Nutrients in Great Salt Lake Wetlands
Total Page:16
File Type:pdf, Size:1020Kb
NUTRIENTS IN GREAT SALT LAKE WETLANDS: THE IMPORTANCE OF SEDIMENT FLUXES AND BIOGEOCHEMISTRY by Daniel Scott Teeters A thesis submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Master of Science Department of Civil and Environmental Engineering The University of Utah May 2016 Copyright © Daniel Scott Teeters 2016 All Rights Reserved The University of Utah Graduate School STATEMENT OF THESIS APPROVAL The thesis of Daniel Scott Teeters has been approved by the following supervisory committee members: Ramesh Goel , Chair 11/13/2015 Date Approved Otakuye Conroy-Ben , Member 10/12/2015 Date Approved Toby Hooker , Member 10/29/2015 Date Approved and by Michael Ernest Barber , Chair/Dean of the Department/College/School of Civil and Environmental Engineering and by David B. Kieda, Dean of The Graduate School. ABSTRACT The wetlands of Farmington Bay are ecologically and economically important to the surrounding Salt Lake City metropolitan area. This fresh water area is formed by the Jordan River and is thus subject to the river’s water quality. Of chief concern in this study are contaminants that contribute to eutrophication such as ammonia, nitrate, and phosphate. The results of how sediments remediate nutrients can be included in previously created wetland health metrics. Determining the factors that control if sediment acts as a sink or a source for ambient water nutrient concentrations could help influence surface water regulation. The sediment nutrient fluxes of nine wetland sites were measured for this study twice over the course of summer, 2014 by comparing the daily changes in nutrient concentrations of water with and without contact to the underlying sediment. These results were then correlated to biogeochemical parameters such as dissolved oxygen content, organic carbon availability, and size of bacterial community in the sediment for each site to explain which factors controlled sediment nutrient fluxes Overall, in ambient conditions, most sites displayed sediment as an ammonia source during the daytime as decomposition likely outpaced nitrification. The sediment was also a sink for phosphate while nitrate trends varied between sites. After spiking the experimental chambers with nutrients to witness nutrient pulses, the nitrogen-cycling biological mechanisms were accelerated, while the sediment failed to absorb the extra phosphate. All but one site’s sediment fluxes were statistically comparable via Z test, and the remaining eight were used to conduct a principal component analysis to identify important variables. Ammonia sediment fluxes were found to be controlled by nitrifying bacteria and from the concentration gradient between the pore water and ambient water. Nitrate sediment flux correlated with the amount of denitrifying bacteria present in the sediment, the total solid organic carbon, and daily changes in temperature. Last, phosphate fluxes were influenced by diurnal cycling of the phosphate attached to iron in the sediment and changes in the dissolved oxygen saturation of the water column. iv TABLE OF CONTENTS ABSTRACT ......................................................................................................................................... iii LIST OF TABLES ............................................................................................................................ vii NOMENCLATURE ........................................................................................................................ viii ACKNOWLEDGMENTS ................................................................................................................ x Chapters 1 INTRODUCTION AND OBJECTIVE ..................................................................................... 1 Introduction .......................................................................................................................................... 1 Objectives .............................................................................................................................................. 4 2 RATIONALE AND BACKGROUND INFORMATION ..................................................... 6 General Wetland Information ............................................................................................................ 6 The Great Salt Lake Wetlands ............................................................................................................ 8 Multimetric Index Background ........................................................................................................ 10 Nitrogen, Phosphorus, and Wetland Health .................................................................... 10 Sediment Contributions to Nutrient Cycling ................................................................... 13 Nitrogen Cycling ................................................................................................................................ 14 Nitrogen Overview............................................................................................................... 14 Diel Changes in Nitrogen Cycling ..................................................................................... 17 Nitrification ........................................................................................................................... 18 Denitrification ....................................................................................................................... 24 Denitrification Biology ........................................................................................................ 26 Phosphorus Cycling ........................................................................................................................... 28 Phosphorus Sources in Sediments ..................................................................................... 28 Phosphorus Forms and Fate in Wetlands......................................................................... 31 Conclusions from Literature Review............................................................................................... 32 3 MATERIALS AND METHODS ................................................................................................ 34 Site Details and Flow Regime........................................................................................................... 34 Task 1: Design and Fabricate In Situ Flux Chambers and Flux Measurements ......... 38 Task 2: Conduct P Speciation Using a Sequential Extraction Technique and Determine Other Parameters in Sediment Core Samples. ............................................. 46 Task 3: Determine the Rates of Nitrification and Denitrification Using Serum Bottle Tests ....................................................................................................................................... 51 Task 4: Identify the Bacteria Participating in Nitrification and Denitrification Using Advanced Molecular Tools ................................................................................................. 55 Task 5: Data Analysis Using Statistical Software “R” ..................................................... 62 Quality Control Summary ................................................................................................................. 65 Chamber Installation and Field Sampling ......................................................................... 65 Ion Chromatography ........................................................................................................... 65 Serum Bottle Tests ............................................................................................................... 67 DNA Extraction and Quantification ................................................................................. 67 Total Organic Carbon .......................................................................................................... 67 4 RESULTS AND DISCUSSION .................................................................................................. 68 Task 1: Design and Fabricate In Situ Flux Chambers and Flux Measurements ....................... 68 QA/QC .................................................................................................................................. 68 Ambient Nutrient Concentrations ..................................................................................... 68 Pore Water Nutrient Concentrations ................................................................................ 73 Ammonia Sediment Flux ..................................................................................................... 75 Nitrate Sediment Flux .......................................................................................................... 76 Phosphate Sediment Flux .................................................................................................... 78 Conclusions for Task 1 ........................................................................................................ 82 Task 2: Conduct P Speciation Using a Sequential Extraction Technique and Determine Other Parameters in Sediment Core Samples ................................................................................ 83 Conclusions for Task 2 ........................................................................................................ 86 Task 3: Determine the Rates of Nitrification and Denitrification Using Serum Bottle