The Crystal-Structure and Optical Properties of Matlockite (Pbfc1)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Paralaurionite Pbcl(OH) C 2001-2005 Mineral Data Publishing, Version 1
Paralaurionite PbCl(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals are thin to thick tabular k{100}, or elongated along [001], to 3 cm; {100} is usually dominant, but may show many other forms. Twinning: Almost all crystals are twinned by contact on {100}. Physical Properties: Cleavage: {001}, perfect. Tenacity: Flexible, due to twin gliding, but not elastic. Hardness = Soft. D(meas.) = 6.05–6.15 D(calc.) = 6.28 Optical Properties: Transparent to translucent. Color: Colorless, white, pale greenish, yellowish, yellow-orange, rarely violet; colorless in transmitted light. Luster: Subadamantine. Optical Class: Biaxial (–). Pleochroism: Noted in violet material. Orientation: Y = b; Z ∧ c =25◦. Dispersion: r< v,strong. Absorption: Y > X = Z. α = 2.05(1) β = 2.15(1) γ = 2.20(1) 2V(meas.) = Medium to large. Cell Data: Space Group: C2/m. a = 10.865(4) b = 4.006(2) c = 7.233(3) β = 117.24(4)◦ Z=4 X-ray Powder Pattern: Laurium, Greece. 5.14 (10), 3.21 (10), 2.51 (9), 2.98 (7), 3.49 (6), 2.44 (6), 2.01 (6) Chemistry: (1) (2) (3) Pb 78.1 77.75 79.80 O [3.6] 6.00 3.08 Cl 14.9 12.84 13.65 H2O 3.4 3.51 3.47 insol. 0.09 Total [100.0] 100.19 100.00 (1) Laurium, Greece. (2) Tiger, Arizona, USA. (3) PbCl(OH). Polymorphism & Series: Dimorphous with laurionite. Occurrence: A secondary mineral formed through alteration of lead-bearing slag by sea water or in hydrothermal polymetallic mineral deposits. -
Standard X-Ray Diffraction Powder Patterns
NBS MONOGRAPH 25 — SECTION 1 Standard X-ray Diffraction U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scien- tific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. -
Standard X-Ray Diffraction Powder Patterns
NBS MONOGRAPH 25—SECTION 4 Standard X-ray Diffraction Powder Patterns U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and mainte- nance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifi- cations advisory service to government agencies on scientific and technical problems ; invention ; and development of devices to serve special needs of the Government; assistance to industry, business, and consumers m the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its three Institutes and their organizatonal units. Institute for Basic Standards. Applied Mathematics. Electricity. Metrology. Mechanics. Heat. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radiation Phys- ics. Radio Standards Laboratory:* Radio Standards Physics; Radio Standards Engineering. Office of Standard Reference Data. Institute for Materials Research. -
Matlockite Pbfcl C 2001-2005 Mineral Data Publishing, Version 1
Matlockite PbFCl c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Tetragonal. Point Group: 4/m 2/m 2/m. Tabular crystals, to 5 cm, flattened on {001}, with {110}, {011}, and {111} modifications, may be equant, rounded. In subparallel aggregates, rosettelike, radiating, hemispherical; lamellar, cleavable massive. Physical Properties: Cleavage: {001}, perfect. Fracture: Uneven to subconchoidal. Tenacity: Brittle. Hardness = 2.5–3 D(meas.) = 7.12 D(calc.) = 7.16 Optical Properties: Transparent. Color: Colorless, pale yellow, amber-yellow, yellow-orange; colorless in transmitted light. Luster: Adamantine, pearly on {001}. Optical Class: Uniaxial (–); rarely biaxial due to strain. ω = 2.145 = 2.006 2V(meas.) = Small. Cell Data: Space Group: P 4/nmm (synthetic). a = 4.1104(2) c = 7.2325(5) Z = 2 X-ray Powder Pattern: Synthetic. 3.574 (100), 2.906 (45), 3.617 (40), 2.265 (40), 2.715 (35), 1.781 (25), 2.055 (20) Chemistry: (1) (2) (3) Pb 79.55 78.92 79.19 F 7.11 7.25 7.26 Cl 13.44 13.57 13.55 Total 100.10 [99.74] 100.00 (1) Cromford, England. (2) Tiger, Arizona, USA; original total given as 99.67%. (3) PbFCl. Occurrence: In the oxide zone of some lead-bearing mineral deposits. Association: Phosgenite, anglesite, cerussite, galena, sphalerite, barite, fluorite (Cromford, England); diaboleite, boleite, caledonite, leadhillite (Tiger, Arizona, USA). Distribution: Large crystals from the Bage and Wallclose mines, about 2.5 km south of Matlock, Derbyshire, England. In slag, at Laurium, Greece. In slag, along Baratti Beach and one km north of Campiglia, Tuscany, Italy. -
Standard X-Ray Diffraction Powder Patterns
:ationa.u d H.W. BIS <T be Libra.ry, Reisrence book not to 1965 JVPR 1 6 from ibe lib s ary. taken NBS C | RCULAR 539 VOLUME 10 Standard X-ray Diffraction Powder Patterns UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The Functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; in- vention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau’s unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau’s work take the form of either actual equipment and devices or pub- lished papers. These papers appear either in the Bureau’s own series of publications or in the journals of professional and scientific societies. -
The Growth of Geological Knowledge in the Peak District Trevor D
The Growth of Geological Knowledge in the Peak District Trevor D. Ford Abstract: The development of geological knowledge in the Peak District from the 18th century to the present day is reviewed. It is accompanied by a comprehensive bibliography. Introduction lead miners made practical use of geological principles as early as the 17th century (Rieuwerts, Geology has changed in the last two centuries from 1984). In the 18th century the course of the initial a largely amateur “gentleman’s” science to a part of Cromford Sough followed the strike of the professional vocation. The results of professional limestone/shale contact where excavation was easier investigation in the Peak District have been built on through shale. The position of the contact was the amateur foundation and the works cited in this obtained by down-dip projection from the outcrop review demonstrate the change in approach. The showing that the soughers had some appreciation of Geological Survey commenced a professional concealed geology. The lead miners also used the approach in the 1860-1880 period, continued basic principles of stratigraphy and structure to during World War I and in the 1950s, but it was not predict whether or not they would intersect until the 1970s that some intensive economic toadstones in driving other soughs in the 18th investigations were pursued. The Geological century (Fig. 1). Survey’s activities in the 20th century were concurrent with the development of Geology Whilst most of the lead miners’ knowledge was Departments in the nearby Universities, where never written down, some of it has been preserved in research grew slowly after World War I and more the appendix to “An Inquiry into The Original State rapidly after World War II. -
Standard X-Ray Diffraction Powder Patterns
E^l Admin. NBS MONOGRAPH 25—SECTION 5 Refecii^M not to be ^ferlrom the library. Standard X-ray Diffraction Powder Patterns ^\ / U.S. DEPARTMENT OF COMMERCE S NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services: THE INSTITUTE FOR BASIC STANDARDS . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area: —Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Physical Chemistry—Radiation Physics— -Laboratory Astrophysics^—Radio Standards Laboratory,^ which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Refer- ence Data. THE INSTITUTE FOR MATERIALS RESEARCH . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of ma- terials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce. -
The Microscopic Determination of the Nonopaque Minerals
DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 679 THE MICROSCOPIC DETERMINATION OF THE NONOPAQUE MINERALS BY ESPER S. LARSEN WASHINGTON GOVERNMENT PRINTING OFFICE 1921 CONTENTS. CHAPTER I. Introduction.................................................. 5 The immersion method of identifying minerals........................... 5 New data............................................................. 5 Need of further data.................................................... 6 Advantages of the immersion method.................................... 6 Other suggested uses for the method.................................... 7 Work and acknowledgments............................................. 7 CHAPTER II. Methods of determining the optical constants of minerals ....... 9 The chief optical constants and their interrelations....................... 9 Measurement of indices of refraction.................................... 12 The embedding method............................................ 12 The method of oblique illumination............................. 13 The method of central illumination.............................. 14 Immersion media.................................................. 14 General features............................................... 14 Piperine and iodides............................................ 16 Sulphur-selenium melts....................................... 38 Selenium and arsenic selenide melts........................... 20 Methods of standardizing -
0'7178 : 1 : 0'8125 Vom Raths
102 On some lead minerals from Latl1'ium, namely, Laurionite, Phosgenite, Fiedlerite, and (new species) Paralaurionite. By G. F. HERBJ;;RT SMITH, B.A., With Chemical Analysis by G. T. PRIOR, M.A., F.G.S., Assistants in the Mineral Department of the British Museum. [Read April 5th, 1898.] N this paper are embodied the results of an examination of the speci I mens of leacl slags from Laurium in the British Museum. On some of the specimens a new mineral, paralaurionite, was found, which possesses the same chemICal composi~ion as laurionite, but entirely different morphological and optical characters. In addition to crystals of the four minarals given in the title, a few crystals of matlockite and anglesite were noticed, and on one specimen there is a radiating group of prismatic crystals of penfieldite. 1. LAURIONITE. (a) The morphological cha1·acter.~, Laurionite crystallises in the orthorhombic system. The axial ratios were calculated from the angles between the faces bn1(01O: 120) and bd(OlO : 012), and found to be- a: b: c=0'7385: 1: 0'8346 The following values have been previously obtained by Dr. R. Kochlin and Prof. vom Rath- a: b: c=0'7328: 1 : 0'8315 Kochlin2 0'7178 : 1 : 0'8125 vom RathS 1 Throughout this paper the same letters are used for the faces as in Dana's System oj Miwralof/Y, Sixth Edition. 2 A"nalen natUl'hist. Mus. Wien, 1887, n. 188, and n. 83 and 127 (Notizen). Dr. Kochlin was the first tu describe Laurionite. B Bel'. niederrhein. Ges. p. -
Design Rules for Discovering 2D Materials from 3D Crystals By
Design Rules for Discovering 2D Materials from 3D Crystals by Eleanor Lyons Brightbill Collaborators: Tyler W. Farnsworth, Adam H. Woomer, Patrick C. O'Brien, Kaci L. Kuntz Senior Honors Thesis Chemistry University of North Carolina at Chapel Hill April 7th, 2016 Approved: Abstract Two-dimensional (2D) materials are championed as potential components for novel technologies due to the extreme change in properties that often accompanies a transition from the bulk to a quantum-confined state. While the incredible properties of existing 2D materials have been investigated for numerous applications, the current library of stable 2D materials is limited to a relatively small number of material systems, and attempts to identify novel 2D materials have found only a small subset of potential 2D material precursors. Here I present a rigorous, yet simple, set of criteria to identify 3D crystals that may be exfoliated into stable 2D sheets and apply these criteria to a database of naturally occurring layered minerals. These design rules harness two fundamental properties of crystals—Mohs hardness and melting point—to enable a rapid and effective approach to identify candidates for exfoliation. It is shown that, in layered systems, Mohs hardness is a predictor of inter-layer (out-of-plane) bond strength while melting point is a measure of intra-layer (in-plane) bond strength. This concept is demonstrated by using liquid exfoliation to produce novel 2D materials from layered minerals that have a Mohs hardness less than 3, with relative success of exfoliation (such as yield and flake size) dependent on melting point. Introduction The successful exfoliation of graphite into monolayer graphene produced the world’s first one-atom thick, high strength super-material with incredible transport properties.1 The result was a global explosion into graphene research, and subsequent interest in alternative 2D materials. -
Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution
JNC TN8400 99-011 JP9955327 42 Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution January, 1999 33002936. JAPAN NUCLEAR CYCLE DEVELOPMENT INSTITUTE 3 1-09 319-1194 Inquiries about copyright and reproduction should be addressed to : Techinical Information Section Administration Division Tokai Works Japan Nuclear Cycle Development Institute 4-33 Muramatsu, Naka-gun, Ibaraki 319-1194, Japan. JNC TN8400 99-011 January,1999 Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution Barbara Lothenbach**, Michael Ochs**, Hans Wanner*** and Mikazu Yui* Abstract This report provides thermodynamic data for predicting concentrations of palladium Pd, lead Pb, tin Sn, antimony Sb, niobium Nb and bismuth Bi in geologic environments, and contributes to an integration of the JNC chemical thermodynamic database, JNC-TDB (previously PNC-TDB), for the performance analysis of geological isolation system of high-level radioactive wastes. Besides treating hydrolysis in detail, this report focuses on the formation of complexes or compounds with chloride, fluoride, carbonate, nitrate, sulfate and phosphate. Other important inorganic ligands (sulfide for lead and antimony, ammonia for palladium) are also included. In this study, the specific ion interaction theory (SIT) approach is used to extrapolate thermodynamic constants to zero ionic strength at 25 °C. *: Waste Isolation Research Division, Tokai works, Japan Nuclear Cycle Development Institute (JNC) **: BMG ENGINEERING Ltd., Switzerland **: HSK, Switzerland JNC TN8400 99-011 1999 £fU£ Pd, Pb,Sn,Sb, Bi Barbara Lothenbach**, Michael Ochs**, Hans Wanner***, M#HfP* (10 PNC-TDB) ^fO—lit LtilL/:, £&(Pb), ^X(Sn), , - * 7* (Nb) iJ «t O* H'X-7^ m tzo ttz, & r{i, SIT (specific ion interaction theory ) , 25°C, -< 0 Hi3tt£-*libtf>!tftfc L > ^ - **: BMG ENGINEERING Ltd. -
Mammothite Pb6cu4aisb5+02(S04)2CI4(OH)16
Mammothite Pb6CU4AISb5+02(S04)2CI4(OH)16 Crystal Data: Monoclinic. Point Group: 21m. Crystals are tabular or prismatic, elongated along [001], showing {010}, {110}, {001}, to 1 mm, commonly in parallel to radial aggregates. Physical Properties: Cleavage: On {DID}, distinct. Fracture: Even. Tenacity: Very brittle. Hardness = ~3 D(meas.) = > 4.2 D(calc.) = 5.21 Optical Properties: Transparent. Color: Cerulean blue, blue-green, pale blue. Streak: Pale blue. Luster: Vitreous. Optical Class: Biaxial (+). Pleochroism: Moderate; in pale blues. Absorption: X >y > Z. a = 1.868 j3 = 1.892 'Y = 1.928 2V(meas.) = 80° Cell Data: Space Group: C2/m. a = 18.93(3) b = 7.3(1) c = 11.35(2) j3 = 112.44(10)° 2=2 X-ray Powder Pattern: Tiger, Arizona, USA. 2.896 (100), 6.67 (90), 3.05 (90),4.72 (80), 10.43 (60),6.08 (60),5.24 (30) Chemistry: (1) (2) S03 7.7 7.01 Sb20s 7.08 Sb203 6.1 Al203 2.3 2.23 CuO 14.9 13.93 PbO 57.6 58.63 CI 5.7 6.21 H2O [7.0] 6.31 -0 = Cl2 1.3 1.40 Total [100.0] 100.00 (1) Tiger, Arizona, USA; by electron microprobe, H20 by difference; corresponds to PbS.81 CU4.22 AIl.02Sbo.9402(Sl.0704)2CI3.62(OH)ls.s8· (2)Pb6Cu4AISb02(S04)2CI4(OH)16' Occurrence: A rare secondary mineral in the oxidized zone of a hydrothermal polymetallic base-metal deposit (Tiger, Arizona, USA); in metallic slag, formed by reaction with ocean water (Laurium, Greece). Association: Anglesite, leadhillite, caledonite, phosgenite, diaboleite, wulfenite (Tiger, Arizona, USA); cerussite, matlockite, laurionite, paralaurionite, phosgenite, fiedlerite, penfieldite, boleite, diaboleite (Laurium, Greece).