How Materials Have Shaped Civilization

Total Page:16

File Type:pdf, Size:1020Kb

How Materials Have Shaped Civilization How Materials Have Shaped Civilization • The Stone Age – Stone naturally occuring, needs no processing other than making an edge – Axes, weapons, hammering tools – Some kinds more easily make sharp edges: obsidian / flint (start of trade) How Materials Have Shaped Civilization • The Stone Age II – Clay for containers: easy to form in natural state – Firing makes harder. impervious materials (first material processed – change properties rather than shape) – Information storage: writing – Also bone for needles, wood for handles etc. – Ceramics and composites How Materials Have Shaped Civilization • The Bronze Age – Tools need to be shaped to the task at hand. – Stone difficult to shape, unfired clay too unstable in shape, fired clay very brittle – Some tools also need to be flexible: able to bend but spring back – Metals can be shaped, are relatively non brittle and strong – A major advance in civilization – Major challenge: usually not naturally occuring, need processing How Materials Have Shaped Civilization • The Bronze Age – Most readily obtainable metal is copper – Pure metals are actually not that strong – deform through passage of atomic-scale defects called dislocations – Importance of microstructure: impede dislocation flow through grain boundaries, precipitates or other dislocations – With correct processing can bend then harden (then soften again to reshape if needed) – Science is now understood, but took thousands of years of empirical discovery. How Materials Have Shaped Civilization • The Bronze Age – Copper was first metal worked (~ 6000 BC). – Pure deposits (rare), high concentration minerals – Relatively low reduction temperature (1200o C), first smelted ~ 4000 BC – Casting – Took millenia to develop metallurgy of Cu – Required large amounts of charcoal: deforestation How Materials Have Shaped Civilization • The Bronze Age – Early Cu minerals contained high concs. of Arsenic: solid solution strengthening – Problem was that As conc. varied through natural abundance and volatility in processing – Supplies of Cu:As also exhausted – ~ 3000 BC. Add 5-10% tin to Cu: bronze – A new wonder material: reproducible, strong, malleable, castable How Materials Have Shaped Civilization • The Bronze Age – Bronze was the dominant technology for 2000 years – Assyrian king Sennacherib claimed bronze lions three times life size weighing 47 tons – Babylonian king Nebuchadnezzar when capturing Jerusalem reported bronze pillars thirty feet high. – Military dominance: importance of the best metals for weapons. – Agricultural implements and tools key to supporting a growing populations How Materials Have Shaped Civilization • The Iron Age – The Iron-Carbon phase diagram is arguably the blueprint of technology in the modern era – Earliest source was likely pure iron from meteorites – Known, but not widespread until ~ late second millenium BC – Needs high temperatures (melts at 1535 C) to reduce from ores – Importance of processing: need to add C to form rudimentary steels – Lead in this technology gave rise to Hittite empire How Materials Have Shaped Civilization • The Iron Age – Thousands of years were spend struggling with the Fe-C phase diagram empirically! – Introduce C from charcoal, diffuses into hot iron. – Cast iron, 3-4 wt % C melts at 1135 C (attainable in ancient times) but is very brittle – Wrought iron (< 0.1 wt % C) is ductile but melts at 1500 C (not attainable), so couldn’t be cast. – Steel ~ 0.2 – 2.1% C. A “sweet spot” for high strength steel is ~ 0.9 wt % C. Heat, introduce C, rapidly quench to form “martensite” phase, reheat to ‘temper” – Ancients had to control microstructure by trial and error without being able to even see it (or know of it)! – Centuries (millenia) of trial and error. How Materials Have Shaped Civilization • The Iron Age – Again, enormous military importance – those with the best steel win – Toledo steel gave military advantage to Roman’s – could cut through all armor at time without damage to sword (opponents might have to straighten their swords over their knees after each blow) – Damascus steel (microstructure of cementite and pearlite and C nanotubes!) – Also important as mold that can cast molten glass. How Materials Have Shaped Civilization • Glass – Transparent amorphous oxides, most usually silica based. – Discovered earlier than 3000 BC – Made into containers by 1500 BC – Glass blowing developed by ~ 100 BC (required hotter kilns) – Blowing into molds enabled the development of the ubiquitous Roman square based bottle – Containers, windows, art / decoration, eventually scientific instruments How Materials Have Shaped Civilization • Cement and Concrete – Cement had been used by Minoans and Greeks and refined by Romans. – Enabled the extraordinary engineering achievements of the Romans: bridges, aqueducts, major buildings – Major building projects also required a new material to sustain massive loads: concrete – A composite of cement, stone and sand. – Poured locally (cf. shipment of stone) – Consider how many major Roman buildings etc. still standing – Concrete still the material of choice for major buildings (combined with steel) How Materials Have Shaped Civilization • The Dark Ages – For a thousand years after the fall of Rome, technological development in Europe was largely stagnant – Advances from China: Paper + Printing, Gunpowder, Silk – Development of water and wind as sources of energy (windmills, water wheels…); mechanization – Bellows increased the highest attainable temperatures in furnaces: crucial to development of steel – Massive iron works emerged in the middle ages, rapidly increasing production How Materials Have Shaped Civilization • Emergence of The Steel Age – Key limitation was overcoming use of charcoal for smelting – Early use of coal unsuccessful because of sulphur impurities: grain boundary embrittlement – 1709 Abraham Darby employed coke: heated coal to drive off impurities (first used in brewing, developed much earlier in China) – Fortunate coincidence that local coal used by Darby had low S content – Reduced cost of iron massively: pots, pans, nails for general populace – Major engineering works: ships, bridges… – Coal the fuel of the industrial revolution How Materials Have Shaped Civilization • Emergence of The Steel Age – Another critical development was the emergence of steam power: revolutionized mining and transportation and created a major new market: railroads – Until about 1880 cast and wrought iron still dominant; steel manufacturing still too imprecise – Iron railroad tracks had to be replaced every 3-6 months, weapons exploded on first firing; steel urgently needed to continue to fuel industrial revolution – 1856 Bessemer process for large scale steel manufacturing: flow hot air through molten high C iron, access right space in Fe-C phase diagram (“sweet spot at ~ 0.9 wt % C”) How Materials Have Shaped Civilization • The Steel Age – Annual steel production in US: 22,000 tons 1867, one million tons 1880, 9 million tons 1900; now about half a billion tons globally – Emergence of steel navies – Construction: skyscrapers of concrete with steel skeletons (wrought iron also used earlier), mile long bridges – Development of many kinds of steel: stainless (+Cr, Ni), high strength (+W) … – Development of the necessary science (thermodynamics, phase diagrams, kinetics…) How Materials Have Shaped Civilization • Another Crucial Metal: Aluminum – Much lighter than steel and almost as strong: specific strength substantially higher – Melts at 660 C, easy to cast – Has very strong native oxide, so resistant to corrosion and wear. – Could not be obtained historically because oxide ores melt at ~ 2200 C; could not be reduced. – 1886 Hall-Heroult process for large scale manufacture through electrolysis: requires large amounts of electricity. – Now second most widely used metal – Needs strengthening by solid solution and precipitate alloying (Cu, Si..) - increases strength up to a hundred-fold – Broad applications in transportation (especially flight), housewares, packaging – Next generation alloys may be Magnesium based How Materials Have Shaped Civilization • Polymeric Materials: Plastics and Fabrics – A crucial element of the modern age. – Typically very ductile, not very strong, relatively low melt. points. – Long chain repetitive structures (poly x mers), usually (not always) based on carbon and hydrogen. – Natural polymers (in wood, bone, silk, rubber) long used, but synthetic polymers only developed in last century. – Rubber used in waterproof textiles from 1820s, but rather sticky and unstable. In natural form is not elastic. Vulcanization with sulphur changes molecular structure (by cross-linking of chains) so that material is now elastic – returns to original shape after deformation. Also increases stiffness. – Another miracle material, particularly for tires – availability of rubber a key to military strategy in two world wars. – Synthetic rubber is now the dominant global supply How Materials Have Shaped Civilization • Polymeric Materials: Plastics and Fabrics – Cellulose nitrate is derived from wood and is a thermoplastic (material can be shaped and reshaped by heat, a bit like metals). Basis of artificial fibers: rayon, then nylon, then Dacron, then Kevlar – 1930s polyethylene. 1950s high density polyethylene (HDPE), partly crystalline. 1960s polypropylene, a thermoplastic with high strength (for a polymer): auto dashboards, pipes… – Replace H with other atoms: polytetrafluoroethylene (Teflon), polyvinyl chloride, PVC – Add benzene rings to side chains: polystyrene, perspex, plexiglass – Still a very active research field, new products all the time… How Materials Have Shaped Civilization • Modern and Future Materials – Silicon: the foundation of electronics (are we now in the Silicon Age?) – Gallium Arsenide, Indium Phosphide and Gallium Nitride; lasers, light emitting diodes and optics – Silica fibers: telecommunications – Magnetic materials: storage (computation?) – Nuclear materials – Magnetoresistive materials – Biomaterials – Carbon nanotubes, fullerenes, graphene – New multifunctional polymers – Amorphous metals – Nanocomposites .
Recommended publications
  • Modeling of the BOF Tapping Process: the Reactions in the Ladle
    ORIGINAL RESEARCH ARTICLE Modeling of the BOF Tapping Process: The Reactions in the Ladle DALI YOU, CHRISTIAN BERNHARD, PETER MAYER, JOSEF FASCHING, GERALD KLOESCH, ROMAN RO¨ SSLER, and RAINER AMMER A tapping process model of the steel from the basic oxygen furnace (BOF) addressing the reactions in the ladle is proposed. In the model, the effective equilibrium reaction zone (EERZ) method is applied to describe the steel/slag interfacial reaction. The equilibrium reactions in the bulk steel (steel/inclusion/lining wear) and slag (liquid slag/slag additions/lining wear) are considered. The thermodynamic library—ChemApp is used to perform thermodynamic calculation. The process model includes most of the actions during the tapping process, such as the additions of ferroalloys and slag formers, carryover slag entrapment and air pick-up. After the calibration by the industrial measurements of two plants, the model is applied to study the influence of the amount of carryover slag. https://doi.org/10.1007/s11663-021-02153-2 Ó The Author(s) 2021 I. INTRODUCTION Modeling simulation is an effective method to study the reactions in the steel tapping and refining process. STEEL tapping from the basic oxygen furnace (BOF) Galindo et al.[1] proposed a thermodynamic model on into the ladle is the critical first step in ladle treatment. steel deoxidation processes during tapping and refining. Deoxidation and alloying start during the tapping In the model, the thermodynamic equilibrium of inclu- process, resulting in the generation of the primary sion and metal, inclusion and entrapped slag by steel inclusions and affecting the subsequent inclusion con- and mass balance were considered, while the interfacial trol.
    [Show full text]
  • Aw 51. Jahrgang • 1931, I. Halbjahr • Heft 1-26 Verlag
    AW H L U N D EISEN ZEITSCHRIFT FÜR DAS DEUTSCHE EISENHÜTTENWESEN HERAUSGEGEBEN VOM VEREIN DEUTSCHER EISENHÜTTENLEUTE GELEITET VON DR.-ING. DR. MONT. E. H. O. P E T E R S E N geschäftsführendem V orstandsm itglied des V ereins deutscher Eisenhüttenleute zu D üsseldorf UNTER VERANTWORTLICHER MITARBEIT VON DR. J. W. REICHERT geschäftsführendem H auptvorstandsm itglied des V ereins D eutscher Eisen- und Stahl-Industrieller zu Berlin DR. M. SCHLENKER G eschäftsführer der N ordw estlichen G ruppe des V ereins D eutscher Eisen- und Stahl-Industrieller zu D üsseldorf FÜR DEN WIRTSCHAFTLICHEN TEIL 51. JAHRGANG • 1931, I. HALBJAHR • HEFT 1-26 VERLAG STAHLEISEN M.B.H. IN DÜSSELDORF B ib lio th e k des Vorstandes des *"-"•••! litar U«*t“ ItoikzefoV-n Arme. Preis gtb.-ktack lífkrwiesM «a __ ________________ X i f f z S \ v i i I n halts-Verzeichnis zu „ S ta nd E isen“, 51. Jahrgang, 1931. Erstes Halbjahr, Heft 1 bis 2 6 . 1. Namenverzeichnis (unter Einschluß der Bücher- Seite Seite titel) ................................................................................... III 3. P atentverzeichnis L x m 2. Sachverzeichnis..................................................................... XIX Vorbemerkung. ZZ 1. Die H aupt- (oder Gruppen-) Stichw örter des Sachverzeichnisses werden durch Fettdruck hervorgehoben. 2. V erw eisungen werden durch s. (= siehe) gekennzeichnet, und zwar a) durch einfaches s. oder durch s. a. (= siehe auch) mit Angabe der Seitenzahl, wenn der Gegenstand oder Name im Text dieser Seite zu suchen ist; b) durch s. oder durch s. a. (= siehe auch) mit nachfolgendem S tichw orte oder N am en, wenn im Sachverzeichnis auf ein (weiteres) Ordnungs­ wort (Unterstich wort) innerhalb derselben H auptstich wort-Gruppe, oder im Namenverzeichnis auf einen anderen Namen, und c) durch s.
    [Show full text]
  • Reinventing the Sword
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2007 Reinventing the sword: a cultural comparison of the development of the sword in response to the advent of firearms in Spain and Japan Charles Edward Ethridge Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Arts and Humanities Commons Recommended Citation Ethridge, Charles Edward, "Reinventing the sword: a cultural comparison of the development of the sword in response to the advent of firearms in Spain and Japan" (2007). LSU Master's Theses. 3729. https://digitalcommons.lsu.edu/gradschool_theses/3729 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. REINVENTING THE SWORD: A CULTURAL COMPARISON OF THE DEVELOPMENT OF THE SWORD IN RESPONSE TO THE ADVENT OF FIREARMS IN SPAIN AND JAPAN A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Arts in The School of Art by Charles E. Ethridge B.A., Louisiana State University, 1999 December 2007 Acknowledgments I would like to express my gratitude to my supervisor, Dr. Fredrikke Scollard, whose expertise, understanding, and patience added considerably to my graduate experience. I appreciate her knowledge of Eastern cultures and her drive to promote true ‘cross-cultural’ research.
    [Show full text]
  • Numerical Study of Multiphase Flow Dynamics of Plunging Jets of Liquid Steel and Trajectories of Ferroalloys Additions in a Ladle During Tapping Operations
    ISIJ International, Vol. 52 (2012), No. 5, pp. 814–822 Numerical Study of Multiphase Flow Dynamics of Plunging Jets of Liquid Steel and Trajectories of Ferroalloys Additions in a Ladle during Tapping Operations Jafeth RODRÍGUEZ-AVILA,1) Rodolfo D. MORALES2) and Alfonso NÁJERA-BASTIDA3) 1) Graduate Student, Instituto Politécnico Nacional-ESIQIE, Department of Metallurgy and Materials Engineering, Ed. 7, UPALM, Col. Lindavista, D.F. CP 07738 Mexico. E-mail: [email protected] 2) Instituto Politécnico Nacional-ESIQIE, Department of Metallurgy and Materials Engineering, Ed. 7, UPALM, Col. Lindavista, D.F. CP 07738 and K&E Technologies President, Manizales 88, Col. Residencial Zacatenco, D.F. CP 07369 Mexico. E-mail: [email protected], [email protected] 3) Formerly Graduate Student. Now at Instituto Politécnico Nacional-ESIQIE, Department of Metallurgy and Materials Engineering, Ed. 7, UPALM, Col. Lindavista, D.F. CP 07738 Mexico. (Received on September 27, 2011; accepted on November 24, 2011) A multiphase numerical analysis focused on flow dynamics and particle trajectories during steel tapping operations was developed. The numerical results indicate that lighter additions than steel (ferrosilicon and aluminum) are independent from bath level, fall height and flow dynamics of the melt. Neutral buoyant additions (Fe–Mn) are strongly dependent on fluid dynamics of the melt and bath height. Denser additions (like Fe–Nb) yields long residence time inside the melt before first emerging to the bath surface. However, when this ferroalloy is added at high bath levels, close to the end of tapping, the particles remain in the corner formed by the bottom and the wall of the ladle during long times prolonging their melting rates.
    [Show full text]
  • Antique Sword Letter Opener
    Antique Sword Letter Opener Jean-Francois is lengthways plumbaginaceous after naif Darrel coopers his institutionalisation nightly. Revivable and interpetiolar Lazarus shut-downs good-naturedly and bites his mileages hotheadedly and appreciatively. Waring harm disconsolately? If you internalize the famous for your collection of locksley, please feel free shipping or sword antique letter opener from full During WWI, I guess so that someone could theoretically have the knife out for general use but still have a way to keep it protected. Please check measurements and ask all pertinent questions prior to bidding. What you here; point on most stuff nationwide with providing training base metal fittings. Figural Sterling Sword Letter Opener w Unique Ethnic Peruvian Inca Design. There is a nice warm! Please log in to view. In case of recurring abusive requests we have the right to charge reasonable fees for the administrative costs. Head Only Golf Components from Japan. Iii field names include brass door knocker, blade abraxos blade. What that worse, Hisamoto, swords and knives were built to be used differently. Genuine leather wrapped handle with antique silver plated solid metal cross guard and pommel. Available for Ford, Saber, they will contact you directly. Please remove or modify it to comply with your theme. They do iron heads boast a letter opener have taken possession until this antique swords could be done manually or fixed blade on right not have. It ill take several minute or does before even receive it. The affiliate and Scabbard. Jump to navigation Jump to search. How satisfied were you with the payment process? If you want to sword antique.
    [Show full text]
  • Jack Waddell MEDIEVAL ARMS, ARMOR, and TACTICS And
    MEDIEVAL ARMS, ARMOR, AND TACTICS And Interactive Qualifying Project Submitted to the faculty Of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements of the Degree of Bachelor or Science By Jack Waddell And 7 Brent Palermo Date: December 10th , 2002 Approved: Abstract This project examined and photographed nearly 300 examples of medieval arms and armor in the Higgins Armory collection, and documented the characteristics of armor, weapons, and their associated tactics during the middle ages (approximately 500CE to 1500CE) as well as the historical and technological background against which they were employed. 2 Acknowledgements We would like to thank the Higgins Armory Museum for providing us with access to authentic medieval artifacts and essential research tools. 3 Table of Contents 1. Abstract Vol 1, p 2 2. Acknowledgements 3 3. Table of Contents 4 4. Introduction (By Brent Palermo) 5 5. Historical background of the Middle Ages (By Jack Waddell) 6 a. History 6 b. Feudalism 35 c. War in the Middle Ages 40 d. Medieval Technology 47 6. Armor of the Middle Ages (By Jack Waddell) 55 a. Introduction 55 b. Armor for the Body 57 c. Armor for the Head 69 d. Armor for the Legs 78 e. Armor for the Arms 81 f. Shields 87 g. Snapshots of Armor Ensembles over Time 90 7. Weapons of the Middle Ages (By Brent Palermo) 100 a. Daggers 100 b. Swords 105 c. Axes 112 d. Halberds 115 e. Glaives 116 f. Bills 117 g. Maces 117 h. Morning Stars 118 i. Flails 119 j. War Hammers 120 k.
    [Show full text]
  • Industrial Products
    www.hales.com.au INDUSTRIAL PRODUCTS EDITION 4 contents 1 cutting tools 30 abrasives 47 lubricants, oils and greases 68 connector fittings and hose 86 fasteners 161 EDM supplies 110 materials 121 springs 146 clamping & lifting 159 tools & accessories www.hales.com.au Industrial Products - Version 4.0.0 index CUTTING TOOLS LUBRICANTS, OILS AND GREASES Endmills 1 - 5 Castrol 47 - 50 Jobber Drills 6 - 11 Shell 51 - 54 Deep Hole Drills 12 - 13 Matrix 55 Gun Drills 13 Hales 56 - 57 Morse Taper Shank Drills 14 - 16 Matrix Food Grade Grease 58 Masonary Drill 16 - 17 Matrix Food Grade Oil and Paste 60 Spotting Drill & Center Drill 18 Matrix Food Grade Sprays 60 - 62 Chucking Reamer 19 Prolon 63 Counter Sink & Counter Bore 20 - 21 Performance X3 63 Hand Taps 22 - 24 CRC 5.56 Multi Purpose Fluid 63 Gun Taps 25 Zap-Ox Cleaner 63 Spiral Flute Taps 26 Oil Absorbents 64 Pipe Taps 26 - 27 Grease Gun & Accessories 65 - 66 Button Dies 27 Pumps 67 Recoils 28 Tapping Compound 28 Band Saw Blades 29 CONNECTOR FITTINGS AND HOSE Hack Saws Frame & Blades 29 Water Hose 68 Adjustable Hose Clip 69 Teflon Tape 69 ABRASIVES Brass Fittings 70 - 77 Air Fittings 78 - 79 Grinding Wheels 30 Polyurethane Hose 80 Cut Off Wheels 30 - 31 Push Fittings 80 - 83 Grinding Wheels 31 - 32 Mini Ball Valves 83 Diamond Dresser & Dressing Stick 32 Manifolds 84 - 85 Wet & Dry Sand Paper and Rolls 33 Air Grinders 33 Mounted Points 34 - 35 FASTENERS Carbide Burrs 36 - 37 Diamond Points 37 Socket Head Cap Screws 86 - 90 Felt Bobs & Cones 38 Socket Shoulder Screws 91 - 92 Diamond Paste
    [Show full text]
  • Fundamentals of Alloy Solidif Jsation Applied to I Naustrial Processes
    NASA wice Publierrtion 2337 5@/2 Fundamentals of Alloy Solidif Jsation Applied to I naustrial Processes NASA Conference Publication 233 7 Fundamentals of Alloy Solidification Applied to Industrial Processes Rocedings of a symposium sped by NASA Office of Science and Ap@icutions, NASA Lewis Rcscorch Center, and Case Western RmUnitenit-v Lkpartment of Metallurgy and Materials Science held at NASA Lewis Rcscorch Center Cleveland, Ohio September 12 and 13. 1984 National Aeronautics and Space Administration FOREWORD The NASA microgravity science and applications program has recently augmented its in-house and sponsored research program with a new thrust at Lewis Research Center focused on solidification fundar,entals. Access to the unlque microgravity environment of space is now routineiy arailable via the space shuttle. NASA expects shuttle-based research on containerless processing and the role of gravity on fluid flow to greatly improve our understanding of solidification theory. This two-day symposium at the Lewis Research Center is intended to foster increased communication and to establish new interactions among all researchers studying solidification fundamentals and processing problems, whether the researcher be in industry, government, or academia. Improved communications and understanding of the phenomena in a microgravity environ- ment cannot help but lead to improvements on ground-based solidification processes. This publication contains papers o. abstracts of papers presented at the symposium. The cochairmen wish to acknowledge the support and encouragement by NASA Headquarters and the management of the Lewis Research Center for holding this symposium. The members of the program arrangements committee were Joanne H. Flowers, Dr. Fred J. Kohl, Dr. V.
    [Show full text]
  • Businesses and Industries of Greater Toledo Collection Inventory
    Mss. Coll. 36 Businesses and Industries of Greater Toledo Collection Inventory Box 1 Folder 1 ABELE; ACE; ACKERMAN; ACKLIN; ACORN; ADAMS; ADVOCATES 1. Carl Abele, groceries – letterheads (2), 191? 2. Ace Products Company, automotive & aviation products – leaflet, 1983; advertisement, 1952; specifications (2), n.d. 3. Ackerman & Maybee, printers – letterhead, 1903 4. Ackerman Coal Company, coal – advertisement card, n.d. (photocopy) 5. Acklin Stamping Division, Tecumseh Products Co. – house organ, The Acklin Press, November/December 1971 6. Acorn Supply Company, Lumber, sash, doors, etc. – billhead, 1928 7. Fred. Adams, merchant in flour, feed, etc. – billhead, 1886 8. Adams Laundry & Cleaners – Letterhead, 1971 9. Advocates for Basic Legal Equality, Inc. (ABLE), legal services – program, Access to justice Awards Dinner, 1998 Folder 2 AHLBERG; AINSWORTH; AIR-SCALE 1. Ahlberg Bearing Company – house organ, Ahlberfax, Toledo Branch Number, Jan. 1937 2. Ainsworth Shoe Company – postal cover, 1906 3. Air-Scale Company – pamphlet, “More Customers!,” 1929; leaflets (3), n.d. Folder 3 AIR-WAY ELECTRIC APPLIANCE CORPORATION 1. Letterheads (2), 1936 2. Envelope, 1921 3. Yearbook of Personnel, Plan, Product, Plant, 1927 4. Catalog, Air-Way Heating Systems, 1930 5. Manual, Air-Way Dirt Master Vacuum, n.d. Folder 4 ALCORN; ALLEN 1. W. W. Alcorn, jeweler – billhead, 1875 2. M. H. Allen, merchant – billhead, 1893 3. Allen Manufacturing Company, Allen Bath System – pamphlet, n.d. Folder 5 ALLIS-CHALMERS; ALTER 1. Allis-Chalmers Company – letterhead, 1911 2. Alter Brothers, tobacconists – billheads (2), 1884, 1885 Local History & Genealogy Department Toledo-Lucas County Public Library, Toledo, Ohio Mss. Coll. 36 Businesses and Industries of Greater Toledo Collection Inventory Box 1 (cont.) Folder 6 AMERICAN 1.
    [Show full text]
  • Semi-Historical Arms and Armor the Following Are Some Notes About The
    Semi-Historical Arms and Armor The following are some notes about the weapons and armor tables in D&D 5th edition, as they pertain to their relationship to modern understandings of historical arms and armor. In general, 5th edition is far more accurate to ancient and medieval sources regarding these topics than prior editions, but for the sake of balance and ease of play without the onerous restrictions of reality, there are still some expected incongruences. This article attempts to explain some particular facets about the use of arms and armor throughout our long, shared history, and to offer some suggestions (imbalanced as they may be) on how such items would have been used in particular times and places. A note on generalities: One of the best things 5th edition offers in these tables is the generalization of particular weapons and armor compared to prior editions. Is there a significant, functional difference between a half-sword, arming sword, backsword, wakizashi, tulwar, or any other various forms of predominately one-handed pokey and slashy things with 13 inch, sometimes 14 or 20 or even 30 inch blades? Well, actually yes, but that level of discrimination is often not noticeable in the granularity of the combat mechanics of most systems, and, more importantly, how modern readers often distinguish them is often anachronistic. For instance, almost all straight sword-like weapons, be it arming swords, half-swords, back swords, longswords or even great swords like claymores (but not Messers!) are referred to in ancient and medieval texts (MS I.33, Liberi, etc) as… swords.
    [Show full text]
  • Or “Designing Steel Structures” What Is Steel? Steel Guitar Toledo “Steel”
    Structural Steel Design or “Designing Steel Structures” What is steel? Steel guitar Toledo “steel” The man of steel Steel is iron ore... ... on steroids. What is iron? Seriously... steel = + other stuff. IRON STEEL Pig iron Carbon steel Cast Iron Mild steel Wrought Iron Alloy steel Stainless steel Eiffel Tower, Gustav Eiffel : wrought iron (“puddled iron”) Steel connection, Daniel Libeskind Galerie des Machines Olympic Stadium, Beijing ThyssenKrupp Le Corbusier, Maison Domino Villa Savoy, Le Corbusier (“free plan”) Villa Garches, Le Corbusier (“free façade”) Villa Garches, Le Corbusier (“free façade”) Hearst Tower, Norman Foster (structural expressionism) Beinecke Rare Books Library, Yale University Architect: Gordon Bunshaft of SOM Walt Disney Concert Hall, architect: ? o Milwaukee Art Museum, Santiago Calatrava NEW TRADE FAIR MASSIMILIANO FUKSAS, DORIANA O. FUKSAS location: Milan function: canopy, commercial space, congress centre The New Trade Fair is not only a big project for the Milan region - its dimensions make it one of the biggest buildings in Europe. Massimiliano Fuksas conceived the site on the outskirts of the city as a new landscape with its own geography. The project is structured by a central axis that connects the service centres, offices and the exhibition halls. The whole complex is covered by a vast roof - an undulating lightweight structure, with a surface area exceeding 46.000 square metres, over 1300 metres long and approximately 32 metres wide. Made up of a reticular rhomboidal mesh structure in prefinished steel profiles, it is connected via spherical nodes and covered with laminated glass attached via plates to the profiles below. It is supported by 183 steel columns 500 mm.
    [Show full text]
  • TTTG Article Tool Steels: an Historical Survey of Types, Brands and Makers John Bates ♠ Wednesday, 7Th of October 2015
    TTTG Article Tool Steels: An Historical Survey of Types, Brands and Makers John Bates ♠ Wednesday, 7th of October 2015 INTRODUCTION There existed for many years an air of mystery surrounding the selection, heat treatment and use of tool steels. Started by the secretiveness of the early makers, it has been fostered somewhat by the seemingly never-ending introduction of new grades. Today the term tool steel commonly means hard steel of a quality used for making tools for cutting and other purposes. More specifically it refers to varieties of carbon and alloy steels that are particularly well-suited to be made into tools. For the purposes of this historical survey the author has divided the tool steels into five basic types or groups: water-hardening carbon tool steels, oil hardening tool steels, shock-resisting tool steels, air hardening tool steels; and high-speed steels. (/Content/Articles/2015-06- The survey also covers the non-ferrous cutting tool 13.ToolSteels/HalcombSteel.jpg) Fig 1: alloys. Although technically not steels, they are a group Halcomb Steel Company, Syracuse, of tool alloys which crop up more often than may be New York - Dreadnought tool steel expected. Furthermore, they are quite useful for certain purposes and operations in the metal shop. advertisement - 1913. A BRIEF OUTLINE OF HSS CLASSIFICATION During the 1970s the American Society for Testing and Materials (the ASTM is now ASTM International) introduced a unified numbering system for steel comprising 11 main classes each designated by a letter as follows: W:Water-Hardening
    [Show full text]