Le Genre Plagiolophus (Palaeotheriidae, Perissodactyla

Total Page:16

File Type:pdf, Size:1020Kb

Le Genre Plagiolophus (Palaeotheriidae, Perissodactyla LE GENRE PLAGIOLOPHUS (PALAEOTHERIIDAE, PERISSODACTYLA, MAMMALIA) : REVISION SYSTEMATIQUE, MORPHOLOGIE ET HISTOLOGIE DENTAIRES, ANATOMIE CRANIENNE, ESSAI D'INTERPRETATION FONCTIONNELLE par Jean A. REMY* SOMMAIRE Page Résumé, Abstract, Zusammenfassung . .20 Introduction . 23 Matériel et méthodes . 24 Sigles des collections . 29 Cadre systématique . 29 Taxons invalidés ou rapportés à d'autres genres . 30 Révision systématique et descriptions . 31 Genre Plagiolophus POMEL, 1847 . 31 Sous-genre Plagiolophus POMEL 1847 . 33 Plagiolophus (Plagiolophus) minor (CUVIER, 1804) POMEL, 1847 . 33 Plagiolophus (Plagiolophus) ovinus (AYMARD, 1846) POMEL, 1853 . 58 Plagiolophus (Plagiolophus) ringeadei n.sp. 60 Plagiolophus (Plagiolophus) ministri BRUNET & JEHENNE, 1989 . 65 Plagiolophus (Plagiolophus) huerzeleri REMY, 2000 . 71 Plagiolophus (Plagiolophus) javali (FILHOL, 1877) STEHLIN, 1904b . 74 Sous-genre Paloplotherium OWEN, 1848 . 77 Plagiolophus (Paloplotherium) annectens (OWEN, 1848) STEHLIN, 1904 . 77 Plagiolophus (Paloplotherium) cartieri STEHLIN, 1904b . 88 Plagiolophus (Paloplotherium) lugdunensis (DEPÉRET & CARRIERE, 1901) HOOKER, 1986 . 92 Plagiolophus (Paloplotherium) cartailhaci STEHLIN, 1904 . 94 Plagiolophus (Paloplotherium) major (BRUNET & JEHENNE, 1989) . 97 Plagiolophus (Paloplotherium) curtisi HOOKER, 1986 . 101 Laboratoire de paléontologie de l'ISE-M, Université Montpellier II. Laboratoire de paléontologie de l'EPHE, Montpellier. E-mail : [email protected] Mots-clés: nouveaux taxons, Paléogène, anatomie crânienne, histologie dentaire, périssodactyles Key-words: new taxa, Paleogene, skull anatomy, tooth histology, perissodactyls Palaeovertebrata, Montpellier, 33 (1-4): 17–281, 65 fig., 47 tabl., 17 pl. (Publié le 15 Décembre 2004) Plagiolophus (Paloplotherium) curtisi curtisi HOOKER, 1986 . 102 Plagiolophus (Paloplotherium) curtisi creechensis HOOKER, 1986 . 104 Plagiolophus (Paloplotherium) casasecaensis CUESTA, 1994 . 105 Plagiolophus (Paloplotherium) mazateronensis CUESTA, 1994 . 106 Plagiolophus (Paloplotherium) mamertensis n. sp. 108 Plagiolophus (Paloplotherium) oweni DEPÉRET, 1917 . 112 Sous-genre Fraasiolophus nov. 117 Plagiolophus (Fraasiolophus) fraasi v. MEYER, 1852 . 118 Caractères généraux et évolution du genre Plagiolophus . 122 Dentition . 122 Formule dentaire et séquence de la dentition . 122 Le problème des P1 . 122 Séquence de la dentition . 125 Morphologie dentaire . 125 Caractères généraux des dents . 125 Caractères morphologiques des différentes catégories dentaires . 136 Histologie dentaire . 148 Email . 148 Dentine . 151 Cément . 152 Conclusion sur la dentition de Plagiolophus . 153 Ostéologie crânienne . 154 Caractères osseux communs aux divers Plagiolophus . 154 Anatomie crânio-dentaire dans son ensemble . 160 Le dimorphisme sexuel chez Plagiolophus . 160 Influence possible du sexe sur le gradient d'abrasion des molaires . 162 Discussion . 163 Schéma global de l'évolution dentaire et crânienne du genre Plagiolophus . 164 Note bibliographique sur le squelette post-crânien . 165 Phylogenèse du genre Plagiolophus . 168 L'appartenance du genre Plagiolophus à la famille des Palaeotheriidae . 168 Origine du genre Plagiolophus . 170 Systématique et phylogenèse intra-génériques . 176 "Plagiolophus" et "Paloplotherium" . 176 Relations phylétiques inter-spécifiques . 181 Regroupements sub-génériques . 183 Présentation synoptique de diagnoses différentielles chez les Plagiolophini . 186 Analyse fonctionnelle . 189 Morphologie faciale . 189 Développement relatif du secteur facial . 189 Développement facial et mode de locomotion . 192 Morphologie de la région faciale préorbitaire ou museau . 193 Diastèmes post-canins et forme de la région incisivo-canine . 193 Situation de l’orbite, du foramen infra-orbitaire et profondeur de l’échancrure nasale . 197 Echancrure nasale, relief latéral du museau et fosses préorbitaires . 199 Allongement des os nasaux . 200 Fonction masticatoire et régime alimentaire . 201 Musculature masticatrice . 201 Volumes relatifs des muscles . 201 Bras de résistance du levier articulaire . 202 18 Moments des muscles . 205 Conclusion . 205 Cinétique mandibulaire et cycle masticatoire . 207 Données ostéologiques chez Plagiolophus minor . 207 Les déplacements mandibulaires au cours du cycle masticatoire . 207 Séquence de l’activité musculaire au cours du cycle . 208 Le cycle masticatoire dentaire . 208 Le régime alimentaire . 209 Le.
Recommended publications
  • Download Download
    European Journal of Taxonomy 753: 1–80 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.753.1389 www.europeanjournaloftaxonomy.eu 2021 · Tissier J. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Monograph urn:lsid:zoobank.org:pub:8009DD3B-53B0-45C9-921E-58D04C9C0B48 New species, revision, and phylogeny of Ronzotherium Aymard, 1854 (Perissodactyla, Rhinocerotidae) Jérémy TISSIER 1,*, Pierre-Olivier ANTOINE 2 & Damien BECKER 3 1,3 Route de Fontenais 21, JURASSICA Museum, 2900 Porrentruy, Switzerland & Chemin du musée 4, Université de Fribourg, Department of Geosciences, 1700 Fribourg, Switzerland. 2 Place Eugène Bataillon, Institut des sciences de l’évolution de Montpellier-CNRS-IRD-RPHE, Université de Montpellier, 34095 Montpellier, France. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:7418361D-FAA0-4D7D-AE4A-80B5C9288B31 2 urn:lsid:zoobank.org:author:61FBD377-963B-4530-A4BC-0AB4CBCAD967 3 urn:lsid:zoobank.org:author:E1D8E6B2-6F92-4B0B-A772-4F5C561851DB Abstract. Ronzotherium is one of the earliest Rhinocerotidae in Europe, which fi rst appeared just after the Eocene/Oligocene transition (Grande Coupure), and became extinct at the end of the Oligocene. It is a large-sized rhinocerotid, with a special position in the phylogeny of this group, as being one of the earliest-branching true Rhinocerotidae. However, its intra-generic systematics has never been tested through computational phylogenetic methods and it is basically unknown. Its taxonomical history has gone through numerous complications, and thus we aim to provide here a complete revision of this genus, through phylogenetic methods.
    [Show full text]
  • From the Late–Middle Eocene of Eastern Thrace
    G Model PALEVO-993; No. of Pages 15 ARTICLE IN PRESS C. R. Palevol xxx (2017) xxx–xxx Contents lists available at ScienceDirect Comptes Rendus Palevol www.sci encedirect.com General Palaeontology, Systematics and Evolution (Vertebrate Palaeontology) First occurrence of Palaeotheriidae (Perissodactyla) from the late–middle Eocene of eastern Thrace (Greece) Première occurrence de Palaeotheriidae (Perissodactyla) du Miocène moyen–tardif de Thrace orientale (Grèce) a,b,∗ a Grégoire Métais , Sevket Sen a CR2P, Paléobiodiversité et Paléoenvironnements, UMR 7207 (CNRS, MNHN, UPMC), Sorbonne Université, Muséum national d’histoire naturelle, 8, rue Buffon, 75005 Paris, France b Department of Ecology and Evolutionary Biology, University of Kansas, 66045 Lawrence, Kansas, USA a b s t r a c t a r t i c l e i n f o Article history: A detailed assessment of postcranial fossils collected at Balouk Keui (Thrace, Greece) in the Received 11 July 2016 mid-19th Century by the naturalist Auguste Viquesnel enabled us to identify the material Accepted after revision 10 January 2017 as pertaining to Palaeotherium sp., cf. P. magnum, which constitutes the easternmost occur- Available online xxx rence of the genus during the Eocene. We have constrained the geographic and stratigraphic provenance of the fossil by reassessing information about Viquesnel’s itinerary and observa- Handled by Lars vanden Hoek Ostende tions. Although the exact age of the fossil remains uncertain, the occurrence of a palaeothere in the Thrace Basin during the Eocene indicates a wider geographic distribution for the Keywords: genus, which had previously been restricted to western and central Europe. The palaeothere Palaeotherium of Balouk Keui confirms that the palaeogeographic range of this group included the Balkans Thrace during the middle–late Eocene.
    [Show full text]
  • A.-The Pondaung Fauna
    Article VI.-FOSSIL MAMMALS FROM BURMA IN THE AMERICAN MUSEUM OF NATURAL HISTORY BY EDWIN H. COLBERT FIGuRES 1 TO 64 CONTENTS PAGE INTRODUCTION ........................................................ 259 The American Museum Palaeontological Expedition to Burma............ 259 Previous Publications on Fossil Mammals of Burma..................... 259 Studies on the American Museum Burma Collection..................... 261 Acknowledgments ................................................... 262 THIE CONTINENTAL TERTIARY AND QUATERNARY BEDS OF NORTHERN BURMA. 263 General Observations................................................ 263 Mammal-Bearing Beds of Northern Burma............................. 264 The Pondaung Sandstone........................................... 265 The Freshwater Pegu Beds......................................... 267 The Irrawaddy Series.............................................. 267 Correlation of the Mammal Bearing Horizons of Northern Burma ......... 268 Pondaung Fauna.................................................. 268 Pegu Series....................................................... 275 Lower Irrawaddy Fauna............................................ 276 Upper Irrawaddy Fauna............................................ 277 THE FoSSIL MAMMAL FAUNAS OF BURMA ................................ 280 Pondaung Fauna......................................... 280 Mammals from the Pegu Series........................................ 280 Lower Irrawaddy Fauna......................................... 281 Upper Irrawaddy
    [Show full text]
  • Mammal Faunal Change in the Zone of the Paleogene Hyperthermals ETM2 and H2
    Clim. Past, 11, 1223–1237, 2015 www.clim-past.net/11/1223/2015/ doi:10.5194/cp-11-1223-2015 © Author(s) 2015. CC Attribution 3.0 License. Mammal faunal change in the zone of the Paleogene hyperthermals ETM2 and H2 A. E. Chew Department of Anatomy, Western University of Health Sciences, 309 E Second St., Pomona, CA 91767, USA Correspondence to: A. E. Chew ([email protected]) Received: 13 March 2015 – Published in Clim. Past Discuss.: 16 April 2015 Revised: 4 August 2015 – Accepted: 19 August 2015 – Published: 24 September 2015 Abstract. “Hyperthermals” are past intervals of geologically vulnerability in response to changes already underway in the rapid global warming that provide the opportunity to study lead-up to the EECO. Faunal response at faunal events B-1 the effects of climate change on existing faunas over thou- and B-2 is also distinctive in that it shows high proportions sands of years. A series of hyperthermals is known from of beta richness, suggestive of increased geographic disper- the early Eocene ( ∼ 56–54 million years ago), including sal related to transient increases in habitat (floral) complexity the Paleocene–Eocene Thermal Maximum (PETM) and two and/or precipitation or seasonality of precipitation. subsequent hyperthermals (Eocene Thermal Maximum 2 – ETM2 – and H2). The later hyperthermals occurred during warming that resulted in the Early Eocene Climatic Opti- mum (EECO), the hottest sustained period of the Cenozoic. 1 Introduction The PETM has been comprehensively studied in marine and terrestrial settings, but the terrestrial biotic effects of ETM2 The late Paleocene and early Eocene (ca.
    [Show full text]
  • Coversheet for Thesis in Sussex Research Online
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sussex Research Online A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details Cuvier in Context: Literature and Science in the Long Nineteenth Century Charles Paul Keeling DPhil English Literature University of Sussex December 2016 I hereby declare that this thesis has not been and will not be, submitted in whole or in part to an- other University for the award of any other degree. Signature:……………………………………… UNIVERSITY OF SUSSEX CHARLES PAUL KEELING DPHIL ENGLISH LITERATURE CUVIER IN CONTEXT: LITERATURE AND SCIENCE IN THE LONG NINETEENTH CENTURY This study investigates the role and significance of Cuvier’s science, its knowledge and practice, in British science and literature in the first half of the nineteenth century. It asks what the current account of science or grand science narrative is, and how voicing Cuvier changes that account. The field of literature and science studies has seen healthy debate between literary critics and historians of science representing a combination of differing critical approaches.
    [Show full text]
  • Perissodactyla, Mammalia) from the Middle Eocene of Myanmar Un Nouveau Tapiromorphe Basal (Perissodactyla, Mammalia) De L’Eocène Moyen Du Myanmar
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Geobios 39 (2006) 513–519 http://france.elsevier.com/direct/GEOBIO/ Original article A new basal tapiromorph (Perissodactyla, Mammalia) from the middle Eocene of Myanmar Un nouveau tapiromorphe basal (Perissodactyla, Mammalia) de l’Eocène moyen du Myanmar Grégoire Métais a, Aung Naing Soe b, Stéphane Ducrocq c,* a Carnegie Museum of Natural History, Section of Vertebrate Paleontology, 4400 Forbes Avenue, Pittsburgh, PA 15213, USA b Department of Geology, Yangon University, Yangon 11422, Myanmar c Laboratoire de Géobiologie, Biochronologie et Paléontologie Humaine, UMR 6046 CNRS, Faculté des Sciences de Poitiers, 40, avenue du recteur-Pineau, 86022 Poitiers cedex, France Received 29 September 2004; accepted 10 May 2005 Available online 20 March 2006 Abstract A new genus and species of tapiromorph, Skopaiolophus burmese nov. gen., nov. sp., is described from the middle Eocene Pondaung For- mation in central Myanmar. This small form displays a striking selenolophodont morphology associated with a mixture of primitive “condylar- thran” dental characters and derived tapiromorph features. Skopaiolophus is here tentatively referred to a group of Asian tapiromorphs unknown so far. The occurrence of such a form in Pondaung suggests that primitive tapiromorphs might have persisted in southeast Asia until the late middle Eocene while they became extinct elsewhere in both Eurasia and North America. © 2006 Elsevier SAS. All rights reserved. Résumé Un nouveau genre et une nouvelle espèce de tapiromorphe, Skopaiolophus burmese nov. gen. nov. sp., sont décrits dans la Formation de Pondaung d’âge fini-éocène moyen, au Myanmar.
    [Show full text]
  • Early Eocene Fossils Suggest That the Mammalian Order Perissodactyla Originated in India
    ARTICLE Received 7 Jul 2014 | Accepted 15 Oct 2014 | Published 20 Nov 2014 DOI: 10.1038/ncomms6570 Early Eocene fossils suggest that the mammalian order Perissodactyla originated in India Kenneth D. Rose1, Luke T. Holbrook2, Rajendra S. Rana3, Kishor Kumar4, Katrina E. Jones1, Heather E. Ahrens1, Pieter Missiaen5, Ashok Sahni6 & Thierry Smith7 Cambaytheres (Cambaytherium, Nakusia and Kalitherium) are recently discovered early Eocene placental mammals from the Indo–Pakistan region. They have been assigned to either Perissodactyla (the clade including horses, tapirs and rhinos, which is a member of the superorder Laurasiatheria) or Anthracobunidae, an obscure family that has been variously considered artiodactyls or perissodactyls, but most recently placed at the base of Proboscidea or of Tethytheria (Proboscidea þ Sirenia, superorder Afrotheria). Here we report new dental, cranial and postcranial fossils of Cambaytherium, from the Cambay Shale Formation, Gujarat, India (B54.5 Myr). These fossils demonstrate that cambaytheres occupy a pivotal position as the sister taxon of Perissodactyla, thereby providing insight on the phylogenetic and biogeographic origin of Perissodactyla. The presence of the sister group of perissodactyls in western India near or before the time of collision suggests that Perissodactyla may have originated on the Indian Plate during its final drift toward Asia. 1 Center for Functional Anatomy & Evolution, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, Maryland 21205, USA. 2 Department of Biological Sciences, Rowan University, Glassboro, New Jersey 08028, USA. 3 Department of Geology, H.N.B. Garhwal University, Srinagar 246175, Uttarakhand, India. 4 Wadia Institute of Himalayan Geology, Dehradun 248001, Uttarakhand, India. 5 Research Unit Palaeontology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium.
    [Show full text]
  • Article XXXVIII. -NOTE on SOME WORM (?) BUR- ROWS in ROCKS of the CHEMUNG GROUP of NEW YORK
    Article XXXVIII. -NOTE ON SOME WORM (?) BUR- ROWS IN ROCKS OF THE CHEMUNG GROUP OF NEW YORK. By R. P. WHITFIELD. Arenicolites chemungensis, sp. nov. PLATE XIV, FIGS. I AND 2. While working up the fossils of the Potsdam sandstone for the Wisconsin Report, in I876 and I877, there came into my hands a number of specimens representing the so-called Scolithus, which I described as Arenicolites woodi in Volume IV of Prof. T. C. Chamberlain's Report of I882. One block of that series showed the original surface of the mud-covered sandstone with the burrows of the worm (?) which made the perforations, together with the little hillocks surrounding the outlet of the burrows, just as the animal built them up by its castings during life; proving pretty conclusively that it must have been a marine worm-like animal which caused the perforations. Among the geological specimens of the Chemung Group in the Museum, from near Bath, Steuben Co., New York, I find an example so nearly resembling that figured in the Wis- consin Report above referred to, that there can be no ques- tion as to the similarity of its origin. On this Chemung specimen the hillocks are somewhat larger and the funnels more distinct, being generally 5 or 6 mm. in diameter, and the walls surrounding them about 2 mm. thick, while some of the hillocks are much larger and higher and appear to have collapsed from the semifluidity of the sand, closing up the top of the burrow so as to show a mere slit in its place.
    [Show full text]
  • 2014BOYDANDWELSH.Pdf
    Proceedings of the 10th Conference on Fossil Resources Rapid City, SD May 2014 Dakoterra Vol. 6:124–147 ARTICLE DESCRIPTION OF AN EARLIEST ORELLAN FAUNA FROM BADLANDS NATIONAL PARK, INTERIOR, SOUTH DAKOTA AND IMPLICATIONS FOR THE STRATIGRAPHIC POSITION OF THE BLOOM BASIN LIMESTONE BED CLINT A. BOYD1 AND ED WELSH2 1Department of Geology and Geologic Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701 U.S.A., [email protected]; 2Division of Resource Management, Badlands National Park, Interior, South Dakota 57750 U.S.A., [email protected] ABSTRACT—Three new vertebrate localities are reported from within the Bloom Basin of the North Unit of Badlands National Park, Interior, South Dakota. These sites were discovered during paleontological surveys and monitoring of the park’s boundary fence construction activities. This report focuses on a new fauna recovered from one of these localities (BADL-LOC-0293) that is designated the Bloom Basin local fauna. This locality is situated approximately three meters below the Bloom Basin limestone bed, a geographically restricted strati- graphic unit only present within the Bloom Basin. Previous researchers have placed the Bloom Basin limestone bed at the contact between the Chadron and Brule formations. Given the unconformity known to occur between these formations in South Dakota, the recovery of a Chadronian (Late Eocene) fauna was expected from this locality. However, detailed collection and examination of fossils from BADL-LOC-0293 reveals an abundance of specimens referable to the characteristic Orellan taxa Hypertragulus calcaratus and Leptomeryx evansi. This fauna also includes new records for the taxa Adjidaumo lophatus and Brachygaulus, a biostratigraphic verifica- tion for the biochronologically ambiguous taxon Megaleptictis, and the possible presence of new leporid and hypertragulid taxa.
    [Show full text]
  • Chapter 1 Paleontology As a Science
    Chapter 1 Paleontology as a science Key points • The key value of paleontology has been to show us the history of life through deep time – without fossils this would be largely hidden from us. • Paleontology has strong relevance today in understanding our origins, other distant worlds, climate and biodiversity change, the shape and tempo of evolution, and dating rocks. • Paleontology is a part of the natural sciences, and a key aim is to reconstruct ancient life. • Reconstructions of ancient life have been rejected as pure speculation by some, but careful consideration shows that they too are testable hypotheses and can be as scientifi c as any other attempt to understand the world. • Science consists of testing hypotheses, not in general by limiting itself to absolute cer- tainties like mathematics. • Classical and medieval views about fossils were often magical and mystical. • Observations in the 16th and 17th centuries showed that fossils were the remains of ancient plants and animals. • By 1800, many scientists accepted the idea of extinction. • By 1830, most geologists accepted that the Earth was very old. • By 1840, the major divisions of deep time, the stratigraphic record, had been established by the use of fossils. • By 1840, it was seen that fossils showed direction in the history of life, and by 1860 this had been explained by evolution. • Research in paleontology has many facets, including fi nding new fossils and using quan- titative methods to answer questions about paleobiology, paleogeography, macroevolu- tion, the tree of life and COPYRIGHTEDdeep time. MATERIAL All science is either physics or stamp collecting.
    [Show full text]
  • An Analysis of Anchitherine Equids Across the Eocene–Oligocene Boundary in the White River Group of the Western Great Plains
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Earth and Atmospheric Sciences, Department Atmospheric Sciences of 2010 An Analysis of Anchitherine Equids Across the Eocene–Oligocene Boundary in the White River Group of the Western Great Plains David M. Masciale University of Nebraska at Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geoscidiss Part of the Geology Commons, Paleobiology Commons, and the Paleontology Commons Masciale, David M., "An Analysis of Anchitherine Equids Across the Eocene–Oligocene Boundary in the White River Group of the Western Great Plains" (2010). Dissertations & Theses in Earth and Atmospheric Sciences. 11. https://digitalcommons.unl.edu/geoscidiss/11 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. AN ANALYSIS OF ANCHITHERINE EQUIDS ACROSS THE EOCENE– OLIGOCENE BOUNDARY IN THE WHITE RIVER GROUP OF THE WESTERN GREAT PLAINS by David M. Masciale A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Geosciences Under the Supervision of Professors Ross Secord and Robert M. Hunt, Jr. Lincoln, NE April, 2010 AN ANALYSIS OF ANCHITHERINE EQUIDS ACROSS THE EOCENE– OLIGOCENE BOUNDARY IN THE WHITE RIVER GROUP OF THE WESTERN GREAT PLAINS David M. Masciale, M.S. University of Nebraska, 2010 Advisers: Ross Secord and Robert M.
    [Show full text]
  • Earliest Record of Rhinocerotoids (Mammalia: Perissodactyla) from Switzerland: Systematics and Biostratigraphy
    1661-8726/09/030489-16 Swiss J. Geosci. 102 (2009) 489–504 DOI 10.1007/s00015-009-1330-4 Birkhäuser Verlag, Basel, 2009 Earliest record of rhinocerotoids (Mammalia: Perissodactyla) from Switzerland: systematics and biostratigraphy DAMIEN BECKER 1 Key words: Rhinocerotidae, Amynodontidae, Hyracodontidae, Early Oligocene, north-central Jura Molasse, Switzerland ABSTRACT Earliest rhinocerotoids from Switzerland are reviewed on the basis of dental Epiaceratherium magnum and E. aff. magnum could indicate a new speciation remains from the earliest Oligocene north-central Jura Molasse localities of within the Epiaceratherium lineage around the top of MP22. The rhinocer- Bressaucourt (MP21/22) and Kleinblauen (top MP22). The record in Bress- otoid associations of Bressaucourt with Ronzotherium – Cadurcotherium on aucourt is restricted to Ronzotherium and Cadurcotherium, representing the western side of the southernmost Rhine Graben area, and Kleinblauen Switzerland’s oldest, well-dated post-“Grande Coupure” large mammal as- with Epiaceratherium – Ronzotherium – Eggysodon on the eastern side, re- sociation, the only occurrence of Cadurcotherium, and the earliest occurrence spectively, reveal a possible environmental barrier constituted by the Early of rhinocerotoids in Switzerland. The correlation with high-resolution stra- Oligocene Rhenish sea and its eventual connection with the Perialpine sea. tigraphy of this locality permitted a dating of the fauna to ca. 32.6 Ma, less This one could have separated an arid area in central-eastern France from than a million years after the “Grande Coupure” event. The rhinocerotoids of a humid area in Switzerland and Germany. These results, combined with the Kleinblauen are represented by Epiaceratherium, Ronzotherium and Eggyso- repartition of similar rhinocerotoid associations in Western Europe, also give don.
    [Show full text]