND TRACK 11/11/2008 7 OVER UNITED ROADS OR SEAS INC. 8 CN200804630 (MAZBDA) MARAGONDONZAPOTE BUS DRIVERS ASSN. INC. 03/28/2008 9 CN200813013 *CASTULE URBAN POOR ASSOCIATION INC. 08/28/2008 10 CS200830445 1 MORE ENTERTAINMENT INC. 11/12/2008 11 CN200811216 1 TULONG AT AGAPAY SA KABATAAN INC. 07/17/2008 12 CN200815933 1004 SHALOM METHODIST CHURCH, INC. 10/10/2008 13 CS200804199 1129 GOLDEN BRIDGE INTL INC. 03/19/2008 14 CS200809641 12-STAR REALTY DEVELOPMENT CORP. 06/24/2008 15 CS200828395 138 YE SEN FA INC. 07/07/2008 16 CN200801915 13TH CLUB OF ANTIPOLO INC. 02/11/2008 17 CS200818390 1415 GROUP, INC. 11/25/2008 18 CN200805092 15 LUCKY STARS OFW ASSOCIATION INC. 04/04/2008 19 CS200807505 153 METALS & MINING CORP. 05/19/2008 20 CS200828236 168 CREDIT CORPORATION 06/05/2008 21 CS200812630 168 MEGASAVE TRADING CORP. 08/14/2008 22 CS200819056 168 TAXI CORP.
    [Show full text]