Survey Galaxies in Virgo 1 Survey Galaxies in Virgo
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure and Kinematics of the Virgo Cluster of Galaxies? Olga G
A&A 635, A135 (2020) Astronomy https://doi.org/10.1051/0004-6361/201936172 & c ESO 2020 Astrophysics Structure and kinematics of the Virgo cluster of galaxies? Olga G. Kashibadze1;??, Igor D. Karachentsev1, and Valentina E. Karachentseva2 1 Special Astrophysical Observatory of the Russian Academy of Sciences, Nizhnij Arkhyz, Karachay-Cherkessia 369167, Russia e-mail: [email protected] 2 Main Astronomical Observatory of the National Academy of Sciences, 27 Akademika Zabolotnoho St., Kyiv 03143, Ukraine Received 25 June 2019 / Accepted 24 January 2020 ABSTRACT Aims. This work considers the Virgo cluster of galaxies, focusing on its structure, kinematics, and morphological landscape. Our principal aim is to estimate the virial mass of the cluster. For this purpose, we present a sample of 1537 galaxies with radial velocities −1 ◦ ◦ VLG < 2600 km s situated within a region of ∆SGL = 30 and ∆SGB = 20 around M 87. About half of the galaxies have distance estimates. Methods. We selected 398 galaxies with distances in a (17 ± 5) Mpc range. Based on their 1D and 2D number-density profiles and their radial velocity dispersions, we made an estimate for the virial mass of the Virgo cluster. Results. We identify the infall of galaxies towards the Virgo cluster core along the Virgo Southern Extension filament. From a 1D 14 profile of the cluster, we obtain the virial mass estimate of (6:3 ± 0:9) × 10 M , which is in tight agreement with its mass estimate via the external infall pattern of galaxies. Conclusions. We conclude that the Virgo cluster outskirts between the virial radius and the zero-velocity radius do not contain significant amounts of dark matter beyond the virial radius. -
SMG20 - Twenty Years of Submillimetre Galaxies Star-Forming Galaxies at High Redshifts 31St July – 2Nd August 2017
SMG20 - Twenty years of Submillimetre Galaxies Star-forming galaxies at high redshifts 31st July – 2nd August 2017 Monday 31th July Session 1 Loretta Dunne “Results from Herschel on galaxy formation and evolution” Cardiff Review talk covering results from Herschel on galaxy formation and evolution. James Geach “The SCUBA-2 Cosmology Legacy Survey and beyond” University of Hertfordshire The SCUBA-2 Cosmology Legacy Survey (S2CLS) is the largest 850 mm survey to date, detecting 1000’s of sub-mm sources over about 5 square degrees and providing exceptionally deep 450+850 mm maps in several extragalactic fields. It is enabling detailed studies of the SMG population and feeds directly into ALMA follow-up programmes. Now complete, I will present an overview of S2CLS and highlight some of the key science results so far. I will conclude with a look to the future of large ground-based sub-mm surveys, in particular what could be achieved with a new large single dish located on the Chajnantor Plateau. SMG20 31st July - 2nd August 2017 2 Scott Chapman “Identifying the brightest galaxies in the SCUBA-2 Cosmology Legacy Survey” Dalhousie University Using the SMA and complemented by ALMA in the UDS, we have identified the 120 brightest SCUBA-2 sources in the SCUBA-2 Cosmology Legacy Survey. This consists of all sources with S850mm > 9 mJy, and includes several unlensed sources with single component fluxes close to 20 mJy. Previous studies have had little sta- tistical constraint on the true bright end count, and therefore on the properties of these maximal star formers. Spectroscopic surveys with Keck, Gemini, and VLT have measured redshifts and line properties for about 30% of these sources. -
May 2019 Newsletter
Volume24, Issue 9 NWASNEWS May 2019 Newsletter for the Wiltshire, Swindon, Beckington Black Holes, Good Water and NASA Moon plans Astronomical Societies and Salisbury Plain Observing Group April was a good news month for con- of M87 in Virgo. A big lenticular gal- firming a lot of common-sense guess- axy not too far away that can be seen Wiltshire Society Page 2 es with information coming from the spitting out material from its core (easily images when I was in Spain), Swindon Stargazers 3 science bodies. contains a big black hole that became Beckington AS 4 The asteroid material collection mis- the target for a huge base interferom- sion Hayabusat has already revealed etry linked radio telescopes across NASA Space Place 5 a lot about the water on the asteroids May Viewing the Earth. The detail gained enabled and its resemblance to the water here the team to image the event horizon Space News 6-21 on Earth begins to square the problem activity around the black hole. Hayabusat Samples show Earth- of where Earth’s water come from af- like water on asteroid ter the discovery of comet water not Meanwhile NASA has been working Musk’s Starlink 220 low Earth on the figures to match the presiden- orbit system looking like the likely source. At the Hubble’s 265,00 galaxy picture same time it was shown that asteroids tial aim for putting America on the Mars Dust Storm could show us have a lot of water available. The old Moon again in 2024, a few years after how the water disappeared. -
Infrared Spectroscopy of Nearby Radio Active Elliptical Galaxies
The Astrophysical Journal Supplement Series, 203:14 (11pp), 2012 November doi:10.1088/0067-0049/203/1/14 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INFRARED SPECTROSCOPY OF NEARBY RADIO ACTIVE ELLIPTICAL GALAXIES Jeremy Mould1,2,9, Tristan Reynolds3, Tony Readhead4, David Floyd5, Buell Jannuzi6, Garret Cotter7, Laura Ferrarese8, Keith Matthews4, David Atlee6, and Michael Brown5 1 Centre for Astrophysics and Supercomputing Swinburne University, Hawthorn, Vic 3122, Australia; [email protected] 2 ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) 3 School of Physics, University of Melbourne, Melbourne, Vic 3100, Australia 4 Palomar Observatory, California Institute of Technology 249-17, Pasadena, CA 91125 5 School of Physics, Monash University, Clayton, Vic 3800, Australia 6 Steward Observatory, University of Arizona (formerly at NOAO), Tucson, AZ 85719 7 Department of Physics, University of Oxford, Denys, Oxford, Keble Road, OX13RH, UK 8 Herzberg Institute of Astrophysics Herzberg, Saanich Road, Victoria V8X4M6, Canada Received 2012 June 6; accepted 2012 September 26; published 2012 November 1 ABSTRACT In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett γ , and [Fe ii]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource. Key words: galaxies: elliptical and lenticular, cD – galaxies: nuclei – infrared: general – radio continuum: galaxies ∼ 1. INTRODUCTION 30% of the most massive galaxies are radio continuum sources (e.g., Fabbiano et al. -
Atomic Gas Far Away from the Virgo Cluster Core Galaxy NGC 4388
Astronomy & Astrophysics manuscript no. H4396 November 5, 2018 (DOI: will be inserted by hand later) Atomic gas far away from the Virgo cluster core galaxy NGC 4388 A possible link to isolated star formation in the Virgo cluster? B. Vollmer, W. Huchtmeier Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, D-53121 Bonn, Germany Received / Accepted 7 ′ Abstract. We have discovered 6 10 M⊙ of atomic gas at a projected distance greater than 4 (20 kpc) from the highly inclined Virgo spiral galaxy NGC 4388. This gas is most probably connected to the very extended Hα plume detected by Yoshida et al. (2002). Its mass makes a nuclear outflow and its radial velocity a minor merger as the origin of the atomic and ionized gas very unlikely. A numerical ram pressure simulation can account for the observed Hi spectrum and the morphology of the Hα plume. An additional outflow mechanism is still needed to reproduce the velocity field of the inner Hα plume. The extraplanar compact Hii region recently found by Gerhard et al. (2002) can be explained as a stripped gas cloud that collapsed and decoupled from the ram pressure wind due to its increased surface density. The star-forming cloud is now falling back onto the galaxy. Key words. Galaxies: individual: NGC 4388 – Galaxies: interactions – Galaxies: ISM – Galaxies: kinematics and dynamics 1. Introduction stripping. Based on their data they favoured a combina- tion of (iii) and (iv). Yoshida et al. (2002) on the other The Virgo cluster spiral galaxy NGC 4388 is located at hand favoured scenario (i) and (iv). -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
1. Introduction
THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other. -
Downloading Rectification Matrices the first Step Will Be Downloading the Correct Rectification Matrix for Your Data Off of the OSIRIS Website
UNDERGRADUATE HONORS THESIS ADAPTIVE-OPTICS INTEGRAL-FIELD SPECTROSCOPY OF NGC 4388 Defended October 28, 2016 Skylar Shaver Thesis Advisor: Dr. Julie Comerford, Astronomy Honor Council Representative: Dr. Erica Ellingson, Astronomy Committee Members: Dr. Francisco Müller-Sánchez, Astrophysics Petger Schaberg, Writing Abstract Nature’s most powerful objects are well-fed supermassive black holes at the centers of galaxies known as active galactic nuclei (AGN). Weighing up to billions of times the mass of our sun, they are the most luminous sources in the Universe. The discovery of a number of black hole-galaxy relations has shown that the growth of supermassive black holes is closely related to the evolution of galaxies. This evidence has opened a new debate in which the fundamental questions concern the interactions between the central black hole and the interstellar medium within the host galaxy and can be addressed by studying two crucial processes: feeding and feedback. Due to the nature of AGN, high spatial resolution observations are needed to study their properties in detail. We have acquired near infrared Keck/OSIRIS adaptive optics-assisted integral field spectroscopy data on 40 nearby AGN as part of a large program aimed at studying the relevant physical processes associated with AGN phenomenon. This program is called the Keck/OSIRIS nearby AGN survey (KONA). We present here the analysis of the spatial distribution and two-dimensional kinematics of the molecular and ionized gas in NGC 4388. This nearly edge-on galaxy harbors an active nucleus and exhibits signs of the feeding and feedback processes. NGC 4388 is located in the heart of the Virgo cluster and thus is subject to possible interactions with the intra-cluster medium and other galaxies. -
Detection of Intergalactic Red-Giant-Branch Stars in the Virgo Cluster
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Embry-Riddle Aeronautical University Publications Summer 8-28-1998 Detection of Intergalactic Red-Giant-Branch Stars in the Virgo Cluster Henry C. Ferguson Space Telescope Science Institute, [email protected] Ted von Hippel University of Wisconsin, [email protected] Nial R. Tanvir University of Cambridge, [email protected] Follow this and additional works at: https://commons.erau.edu/publication Part of the Stars, Interstellar Medium and the Galaxy Commons Scholarly Commons Citation Ferguson, H. C., von Hippel, T., & Tanvir, N. R. (1998). Detection of Intergalactic Red-Giant-Branch Stars in the Virgo Cluster. Nature, 391(). https://doi.org/10.1038/35087 This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Detection of Intergalactic Red Giant Branch Stars in the Virgo Cluster Henry C. Ferguson Space Telescope Science Institute, Baltimore, MD 21218, USA [email protected] Nial R. Tanvir University of Cambridge, Institute of Astronomy Madingley Road, Cambridge CB3 0HA, UK [email protected] Ted von Hippel Department of Astronomy, University of Wisconsin Address: WIYN Telescope, NOAO, PO Box 26732, Tucson, AZ 85726, USA [email protected] August 28, 2018 It has been suspected for nearly 50 years that clusters of galax- ies contain a population of intergalactic stars, ripped from galaxies during cluster formation or when the galaxies’ orbits take them through the cluster center.1, 2, 3 Support for the existence of such a population of free-floating stars comes from measurements of the diffuse light in clusters 4, 5, 6, 7, 8, 9, and from recent detections of planetary nebulae with positions and/or velocities far removed from any observed cluster galaxy. -
Spring Constellations Leo
Night Sky 101: Spring Constellations Leo Leo, the lion, is very recognizable by the head of the lion, which looks like a backwards question mark, and is commonly known as “the sickle.” Regulus, Leo’s brightest star, is also easy to pick out in most lights. The constellation is best seen in April and May, but rises after the Spring Equinox in March. Within the constellation, there are several spiral galaxies: M65, M66, M95, and M96. It is possible to fit M65 and M66 into the same view on a low powered telescope. In Greek mythology, Leo was the Nemean lion, who was completely impervious to bronze, steel and any kind of metal. As part of his 12 labors, Hercules was charged to fight the lion and killed him Photo Credit: Starry Night by strangling him. Hercules took the lion’s pelt as a prize and Leo, the lion, was placed in the stars to commemorate their fight. Virgo Virgo is best seen in the late spring and early summer, usually May to June. The bright star Arcturus, in the constellation Boötes, lines up with the Virgo’s brightest star Spica, which makes it easy to find. Within the constellation is the Virgo Galaxy Cluster, which is a conglomerate of thousands of unnamed galaxies. These galaxies are about 65 million light years away, and usually only appear as smudges in a telescope. Virgo, the maiden, is also known as Persephone, or the daughter of the Demeter. Hades, god of the Un- derworld, fell in love with Virgo and took her to the Underworld. -
Inverse and Joint Variation 9.1.1
Inverse and joint variation 9.1.1 One of the first things that scientists do with data is to graph it in various ways to see if a pattern emerges. If two variables are selected that lead to a smooth curve, the variables can be shown to lead to ‘correlated’ behavior that can either represent a direct, or inverse, variation. The specific shape of the curve indicates the exponent. The example to the left shows that for Cepheid variable stars, the Log of the star’s luminosity, L, is proportional to its period because the slope of the curve is ‘fit’ by a linear equation. Problem 1 – The radius of a black hole, R, is proportional to its mass, M, and inversely proportional to the square of the speed of light, c. If the constant of proportionality is twice Newton’s constant of gravity, G, what is the mathematical equation for the black hole radius? Problem 2 – The luminosity, L, of a star is proportional to the square of its radius, R, and proportional to its surface temperature, T, to the fourth power. What is the equation for L if the proportionality constant is C? Problem 3 – The thickness of a planetary atmosphere, H, is proportional to temperature, T, and inversely proportional to the product of its molecular mass, m, and the local acceleration of gravity, g. What is the equation for H if the constant of proportionality is k? Problem 4 – The temperature of a planet, T, to the fourth power is proportional to the luminosity, L, of the star that it orbits, and inversely proportional to the square of its distance from its star, D. -
SUPERMASSIVE BLACK HOLES and THEIR HOST SPHEROIDS III. the MBH − Nsph CORRELATION
The Astrophysical Journal, 821:88 (8pp), 2016 April 20 doi:10.3847/0004-637X/821/2/88 © 2016. The American Astronomical Society. All rights reserved. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. III. THE MBH–nsph CORRELATION Giulia A. D. Savorgnan Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; [email protected] Received 2015 December 6; accepted 2016 March 6; published 2016 April 13 ABSTRACT The Sérsic R1 n model is the best approximation known to date for describing the light distribution of stellar spheroidal and disk components, with the Sérsic index n providing a direct measure of the central radial concentration of stars. The Sérsic index of a galaxy’s spheroidal component, nsph, has been shown to tightly correlate with the mass of the central supermassive black hole, MBH.TheMnBH– sph correlation is also expected from other two well known scaling relations involving the spheroid luminosity, Lsph:theLsph–n sph and the MLBH– sph. Obtaining an accurate estimate of the spheroid Sérsic index requires a careful modeling of a galaxy’s light distribution and some studies have failed to recover a statistically significant MnBH– sph correlation. With the aim of re-investigating the MnBH– sph and other black hole mass scaling relations, we performed a detailed (i.e., bulge, disks, bars, spiral arms, rings, halo, nucleus, etc.) decomposition of 66 galaxies, with directly measured black hole masses, that had been imaged at 3.6 μm with Spitzer.Inthispaper,the third of this series, we present an analysis of the Lsph–n sph and MnBH– sph diagrams.