Structure of the Autoinducer Required for Expression of Pseudomonas

Total Page:16

File Type:pdf, Size:1020Kb

Structure of the Autoinducer Required for Expression of Pseudomonas Proc. Natl. Acad. Sci. USA Vol. 91, pp. 197-201, January 1994 Biochemistry Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes [density-dependent transcription/gene activation/las genes/N-acyl homoserine lactone/3-oxo-N-(tetrahydro-2-oxo-3- furanyl)dodecanamideJ JAMES P. PEARSON*, KENDALL M. GRAY*, LUCIANO PASSADORt, KENNETH D. TUCKERt, ANATOL EBERHARD*, BARBARA H. IGLEWSKIt, AND E. P. GREENBERG*§ *Department of Microbiology, University of Iowa, Iowa City, IA 52242; tDepartment of Microbiology and Immunology, University of Rochester, Rochester, NY 14642; and FDepartment of Chemistry, Ithaca College, Ithaca, NY 14850 Communicated by Ralph S. Wolfe, September 16, 1993 ABSTRACT In Pseudomonas aeruginosa the LasR protein a threshold level and luminescence gene transcription will be is required for activation of lasB and several other virulence activated. At low cell densities, autoinducer will diffuse out genes. A diffusible signal molecule, the P. aeruginosa autoin- of cells and be diluted into the surrounding medium, and the ducer (PAI), produced by the bacterial cel and released into luminescence genes will not be activated (ref. 15; for a recent the growth medium, is required for activity ofLasR. By cloning review, see ref. 16). a lasB::lacZ fusion and a lasR gene under control of the lac It has been reported that P. aeruginosa can synthesize VAI promoter in Escherichia coli, we have developed a quantitative (17) and that the P. aeruginosa autoinducer (PAI) might in bioassay for PAI. We have used this assay to foUlow the fact be VAI (18). In this report we show that the diffusible purification of PAI from cel-free culture supernatant fluids in compound produced by bacteria containing the lasIgene and which P. aeruginosa or E. coli containing the P. aeruginosa required for activity of the LasR protein is not identical to gene required for autoinducer synthesis, lasI, had been grown. VAI, N-(3-oxohexanoyl)homoserine lactone. Rather it is the Chemical analyses indicated the purified material was 3-oxo- related N-acyl-homoserine lactone, 3-oxo-N-(tetrahydro-2- N-(tetrahydro-2-oxo-3-furanyl)dodecanamide. To confirm this oxo-3-furanyl)dodecanamide [or N-(3-oxododecanoyl)homo- assignment, the compound was synthesized and the synthetic serine lactone]. compound was shown to have chemical and biological proper- ties identical to those of PAI purified from culture supernatant fluids. The elucidation of the PAI structure suggests therapeu- MATERIALS AND METHODS tic approaches toward control of P. aeruginosa infections. Bacterial Strains, Plasmids, and Culture Conditions. The E. coli strains used were TB1 (19), MG4 (20), and VJS533 (21). The Gram-negative bacterium Pseudomonas aeruginosa is The P. aeruginosa strains used were PAO1, which contains an opportunistic human pathogen that causes infections in functional lasR and lasI genes, and PAO-RI, which is a immunocompromised hosts and colonizes the lungs of indi- lasRlasI mutant derived from PAO1 (8). The plasmids viduals with cystic fibrosis (1, 2). This bacterium produces a used were pLasI-1, a lasI expression vector (11), pKDT17, number of extracellular virulence factors including exotoxin which contains a lasB::lacZ reporter of lasB promoter activ- A, encoded by the toxA gene (3, 4), two elastolytic proteases, ity and lasR under control of the lac promoter, and encoded by the lasA and lasB genes, and an alkaline protease, pHV200I-, which contains the V.fischeriluminescence gene encoded by the aprA gene (5-7). cluster with an inactive luxI. These plasmids are all ColEl The P. aeruginosa lasR gene encodes a transcriptional replicons containing an ampicillin-resistance marker. Con- activator, the LasR protein (8). Because the LasR protein struction of pKDT17 involved cloning into Sma T-digested activates transcription of aprA, lasA, and lasB and enhances pUCP18 (22), an 800-bp lasR fragment from pMJG1.7 (8) that toxA expression (8-10), this transcription factor is considered extended from the EcoRV site 59 bp upstream of the lasR to be a global regulator of P. aeruginosa virulence genes. transcriptional start to the Alu I site 22 bp beyond the lasR Activity ofLasR is dependent on a diffusible factor produced translational stop codon to construct pKDT11. In this plas- by P. aeruginosa containing a functional lasI gene or by mid, lasR is under control of the lac promoter. An interme- Escherichia coli containing a lasI gene cloned from P. diate construct containing only two Pvu II sites was made by aeruginosa (11). LasR and LasI, the lasI gene product, show subcloning the 800-bp fragment from pKDT11 into pUC18 to significant sequence identity with the LuxR and LuxI pro- form pKDT13. This intermediate construct was digested with teins ofthe luminescent marine bacterium, Vibriofischeri (8, Pvu II and the plac-lasR fragment was cloned in Tth III- 11). LuxR is a transcriptional activator of the luminescence digested pTS400. The plasmid pTS400 contains a lasB::lacZ genes, and activity of LuxR is dependent on a diffusible translational fusion (11, 23). The resulting plasmid was called substance, termed the autoinducer, that is synthesized by pKDT17. The plasmid pHV200T- was derived from the lux cells containing a functional luxIgene (12, 13). The V.flscheri regulon-containing pHV200 (24) by introducing a frameshift autoinducer (VAI) is 3-oxo-N-(tetrahydro-2-oxo-3-furanyl)- mutation in luxi. This was accomplished by digesting hexanamide, commonly termed N-(3-oxohexanoyl)homo- pHV200 with Bgl TT, filling-in the single-stranded overhangs serine lactone (14). Because cells of V. fischeri are freely with Taq polymerase, and treating the product with T4 DNA permeable to it, VAI accumulates in the medium during ligase. growth. Thus the response of LuxR to autoinducer defines a For production of PAI, cultures ofP. aeruginosa PA01 or cell-density-dependent system for gene regulation. At high E. coli TB1 containing pLasT-l were grown to late- cell densities, autoinducer concentrations will increase above Abbreviations: PAI, Pseudomonas aeruginosa autoinducer; VAI, The publication costs of this article were defrayed in part by page charge Vibrio fischeri autoinducer; AAI, Agrobacterium tumefaciens au- payment. This article must therefore be hereby marked "advertisement" toinducer. in accordance with 18 U.S.C. §1734 solely to indicate this fact. §To whom reprint requests should be addressed. 197 Downloaded by guest on October 2, 2021 198 Biochemistry: Pearson et aL Proc. Natl. Acad. Sci. USA 91 (1994) exponential phase in A medium (25) supplemented with 0.4% N-(3-oxohexanoyl)homoserine lactone. The major difference glucose, 0.05% yeast extract, and 1 mM MgSO4 with shaking was that ethyl 3-oxododecanoate was used instead of ethyl at 37°C. For use in autoinducer bioassays, E. coli MG4 3-oxohexanoate. The ethyl 3-oxododecanoate was prepared containing pKDT17 was grown in supplemented A medium at from decanoyl chloride and the dilithio dianion of monoethyl 30°C with shaking, and E. coli VJS533 containing pHV200I- hydrogen malonate (31). The ethylene glycol ketal of ethyl was grown in L broth (26) at 30°C with shaking. For plasmid 3-oxododecanoate was prepared as described for ethyl 3-oxo- screening and maintenance, ampicillin (100 ,ug/ml) was in- hexanoate (14) except that Dowex-50 sulfonic acid cation- cluded in E. coli cultures. exchange resin was used in place ofp-toluenesulfonic acid as Plasmid Purification and Transformation Procedure. Plas- described by Goswami et al. (32). The sodium salt was mids were purified and manipulated as described (25). The prepared (14) and incubated with equimolar amounts of transformation procedure used was described by Hanahan L-homoserine lactone hydrochloride (Sigma) and 1-(3- (27). dimethylaminopropyl)-3-ethylcarbodiimide (Aldrich, Mil- Autoinducer Bioassays. When grown in a medium condi- waukee, Wisconsin). The resulting ethylene glycol ketal of tioned by the growth ofa recombinant E. coli containing lasI, N-(3-oxododecanoyl)-L-homoserine lactone was deprotected E. coli MG4 containing a plasmid with lasR and a lasB::lacZ by acid treatment (14) to yield N-(3-oxododecanoyl)-L- transcriptional fusion shows a 25-fold induction of ,B-galac- homoserine lactone. This compound was purified by HPLC tosidase (11). This formed the basis of our quantitative PAI and stored as described above. assay. We found that PAI activity could be extracted in ethyl Spectra. Proton NMR was performed on a Varian Unity acetate as described for VAI (14, 28). For our bioassays, 500-MHz instrument. Infrared spectroscopy ofintermediates overnight cultures ofE. coli containing pKDT17 were diluted in the synthesis of PAI was performed on a Nicolet 205 in supplemented A medium to an ODw0 of 0.1 and stored on Fourier transform infrared spectrometer. Chemical ioniza- ice. Each bioassay consisted of 2 ml of the cell suspension tion mass spectrometry was performed on a Nermag R1-10C plus the test sample. After 5.5 h at 30°C, ,3-galactosidase probe. The activity was measured as described by Miller (29). Without instrument with a desorption chemical ionization addition of autoinducer, ,B-galactosidase activities were 25 ± reagent gas was ammonia. High-resolution fast atom bom- 10 Miller units and, with saturating amounts of autoinducer, bardment was performed at the University of Nebraska, ,B-galactosidase activities were 1500 ± 200 Miller units. A unit Midwest Center for Mass Spectrometry. of PAI activity is defined as that amount required to achieve 50%o saturation in the bioassay. RESULTS The assay for VAI was based on those described elsewhere (15, 17, 28). Because luminescence of E. coli containing Purification of PAI from Culture Media. Ethyl acetate pHV200I- requires the addition of VAI, this recombinant extracts of media from cultures of E. coli (pLasI-1) or P. strain was-used to test for VAI activity. Overnight cultures of aeruginosa PA01 contained PAI activity in amounts equiv- E. coli containing pHV200I- were diluted to an OD6,w of0.01 alent to those in the culture media prior to extraction.
Recommended publications
  • Production of Acyl-Homoserine Lactone Quorum-Sensing Signals Is Wide- Spread in Gram-Negative Methylobacterium
    J. Microbiol. Biotechnol. (2007), 17(2), 226–233 Production of Acyl-Homoserine Lactone Quorum-Sensing Signals is Wide- Spread in Gram-Negative Methylobacterium POONGUZHALI, SELVARAJ, MUNUSAMY MADHAIYAN, AND TONGMIN SA* Department of Agricultural Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea Received: August 2, 2006 Accepted: October 2, 2006 Abstract Members of Methylobacterium, referred as pink- knowledge on the Methylobacterium-plant interactions pigmented facultative methylotrophic bacteria, are frequently over the past two decades suggested interesting novel associated with terrestrial and aquatic plants, tending to form interactions between PPFMs and plants. Beneficial plant- aggregates on the phyllosphere. We report here that the production growth promoting bacteria interact with plants through of autoinducer molecules involved in the cell-to-cell signaling direct and indirect mechanisms. Direct mechanisms for the process, which is known as quorum sensing, is common among most part entail either providing the bacterial compounds Methylobacterium species. Several strains of Methylobacterium that promote plant growth or facilitating the uptake of were tested for their ability to produce N-acyl-homoserine nutrients; for example, production of phytohormones [9] lactone (AHL) signal molecules using different indicators. and siderophores [13]. The indirect effects occur through Most strains of Methylobacterium tested could elicit a suppression of one or more phytopathogenic microorganisms positive response in Agrobacterium tumefaciens harboring through biocontrol [20] or induction of plant defense lacZ fused to a gene that is regulated by autoinduction. The enzymes [14]. Beneficial effects of plant-Methylobacterium synthesis of these compounds was cell-density dependent, and associations have been suggested to be due to production the maximal activity was reached during the late exponential of phytohormones [22] and enzymes such as 1- to stationary phases.
    [Show full text]
  • Chemical Communication Among Bacteria
    Colloquium Chemical communication among bacteria Michiko E. Taga and Bonnie L. Bassler* Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014 Cell–cell communication in bacteria is accomplished through the Low GϩC Gram-positive bacteria typically use modified exchange of chemical signal molecules called autoinducers. This oligopeptides as autoinducers (15–17). These signals are gener- process, called quorum sensing, allows bacteria to monitor their ically referred to as autoinducing polypeptides (AIPs) (Fig. 1B). environment for the presence of other bacteria and to respond to AIPs are produced in the cytoplasm as precursor peptides and fluctuations in the number and͞or species present by altering are subsequently cleaved, modified, and exported. AIPs specif- particular behaviors. Most quorum-sensing systems are species- or ically interact with the external domains of membrane-bound group-specific, which presumably prevents confusion in mixed- two-component sensor kinase proteins. Interaction of the auto- species environments. However, some quorum-sensing circuits inducer with its cognate sensor stimulates the kinase activity of control behaviors that involve interactions among bacterial spe- the sensor kinase protein, resulting in the phosphorylation of its cies. These quorum-sensing circuits can involve both intra- and partner response regulator protein. The phosphorylated re- interspecies communication mechanisms. Finally, anti-quorum- sponse regulator protein binds DNA and alters the transcription sensing strategies are present in both bacteria and eukaryotes, and of target genes. Some examples of behaviors controlled by AIP these are apparently designed to combat bacteria that rely on quorum-sensing systems include genetic competence and sporu- cell–cell communication for the successful adaptation to particular lation in Bacillus subtilis (18, 19), competence for DNA uptake niches.
    [Show full text]
  • Isolation of the Autoinducer-Quenching Strain That Inhibits Lasr in Pseudomonas Aeruginosa
    Int. J. Mol. Sci. 2014, 15, 6328-6342; doi:10.3390/ijms15046328 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Isolation of the Autoinducer-Quenching Strain that Inhibits LasR in Pseudomonas aeruginosa Lixing Weng 1,*, Yuqian Zhang 2, Yuxiang Yang 3 and Lianhui Wang 2,* 1 School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046, Jiangsu, China 2 Jiangsu Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210046, Jiangsu, China; E-Mail: [email protected] 3 Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (L.We.); [email protected] (L.Wa.); Tel./Fax: +86-25-8586-6634 (L.We.); Tel.: +86-25-8586-6333 (L.Wa.); Fax: +86-25-8586-6396 (L.Wa.). Received: 4 July 2013; in revised form: 21 March 2014 / Accepted: 28 March 2014 / Published: 14 April 2014 Abstract: Quorum sensing (QS) has been recognized as a general phenomenon in microorganisms and plays an important role in many pathogenic bacteria. In this report, we used the Agrobacterium tumefaciens biosensor strain NT1 to rapidly screen for autoinducer-quenching inhibitors from bacteria. After initial screening 5389 isolates obtained from land and beach soil, 53 putative positive strains were identified. A confirmatory bioassay was carried out after concentrating the putative positive culture supernatant, and 22 strains were confirmed to have anti-LasR activity.
    [Show full text]
  • Quorum Sensing in Bacteria
    17 Aug 2001 12:48 AR AR135-07.tex AR135-07.SGM ARv2(2001/05/10) P1: GDL Annu. Rev. Microbiol. 2001. 55:165–99 Copyright c 2001 by Annual Reviews. All rights reserved QUORUM SENSING IN BACTERIA Melissa B. Miller and Bonnie L. Bassler Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014; e-mail: [email protected], [email protected] Key Words autoinducer, homoserine lactone, two-component system, cell-cell communication, virulence ■ Abstract Quorum sensing is the regulation of gene expression in response to fluctuations in cell-population density. Quorum sensing bacteria produce and release chemical signal molecules called autoinducers that increase in concentration as a function of cell density. The detection of a minimal threshold stimulatory con- centration of an autoinducer leads to an alteration in gene expression. Gram-positive and Gram-negative bacteria use quorum sensing communication circuits to regulate a diverse array of physiological activities. These processes include symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm for- mation. In general, Gram-negative bacteria use acylated homoserine lactones as au- toinducers, and Gram-positive bacteria use processed oligo-peptides to communicate. Recent advances in the field indicate that cell-cell communication via autoinducers occurs both within and between bacterial species. Furthermore, there is mounting data suggesting that bacterial autoinducers elicit specific responses from host organisms. Although the nature of the chemical signals, the signal relay mechanisms, and the target genes controlled by bacterial quorum sensing systems differ, in every case the ability to communicate with one another allows bacteria to coordinate the gene expression, and therefore the behavior, of the entire community.
    [Show full text]
  • Making Informed Decisions: Regulatory Interactions Between Two-Component Systems
    Review TRENDS in Microbiology Vol.11 No.8 August 2003 359 Making informed decisions: regulatory interactions between two-component systems Jetta J.E. Bijlsma and Eduardo A. Groisman Department of Molecular Microbiology, Howard Hughes Medical Institute, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Avenue, St Louis, MO 63110, USA Bacteria experience a multitude of stresses in the com- phosphorylate from small molecular weight phosphoryl plex niches they inhabit. These stresses are denoted by donors, such as acetyl phosphate and carbamoyl phos- specific signals that typically alter the activity of individ- phate [3,4]. In addition, the vast majority of sensor kinases ual two-component regulatory systems. Processing of exhibit phosphatase activity towards their cognate multiple signals by different two-component systems response regulators. Although most two-component sys- occurs when multiple sensors interact with a single tems entail a single His-to-Asp phosphotransfer event response regulator, by phosphatases interrupting phos- between a histidine kinase and a response regulator, there phoryl transfer in phosphorelays and through transcrip- is a subset that consists of a three-step His-Asp-His-Asp tional and post-transcriptional mechanisms. Gaining phosphorelay (Fig. 1b) [1,2]. The extra phosphorylatable insight into these mechanisms provides an understand- domains in a phosphorelay can be present in separate ing at the molecular level of bacterial adaptation to ever proteins or be part of multi-domain (i.e.
    [Show full text]
  • Characterisation of the ATP-Binding Cassette Transporters Of
    Characterisation Of The ATP-Binding Cassette Transporters Of Pseudomonas aeruginosa Victoria Grace Pederick Research Centre for Infectious Diseases, Department of Microbiology and Immunology, School of Molecular and Biomedical Sciences, University of Adelaide October 2014 TABLE OF CONTENTS ABSTRACT ............................................................................................................................... V DECLARATION .................................................................................................................... VII COPYRIGHT STATEMENT ................................................................................................ VIII ABBREVIATIONS ................................................................................................................. IX TABLE OF TABLES ............................................................................................................. XII TABLE OF FIGURES ........................................................................................................... XIII ACKNOWLEDGEMENTS .................................................................................................... XV CHAPTER 1: INTRODUCTION ........................................................................................ 1 Pseudomonas aeruginosa ........................................................................................... 1 1.1.1. P. aeruginosa and human disease ......................................................................... 1 1.1.1.1. Cystic
    [Show full text]
  • Oral Microbiota and Helicobacter Pylori in Gastric Carcinogenesis: What Do We Know and Where Next? Seyedeh Zahra Bakhti and Saeid Latifi-Navid*
    Bakhti and Latifi-Navid BMC Microbiology (2021) 21:71 https://doi.org/10.1186/s12866-021-02130-4 REVIEW Open Access Oral microbiota and Helicobacter pylori in gastric carcinogenesis: what do we know and where next? Seyedeh Zahra Bakhti and Saeid Latifi-Navid* Abstract Gastric cancer (GC) is one of the most common malignancies causing death worldwide, and Helicobacter pylori is a powerful inducer of precancerous lesions and GC. The oral microbiota is a complex ecosystem and is responsible for maintaining homeostasis, modulating the immune system, and resisting pathogens. It has been proposed that the gastric microbiota of oral origin is involved in the development and progression of GC. Nevertheless, the causal relationship between oral microbiota and GC and the role of H. pylori in this relationship is still controversial. This study was set to review the investigations done on oral microbiota and analyze various lines of evidence regarding the role of oral microbiota in GC, to date. Also, we discussed the interaction and relationship between H. pylori and oral microbiota in GC and the current understanding with regard to the underlying mechanisms of oral microbiota in carcinogenesis. More importantly, detecting the patterns of interaction between the oral cavity microbiota and H. pylori may render new clues for the diagnosis or screening of cancer. Integration of oral microbiota and H. pylori might manifest a potential method for the assessment of GC risk. Hence it needs to be specified the patterns of bacterial transmission from the oral cavity to the stomach and their interaction. Further evidence on the mechanisms underlying the oral microbiota communities and how they trigger GC may contribute to the identification of new prevention methods for GC.
    [Show full text]
  • Diversity of Quorum Sensing Autoinducer Synthases in the Global
    Diversity of quorum sensing autoinducer synthases in the Global Ocean Sampling metagenomic database Margot Doberva, Sophie Sanchez-Ferandin, Eve Toulza, Philippe Lebaron, Raphaël Lami To cite this version: Margot Doberva, Sophie Sanchez-Ferandin, Eve Toulza, Philippe Lebaron, Raphaël Lami. Diversity of quorum sensing autoinducer synthases in the Global Ocean Sampling metagenomic database. Aquatic Microbial Ecology, Inter Research, 2015, 74 (2), pp.107-119. 10.3354/ame01734. hal-01141144 HAL Id: hal-01141144 https://hal.archives-ouvertes.fr/hal-01141144 Submitted on 14 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Aquatic microbial Ecology (2015) vol 74 pp 107-119 Diversity of quorum sensing autoinducer synthases in the Global Ocean Sampling metagenomic database Margot Doberva1, Sophie Sanchez-Ferandin2, Eve Toulza3,4, Philippe Lebaron1, Raphaël Lami1,* 1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologie Marines (LBBM), Observatoire Océanologique, 66650 Banyuls/Mer, France 2 Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650, Banyuls/Mer, France 3 UPVD Université de Perpignan, UMR 5244, IHPE, 66860 Perpignan cedex 9, France 4 CNRS, UMR 5244, 2EI, 66860 Perpignan cedex 9, France ABSTRACT: Quorum sensing (QS) is a cell-to-cell signalling pathway that allows bacteria to synchronize their genetic expression.
    [Show full text]
  • Quorum Sensing by Yeast
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Eukaryotes learn how to count: quorum sensing by yeast George F. Sprague Jr.1,3 and Stephen C. Winans2 1Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, Oregon 97403, USA; 2Department of Microbiology, Cornell University, Ithaca, New York 14853, USA Signaling mechanisms that govern physiological and cence, the horizontal transfer of DNA, the formation of morphological responses to changes in cell density are biofilms, and the production of pathogenic factors, anti- common in bacteria. Quorum sensing, as such signal biotics, and other secondary metabolites (Whitehead et transduction processes are called, involves the produc- al. 2001). Intercellular signaling is often thought to pro- tion of, release of, and response to hormone-like mol- vide a means to estimate population densities, hence the ecules (autoinducers) that accumulate in the external en- term “quorum sensing” (Fuqua et al. 1994). According to vironment as the cell population grows. Quorum sensing this idea, bacteria can estimate their numbers by releas- is found in a wide variety of bacteria, both Gram positive ing and detecting a particular chemical signal. However, and Gram negative, and the spectrum of physiological these molecules could also allow the detection of a dif- functions that can be regulated is impressive indeed. fusion barrier (Redfield 2001). Supporting this idea, Variation in the nature of the extracellular signal, in the single cells of Staphylococcus aureus can induce quo- signal detection machinery, and in the mechanisms of rum-dependent genes when confined within a host en- signal transmission demonstrates the evolutionary dosome (Qazi et al.
    [Show full text]
  • A Vibrio Cholerae Autoinducer-Receptor Pair That Controls Biofilm Formation
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Chem Manuscript Author Biol. Author Manuscript Author manuscript; available in PMC 2017 September 20. Published in final edited form as: Nat Chem Biol. 2017 May ; 13(5): 551–557. doi:10.1038/nchembio.2336. A Vibrio cholerae autoinducer-receptor pair that controls biofilm formation Kai Papenfort1,2,+, Justin E. Silpe1,+, Kelsey R. Schramma3, Jian-Ping Cong1, Mohammad R. Seyedsayamdost1,3, and Bonnie L. Bassler1,4,* 1Department of Molecular Biology, Princeton University, Princeton, NJ, USA 2Department of Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany 3Department of Chemistry, Princeton University, Princeton, NJ, USA 4Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA SUMMARY Quorum sensing (QS) is a cell–cell communication process that enables bacteria to track cell population density and orchestrate collective behaviors. QS relies on production, detection, and response to extracellular signal molecules called autoinducers. In Vibrio cholerae, multiple QS circuits control pathogenesis and biofilm formation. Here, we identify and characterize a new QS autoinducer-receptor pair. The autoinducer is 3,5-dimethylpyrazin-2-ol, which we call DPO. DPO is made from threonine and alanine, and its synthesis depends on threonine dehydrogenase (Tdh). DPO binds to and activates a transcription factor, VqmA. The VqmA-DPO complex activates expression of vqmR, which encodes a small regulatory RNA. VqmR represses genes required for biofilm formation
    [Show full text]
  • AUTOINDUCER 2, Luxs and PATHOGENIC BACTERIA
    REVIEWS MAKING ‘SENSE’ OF METABOLISM: AUTOINDUCER2, LuxS AND PATHOGENIC BACTERIA Agnès Vendeville*, Klaus Winzer‡, Karin Heurlier‡, Christoph M. Tang* and Kim R. Hardie‡ Abstract | Bacteria exploit many mechanisms to communicate with each other and their surroundings. Mechanisms using small diffusible signals to coordinate behaviour with cell density (quorum sensing) frequently contribute to pathogenicity. However, pathogens must also be able to acquire nutrients and replicate to successfully invade their host. One quorum-sensing system, based on the possession of LuxS, bears the unique feature of contributing directly to metabolism, and therefore has the potential to influence both gene regulation and bacterial fitness. Here, we discuss the influence that LuxS and its product, autoinducer-2, have on virulence, relating the current evidence to the preferred niche of the pathogen and the underlying mechanisms involved. BIOFILM In most environmental niches, bacteria exist in phenomenon whereby the accumulation of specific, Complex population of complex communities of single or multiple species diffusible, low-molecular-weight signal molecules (or organisms on a surface. that develop on abiotic (for example, rocks) or biotic ‘autoinducers’) enables bacteria to sense when the (for example, host mucosal tissues) surfaces1–3 rather minimal number, or ‘quorum’, of bacteria has been than as single, planktonic cells suspended in liquid. achieved for a concerted response to be initiated5–7. As such niches are diverse, microorganisms depend Both Gram-negative and Gram-positive pathogens on their capacity to sense the local environmental are known to use autoinducer molecules to coordi- conditions and adapt by regulating the expression of nate expression of genes crucial for virulence and *Centre for Molecular specific genes.
    [Show full text]
  • Bacterial Quorum Sensing and Bioluminescence
    This article reprinted from: Popham, D.L. and A.M. Stevens. 2006. Bacterial quorum sensing and bioluminescence. Pages 201-215, in Tested Studies for Laboratory Teaching, Volume 27 (M.A. O'Donnell, Editor). Proceedings of the 27th Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 383 pages. Compilation copyright © 2006 by the Association for Biology Laboratory Education (ABLE) ISBN 1-890444-09-X All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner. Use solely at one’s own institution with no intent for profit is excluded from the preceding copyright restriction, unless otherwise noted on the copyright notice of the individual chapter in this volume. Proper credit to this publication must be included in your laboratory outline for each use; a sample citation is given above. Upon obtaining permission or with the “sole use at one’s own institution” exclusion, ABLE strongly encourages individuals to use the exercises in this proceedings volume in their teaching program. Although the laboratory exercises in this proceedings volume have been tested and due consideration has been given to safety, individuals performing these exercises must assume all responsibilities for risk. The Association for Biology Laboratory Education (ABLE) disclaims any liability with regards to safety in connection with the use of the exercises in this volume. The focus of ABLE is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises.
    [Show full text]