The Habitats Humans Provide: Factors Affecting the Diversity And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Terrestrial Isopods from the Hawaiian Islands (Isopoda: Oniscidea)1
59 Terrestrial Isopods from the Hawaiian Islands (Isopoda: Oniscidea)1 STEFANO TAITI (Centro di Studio per la Faunistica ed Ecologia Tropicali del Consiglio Nazionale delle Ricerche, Via Romana 17, 50125 Firenze, Italy) and FRANCIS G. HOWARTH (Hawaii Biological Survey, Bishop Museum, PO Box 19000, Honolulu, Hawaii 96817, USA) The following are notable new distribution records for terrestrial isopods in Hawaii. Four species are newly recorded from the state, and many new island records are given for other species, especially for the Northwestern Hawaiian Islands, where only one species (Porcellionides pruinosus [Brandt]) was previously known. All included records are based on specimens deposited in Bishop Museum. Taiti & Ferrara (1991) presented new distribution records and taxonomic information on 27 species and provided an overview of the terrestrial isopod fauna of the Hawaiian Islands, and Nishida (1994) list- ed all species recorded from the islands together with the island distributions of each. We call special attention to the several endemic armadillid pillbugs that have not been recollected in more than 60 years. These are Hawaiodillo danae (Dollfus) and H. sharpi (Dollfus) from Kauai, H. perkinsi (Dollfus) from Maui, Spherillo albospinosus (Dollfus) from Oahu, and S. carinulatus Budde-Lund from Kauai. In addition, S. hawai- ensis Dana, previously recorded from Kauai, Oahu, Molokai, and Lanai was last collected on the main islands in 1933 on Oahu although it appears to be still common on Nihoa. We fear some species in this complex may be extinct and encourage field biologists to watch for them in potential refugia. For economy of space, the following abbreviations are used for collectors listed be- low: DJP = David J. -
"Philosciidae" (Crustacea: Isopoda: Oniscidea)
Org. Divers. Evol. 1, Electr. Suppl. 4: 1 -85 (2001) © Gesellschaft für Biologische Systematik http://www.senckenberg.uni-frankfurt.de/odes/01-04.htm Phylogeny and Biogeography of South American Crinocheta, traditionally placed in the family "Philosciidae" (Crustacea: Isopoda: Oniscidea) Andreas Leistikow1 Universität Bielefeld, Abteilung für Zoomorphologie und Systematik Received 15 February 2000 . Accepted 9 August 2000. Abstract South America is diverse in climatic and thus vegetational zonation, and even the uniformly looking tropical rain forests are a mosaic of different habitats depending on the soils, the regional climate and also the geological history. An important part of the nutrient webs of the rain forests is formed by the terrestrial Isopoda, or Oniscidea, the only truly terrestrial taxon within the Crustacea. They are important, because they participate in soil formation by breaking up leaf litter when foraging on the fungi and bacteria growing on them. After a century of research on this interesting taxon, a revision of the terrestrial isopod taxa from South America and some of the Antillean Islands, which are traditionally placed in the family Philosciidae, was performed in the last years to establish monophyletic genera. Within this study, the phylogenetic relationships of these genera are elucidated in the light of phylogenetic systematics. Several new taxa are recognized, which are partially neotropical, partially also found on other continents, particularly the old Gondwanian fragments. The monophyla are checked for their distributional patterns which are compared with those patterns from other taxa from South America and some correspondence was found. The distributional patterns are analysed with respect to the evolution of the Oniscidea and also with respect to the geological history of their habitats. -
Notes on Terrestrial Isopoda Collected in Dutch Greenhouses
NOTES ON TERRESTRIAL ISOPODA COLLECTED IN DUTCH GREENHOUSES by L. B. HOLTHUIS On the initiative of Dr. A. D. J. Meeuse investigations were made on the fauna of the greenhouses of several Botanic Gardens in the Netherlands; material was also collected in greenhouses of other institutions and in those kept for commercial purposes. The isopods contained in the col• lection afforded many interesting species, so for instance six of the species are new for the Dutch fauna, viz., Trichoniscus pygmaeus Sars, Hylonis- cus riparius (Koch), Cordioniscus stebbingi (Patience), Chaetophiloscia balssi Verhoeff, Trichorhina monocellata Meinertz and Nagara cristata (Dollfus). Before the systematic review of the species a list of the localities from which material was obtained is given here with enumeration of the collected species. 1. Greenhouses of the Botanic Gardens, Amsterdam; October 24, 1942; leg. A. D. J. Meeuse (Cordioniscus stebbingi, Chaetophiloscia balssi, Por- cellio scaber, Nagara cristata, Armadillidium vulgare). 2. Greenhouses of the "Laboratorium voor Bloembollenonderzoek,, (Laboratory for Bulb Research), Lisse; June 13, 1943; leg. A. D. J. Meeuse (Oniscus asellus, Porcellio scaber, Porcellionides pruinosus, Ar• madillidium vulgare, Armadillidium nasutum). 3. Greenhouses of the Botanic Gardens, Leiden; May, 1924-November, 1942. leg. H. C. Blote, L. B. Holthuis, F. P. Koumans, A. D. J. Meeuse, A. L. J. Sunier and W. Vervoort (Androniscus dentiger, Cordioniscus stebbingi, Haplophthalmus danicus, Oniscus asellus, Porcellio scaber, For- cellionides pruinosus, Armadillidium vulgare, Armadillidium nasutum), 4. Greenhouses of the Zoological Gardens, The Hague; November 4, 1942; leg. A. D. J. Meeuse (Cordioniscus stebbingi, Oniscus asellus, Por• cellio dilatatus). 5. Greenhouse for grape culture, Loosduinen, near The Hague; October 30, 1942; leg. -
Isopod Distribution and Climate Change 25 Doi: 10.3897/Zookeys.801.23533 REVIEW ARTICLE Launched to Accelerate Biodiversity Research
A peer-reviewed open-access journal ZooKeys 801: 25–61 (2018) Isopod distribution and climate change 25 doi: 10.3897/zookeys.801.23533 REVIEW ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Isopod distribution and climate change Spyros Sfenthourakis1, Elisabeth Hornung2 1 Department of Biological Sciences, University Campus, University of Cyprus, Panepistimiou Ave. 1, 2109 Aglantzia, Nicosia, Cyprus 2 Department of Ecology, University of Veterinary Medicine, 1077 Budapest, Rot- tenbiller str. 50, Hungary Corresponding author: Spyros Sfenthourakis ([email protected]) Academic editor: S. Taiti | Received 10 January 2018 | Accepted 9 May 2018 | Published 3 December 2018 http://zoobank.org/0555FB61-B849-48C3-A06A-29A94D6A141F Citation: Sfenthourakis S, Hornung E (2018) Isopod distribution and climate change. In: Hornung E, Taiti S, Szlavecz K (Eds) Isopods in a Changing World. ZooKeys 801: 25–61. https://doi.org/10.3897/zookeys.801.23533 Abstract The unique properties of terrestrial isopods regarding responses to limiting factors such as drought and temperature have led to interesting distributional patterns along climatic and other environmental gradi- ents at both species and community level. This paper will focus on the exploration of isopod distributions in evaluating climate change effects on biodiversity at different scales, geographical regions, and environ- ments, in view of isopods’ tolerances to environmental factors, mostly humidity and temperature. Isopod distribution is tightly connected to available habitats and habitat features at a fine spatial scale, even though different species may exhibit a variety of responses to environmental heterogeneity, reflecting the large interspecific variation within the group. Furthermore, isopod distributions show some notable deviations from common global patterns, mainly as a result of their ecological features and evolutionary origins. -
Supplement to the 2002 Catalogue of Australian Crustacea: Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004
Museum Victoria Science Reports 7: 1–15 (2005) ISSN 0 7311-7253 1 (Print) 0 7311-7260 4 (On-line) http://www.museum.vic.gov.au/sciencereports/ Supplement to the 2002 catalogue of Australian Crustacea: Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004 GARY C. B. POORE Museum Victoria, GPO Box 666E, Melbourne, Victoria 3001, Australia ([email protected]) Abstract Poore, G.C.B. 2005. Supplement to the 2002 catalogue of Australian Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004. Museum Victoria Science Reports 7: 1–15. Publications in the period 2002 to 2004 dealing with Australian Syncarida and Peracarida have been reviewed and new taxa, new combinations and significant papers listed. Eighty species in 28 genera and seven families of Isopoda, seven new species in four genera and two families of Tanaidacea, and one new species of Spelaeogriphacea have been newly reported for Australia in the 3-year period. No publications dealing with Syncarida, Mictacea or Thermosbaenacea were found. This report does not deal with Amphipoda, Mysidacea or Cumacea. These updates have been made to the Zoological Catalogue of Australia Volume 19.2A on the Australian Biological Resources Study website. Introduction New taxa are listed in bold. Parentheses enclose the names of taxa no longer recognised in the Australian fauna. Other taxa are listed only when they have been referred to in the Volume 19.2A of the Zoological Catalogue of Australia recent literature. Subheadings following each taxon are more (Poore, 2002) dealt with all taxa of malacostracan Crustacea or less are in the style used in the original catalogue. -
Family ARMADILLIDAE. the Body Is Usually Convex, and the Animals Roll Themselves Into a Perfect Ball When Disturbed—Hence the Popular Name, Pill-Bugs
330 THE CRUSTACEANS The legs are usually all formed for walking. The abdomen is composed of six distinct segments, and the uropods are terminal, slender, and style like, composed of a peduncle and two branches. The outer branches of at least the first two pairs of pleopods (sometimes of all five pairs) contain air-tubes in most cases. In the male the inner branch of the second abdominal appendages, and sometimes that of the first also, is sexually modified. It may be mentioned that a recent paper draws attention to the occurrence of hermaphroditism and parthenogenesis in terrestrial Isopods. The first pair of antennae is always very small and inconspicuous, never composed of more than three joints. When moulting, some of the woodlice, like some other Isopods, do not relieve themselves of tlie outer shell in one operation. The exoskeleton of the hinder part of the body is cast ot¥ first, and then, after an interval of perhaps several days, the front portion of the old covering is discarded. Many (perhaps all) of the terrestrial Isopods of this suborder have cutaneous glands, which secrete a viscous fluid, and it is supposed that this secretion renders the woodlice unpalatable to enemies. Members of the four following families will be commonly encountered by the collector. The mouth-parts referred to in the key are detailed in fig. 233. a. Flagellum of second antennae very short, with not more than six joints. Mandibles without distinct molar process, there being brush-like, stiff hairs in its place. Inner lobe of first maxilla with two plumose bristles. -
Arthropod Survey of 'Öpae 'Ula and Adjacent Summit Areas of the Ko
Arthropod Survey of ‘Öpae ‘ula and Adjacent Summit Areas of the Ko‘olau Mountains, O‘ahu, Hawai‘i David J. Preston , Dan A. Polhemus, Keith T. Arakaki, and Myra K. K. McShane Hawaii Biological Survey, Bishop Museum, 1525 Bernice Street Honolulu, Hawaii, 96817-2704, USA Submitted to Hawaii Department of Land And Natural Recourses Division Of Forestry And Wildlife Hawaii Natural Area Reserve System 1151 Punchbowl Street, Room 325 Honolulu, Hawaii 96813 June 2004 Contribution No.2004-010 to the Hawaii Biological Survey 1 TABLE OF CONTENTS INTRODUCTION ................................................................................................................................2 METHODS............................................................................................................................................2 COLLECTION SITES .........................................................................................................................2 Table 1: Collection sites .......................................................................................................................3 Figure 1. Sample sites...........................................................................................................................4 RESULTS..............................................................................................................................................4 Table 2: Insects and related arthropods collected from the upper Käluanui drainage, Ko’olau Mountains..............................................................................................................................................6 -
Supplement to the 2002 Catalogue of Australian Crustacea: Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004
Museum Victoria Science Reports 7: 1–15 (2005) ISSN 1833-0290 https://doi.org/10.24199/j.mvsr.2005.07 Supplement to the 2002 catalogue of Australian Crustacea: Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004 GARY C. B. POORE Museum Victoria, GPO Box 666E, Melbourne, Victoria 3001, Australia ([email protected]) Abstract Poore, G.C.B. 2005. Supplement to the 2002 catalogue of Australian Malacostraca – Syncarida and Peracarida (Volume 19.2A): 2002–2004. Museum Victoria Science Reports 7: 1–15. Publications in the period 2002 to 2004 dealing with Australian Syncarida and Peracarida have been reviewed and new taxa, new combinations and significant papers listed. Eighty species in 28 genera and seven families of Isopoda, seven new species in four genera and two families of Tanaidacea, and one new species of Spelaeogriphacea have been newly reported for Australia in the 3-year period. No publications dealing with Syncarida, Mictacea or Thermosbaenacea were found. This report does not deal with Amphipoda, Mysidacea or Cumacea. These updates have been made to the Zoological Catalogue of Australia Volume 19.2A on the Australian Biological Resources Study website. Introduction New taxa are listed in bold. Parentheses enclose the names of taxa no longer recognised in the Australian fauna. Other taxa are listed only when they have been referred to in the Volume 19.2A of the Zoological Catalogue of Australia recent literature. Subheadings following each taxon are more (Poore, 2002) dealt with all taxa of malacostracan Crustacea or less are in the style used in the original catalogue. in the superorder Syncarida and orders Isopoda, Tanaidacea, References are listed at the end of the paper and not cited in Mictacea, Thermosbaenacea and Spelaeogriphacea of full with each entry as in the Zoological Catalogue of superorder Peracarida. -
Annotated Checklist of the Isopoda (Subphylum Crustacea: Class Malacostraca) of Arkansas and Oklahoma, with Emphasis Upon Subterranean Habitats
1 Annotated Checklist of the Isopoda (Subphylum Crustacea: Class Malacostraca) of Arkansas and Oklahoma, with Emphasis Upon Subterranean Habitats G. O. Graening Department of Biological Sciences, California State University at Sacramento, Sacramento, CA 95819 Michael E. Slay Arkansas Field Office, The Nature Conservancy, 601 North University Avenue, Little Rock, AR 72205 Danté B. Fenolio Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33124 Henry W. Robison Department of Biology, Southern Arkansas University, Magnolia, AR 71754 All known records of isopod crustaceans (Order Isopoda) in the states of Arkansas and Oklahoma are summarized, including new state, county, and site records. This updated checklist recognizes 47 taxa in 9 families: 2 taxa in Armadillidiidae; 1 in Armadillidae; 30 in Asellidae; 1 in Cylisticidae; 1 in Ligiidae; 1 in Oniscidae; 4 in Porcellionidae; 1 in Trachelipodidae; and 6 in Trichoniscidae. This faunal inventory includes 17 taxa that are subterranean obligates (troglobites or stygobites), and 14 taxa that are endemic to this geographical region. Current distributions and conservation statuses are summarized, and new rarity rankings are suggested. © 2007 Oklahoma Academy of Science INTRODUCTION these two states are closely associated with subterranean habitats, and those species This study assembles the first checklist restricted to hypogean habitats are typically of the entire Order Isopoda (Subphylum troglomorphic (i.e., exhibiting loss of pig- Crustacea: Class Malacostraca) -
A Phylogenetic Analysis of the Isopoda with Some Classificatory Recommendations
A PHYLOGENETIC ANALYSIS OF THE ISOPODA WITH SOME CLASSIFICATORY RECOMMENDATIONS RICHARD C. BRUSCA AND GEORGE D.F. WILSON Brusca, R.C. and Wilson, G.D.F. 1991 09 01: A phylogenetic analysis of the Isopoda with some classificatory recommendations. Memoirs of the Queensland Museum 31: 143-204. Brisbane. ISSN 0079-8835. The phylogenetic relationships of the isopod crustacean suborders are assessed using cladistic methodology. The monophyly of the Flabellifera was tested by including all 15 component families separately in the analysis. Four other peracarid orders (Mysidacea, Amphipoda, Mictacea, and Tanaidacea) were used as multiple out-groups to root our phylogenetic estimates within the Isopoda. A broad range of possible characters for use in assessing isopod relationships is discussed and a final data (character) matrix was selected. This data matrix, comprising 29 taxa and 92 characters, was subjected to computer-assisted analysis using four different phylogenetic programs: HENNIG86, PAUP, PHYLIP, and MacClade. Phylogenetic hypotheses from the literature (particularly Wagele, 1989a) are discussed and compared with our own conclusions. The following hypotheses are suggested by our analysis. The Isopoda constitutes a monophyletic group. The Phreatoicidea is the earliest derived group of living isopods, followed by an Asellota-Microcerberidea line, and next the Oniscidea. Above the Onis- cidea is a large clade of 'long-tailed' isopod taxa (Valvifera, Anthuridea, Flabellifera, Epicaridea, Gnathiidea). The Microcerberidea is the sister group of the Asellota, but probably should not be included in the Asellota. The Oniscidea constitutes a monophyletic group. The monotypic taxon Calabozoidea is either a primitive oniscidean, or is a sister group of the Oniscidea (Calabozoa is not an asellotan). -
Spiky Yellow Woodlouse (Pseudolaureola Atlantica)
Spiky Yellow Woodlouse (Pseudolaureola atlantica) A Strategy for its Conservation 2016 – 2021 Edited by Sarah Havery, Vicky Kindemba, Rebecca Cairns-Wicks, Phil Lambdon & Lourens Malan 1 Edited by: Sarah Havery (Royal Society for the Protection of Birds) Vicky Kindemba (Buglife) Rebecca Cairns-Wicks (St Helena National Trust) Phil Lambdon (Project Manager) Lourens Malan (Environment & Natural Resources Directorate, St Helena Government) In collaboration with: Jeremy Harris (St Helena National Trust) David Pryce (St Helena National Trust) Mike Jervois (Environment & Natural Resources Directorate, St Helena Government) Derek Henry (Environment & Natural Resources Directorate, St Helena Government) Andrew Darlow (Environment & Natural Resources Directorate, St Helena Government) Paul Pearce-Kelly (Zoological Society of London) Mark Bushell (Bristol Zoological Society) Tim Woodfine (Marwell Wildlife) Roger Key (Consultant) Alan Gray (CEH) Jonathan Hall (Royal Society for the Protection of Birds) Axel Hochkirch (Chair of the IUCN SSC Invertebrate Conservation Sub-Committee) Mark Stanley Price (IUCN SSC Invertebrate Conservation Sub-Committee ) 2 Contents INTRODUCTION .................................................................................................................. 4 STATUS REVIEW ............................................................................................................. 6 1. Species description ....................................................................................................... 6 2. Functions -
Checklist of the Terrestrial Isopods of the New World (Crustacea, Isopoda, Oniscidea)
Checklist of the terrestrial isopods of the new world (Crustacea, Isopoda, Oniscidea) Andreas Leistikow 1,2 Johann Wolfgang Wagele 2 ABSTRACT. A check-list of all the American Oniscidea known to the authors and their quotation in literature is presented. The species account comprises notes on species' distribution and a revise d synonymy. As far as possible comments on taxonomic problems are given. The species are ascribed to the families which are commonly recognised, despite many of them are paraphyletic constructions. This check-list should support the work of both ecologists and ta xonomist when dealing with New World Oniscidea. KEY WORDS. Tsopoda, American Oniscidea, taxonomy, biodiversity, check-list The suborder Oniscidea is one of the most important within the Isopoda with almost half of all known species of Isopoda belonging to it. The members of Oniscidea play an important role in terrestrial ecosystems, especially in the tropics. They are destruents occurring in great numbers and so me we re able to adapt to man. Therefore, they became anthropophilous and are cosmopolitically di stributed like Porcellionides pruinosus (Brandt, 1833) and Cubaris //'Iurina Brandt, 1833. A first attempt to review the distributional patterns of Oniscidea had been made by VANDEL (1945), but until thi s time the knowledge on the distribution and diversity of terrestrial isopoda has increased considerably in the last decades. Unfortunately, there are no new monographic works on the suborder. At least, there are check- li sts on Oniscidea from Oceania (JACKSON 1941) and Ati'ica south of the Sahara (FERRARA & TAITI 1978). For the Americas, the last review on fresh water and terrestrial iso pods was undertaken by V AN NAME (\936, 1940, 1942).