Projective Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Projective Geometry Projective Geometry Lecture Notes W. D. GILLAM Boˇgazi¸ciUniversity 2014 Contents Introduction iv 1 Transformations of the Plane 1 1.1 Linear transformations . 2 1.2 Isometries . 6 1.3 Orthogonal linear transformations . 7 1.4 Affine transformations . 12 1.5 Classification of isometries of the plane . 16 1.6 Algebraic automorphisms . 18 1.7 Exercises . 19 2 Parametric Plane Curves 20 2.1 Reparametrization . 21 2.2 Length and the arc length parametrization . 22 2.3 Curvature and the Frenet formulas . 23 2.4 Plane curves up to isometry . 25 2.5 Exercises . 26 3 Affine Algebraic Plane Curves 28 3.1 Polynomials and zero loci . 29 3.2 Smooth and singular points . 32 3.3 Change of variables and affine equivalence . 33 3.4 Five points determine a conic . 36 3.5 Plane conics up to affine equivalence . 38 3.6 Invariants of affine conics . 40 3.7 Exercises . 43 4 Projective Spaces 45 4.1 Motivation and construction . 45 4.2 Linear subspaces of projective space . 48 4.3 Real and complex projective spaces . 48 4.4 Projective transformations . 50 ii Contents iii 4.5 Exercises . 53 5 Projective Plane Curves 55 5.1 Homogeneous polynomials and zero loci . 56 5.2 Smooth and singular points . 57 5.3 Linear change of variables and projective equivalence . 58 5.4 Lines and linear functionals . 59 5.5 Invariants of affine conics revisited . 61 5.6 Classification of projective conics . 62 5.7 The cross ratio . 67 5.8 Intersection multiplicity . 69 5.9 The theorems of Pascal, Pappus, and Desargues . 70 5.10 Cubic curves and the group law . 72 5.11 Nodal and cuspital cubics . 76 5.12 Exercises . 78 6 Appendix 82 6.1 Groups and group actions . 82 6.2 Fields and division rings . 84 6.3 The Implicit Function Theorem . 86 6.4 Exercises . 87 Bibliography 88 Introduction These notes are meant to serve as the text for an undergraduate course in elementary projective geometry. The current notes were written to accompany the course of the same title given at Boˇgazi¸ciUniversity in the fall of 2014. Some parts of these notes were recycled from notes I wrote to accompany a course called Fundamental Problems of Geometry, which I taught at Brown University in the spring of 2012. Both courses were intended for junior and senior mathematics majors. The second incarnation of this course was particularly aimed at students seeking a career in mathematics instruction. To this end, I made considerable effort to try to \survey" a variety of basic geometric material, with a focus on the geometry of the plane. In principle linear algebra is the only formal prerequisite, though there are many places where I find it convenient to use the language of group theory, though no actual group theory is really used|it is enough to know the definition of a group, a subgroup, and perhaps a normal subgroup. Also, the idea of a group acting on a set arises (at least implicitly) at many points, so it might be helpful to have an idea what this means|it is a completely elementary concept. Both times I taught the course, I considered devoting a lecture to the basic notions of group theory and group actions (orbits and stabilizers, in particular), but in the end I just mentioned the necessary concepts as they arose, or relegated them to the exercises|that seemed sufficient. At some point I may add an appendix to these notes covering this material. Let me make some remarks about \level of generality" and the like, mostly intended for the instructor. The usual issues about fields are skirted in these notes in much the same way they are skirted in a typical linear algebra class; that is, we pretty much think of a field as either R or C and we don't much emphasize the difference even between these two fields, except that we can't get away with this quite as long as we can in linear algebra because we will quickly consider non-linear equations like x2 + 1 = 0 which have radically different behaviour over these two fields. For the sake of exposition, I make most statements over R (instead of writing F or some such thing to denote a general field), but most of these are true over an arbitrary field, except where (I think) it should be reasonably clear from context that the particular field considered is of central importance to the statement of the result. In fact, I stubbornly insisted on using R as the \base field" throughout most of the notes, even though most of the \algebro-geometric" content of the notes (of which there is very little, by the way) would probably be easier and more iv Introduction v natural over C. 2 Although projective geometry and, in particular, the projective plane RP , are the main subject matter of these notes, a large part of the text is actually devoted to 2 various geometric considerations in the usual “affine” plane R . Without some of this \background" material, much of the projective geometry would seem unmotivated. I also wanted to emphasize the interplay of several different points of view on this subject matter coming from linear algebra, differential geometry, algebraic geometry, and classical axiomatic geometry. Chapter 1 is devoted to defining and studying various transformation groups, such as the group of invertible linear transformations, the group of isometries, and the group of affine transformations. The latter, in particular, is important because of its relationship with the group of projective transformations (the projective general linear group), which we discuss in the chapter on projective geometry. The material from this chapter is used throughout the rest of the text. In the first incarnation of the course, I didn't say anything about isometries, but the group of isometries is so closely related to the group of affine transformations that it seemed strange to discuss one but not the other. Having discussed isometries in the Projective Geometry course, I couldn't resist fleshing out this material to show how the group of isometries is used in a \real life" geometric study: To this end, I have included Chapter 2 on parametric curves in the plane. I thought it might be useful for pedagogical reasons to have the students return to a study of parametric curves, familiar from calculus courses, equipped with an understanding of the meaning of isometry and the group of isometries of the plane, as the idea of isometry is certainly lurking implicitly in the treatments of parametric curves one sees in any elementary calculus text! To make sure that this chapter contains some new and interesting content, I have included a proof of the (fairly simple) fact that two parametric curves in the plane are related by an orientation preserving isometry iff they have the same length and curvature. My treatment of this is taken from Do Carmo's book Differential Geometry of Curves and Surfaces. The final two chapters consist of some elementary algebraic geometry of affine and n projective plane curves. We introduce the general projective space RP , but focus almost 2 exclusively on RP . We define the zero locus Z(f) of a polynomial f (or, rather, a homogeneous polynomial in the projective setting), and what it means to be a singular points of Z(f). We explain what it means for polynomials to be “affine equivalent" and for homogeneous polynomials to be \projectively equivalent." To make this more concrete, we mention the classification of degree two polynomials in two variabes up to affine equivalence, though we only give a complete proof of the projective analog of this 2 classification. At the very end we give a brief study of cubic curves in RP , giving at least the rough idea of the group law on the set of smooth points of an irreducible cubic. Chapter 1 Transformations of the Plane 2 2 Let us agree that a transformation (of the plane) is a bijective function f : R ! R . Among all transformations we can single out various classes of transformations preserving 2 various additional structures possessed by R . In this chapter we will define and study the following types of transformations: 1. homeomorphisms 2. invertible linear transformations 3. isometries 4. orthogonal linear transformations 5. affine transformations 6. algebraic automorphisms n One can consider these types of transformations more generally in the case of R , or n over other fields. Instead of R , one could work with an abstract vector space, or with a vector space equipped with some extra structure. We will make some remarks about 2 these more general settings, but our main focus will be on the case R , as this will be most important in the later chapters. The set of transformations of each type forms a group. In some cases, we will say something about the structure of this group. Although detailed definitions will be given in the sections of this chapter, we will give a summary now for the convenience of the reader. A homeomorphism is a continuous 2 2 −1 2 2 bijection f : R ! R with continuous inverse f : R ! R . Homeomorphisms are the most general type of transformation that will be of any use to us|every other type of transformation we consider will be a homeomorphism. Homeomorphisms preserve 2 properties of subsets of R such as connectedness, being open, or being compact (closed and bounded). 2 2 An invertible linear transformation is a bijection f : R ! R that \commutes with scalar multiplication and vector addition." The importance of invertible linear 2 transformations results mainly from their usage in linear algebra.
Recommended publications
  • Essential Concepts of Projective Geomtry
    Essential Concepts of Projective Geomtry Course Notes, MA 561 Purdue University August, 1973 Corrected and supplemented, August, 1978 Reprinted and revised, 2007 Department of Mathematics University of California, Riverside 2007 Table of Contents Preface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : i Prerequisites: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :iv Suggestions for using these notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :v I. Synthetic and analytic geometry: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :1 1. Axioms for Euclidean geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 2. Cartesian coordinate interpretations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 3 3. Lines and planes in R and R : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 II. Affine geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 1. Synthetic affine geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 2. Affine subspaces of vector spaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13 3. Affine bases: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :19 4. Properties of coordinate
    [Show full text]
  • Math.AG] 28 Feb 2007 Osnua Leri Variety Algebraic Nonsingular a the Se[A) Let [Ma])
    SOME BASIC RESULTS ON ACTIONS OF NON-AFFINE ALGEBRAIC GROUPS MICHEL BRION Abstract. We study actions of connected algebraic groups on normal algebraic varieties, and show how to reduce them to actions of affine subgroups. 0. Introduction Algebraic group actions have been extensively studied under the as- sumption that the acting group is affine or, equivalently, linear; see [KSS, MFK, PV]. In contrast, little seems to be known about actions of non-affine algebraic groups. In this paper, we show that these actions may be reduced to actions of affine subgroup schemes, in the setting of normal varieties. Our starting point is the following theorem of Nishi and Matsumura (see [Ma]). Let G be a connected algebraic group of automorphisms of a nonsingular algebraic variety X and denote by αX : X −→ A(X) the Albanese morphism, that is, the universal morphism to an abelian variety (see [Se2]). Then G acts on A(X) by translations, compatibly with its action on X, and the kernel of the induced homomorphism G → A(X) is affine. When applied to the action of G on itself via left multiplication, this shows that the Albanese morphism αG : G −→ A(G) is a surjective group homomorphism having an affine kernel. Since arXiv:math/0702518v2 [math.AG] 28 Feb 2007 this kernel is easily seen to be smooth and connected, this gives back Chevalley’s structure theorem: any connected algebraic group G is an extension of an abelian variety A(G) by a connected affine algebraic group Gaff (see [Co]) for a modern proof). The Nishi–Matsumura theorem may be reformulated as follows: for any faithful action of G on a nonsingular variety X, the induced homo- morphism G → A(X) factors through a homomorphism A(G) → A(X) having a finite kernel (see [Ma] again).
    [Show full text]
  • Notes on Automorphism Groups of Projective Varieties
    NOTES ON AUTOMORPHISM GROUPS OF PROJECTIVE VARIETIES MICHEL BRION Abstract. These are extended and slightly updated notes for my lectures at the School and Workshop on Varieties and Group Actions (Warsaw, September 23{29, 2018). They present old and new results on automorphism groups of normal projective varieties over an algebraically closed field. Contents 1. Introduction 1 2. Some basic constructions and results 4 2.1. The automorphism group 4 2.2. The Picard variety 7 2.3. The lifting group 10 2.4. Automorphisms of fibrations 14 2.5. Big line bundles 16 3. Proof of Theorem 1 18 4. Proof of Theorem 2 20 5. Proof of Theorem 3 23 References 28 1. Introduction Let X be a projective variety over an algebraically closed field k. It is known that the automorphism group, Aut(X), has a natural structure of smooth k-group scheme, locally of finite type (see [Gro61, Ram64, MO67]). This yields an exact sequence 0 (1.0.1) 1 −! Aut (X) −! Aut(X) −! π0 Aut(X) −! 1; where Aut0(X) is (the group of k-rational points of) a smooth connected algebraic group, and π0 Aut(X) is a discrete group. To analyze the structure of Aut(X), one may start by considering the connected automorphism 0 group Aut (X) and the group of components π0 Aut(X) separately. It turns out that there is no restriction on the former: every smooth connected algebraic group is the connected automorphism group of some normal projective variety X (see [Bri14, Thm. 1]). In characteristic 0, we may further take X to be smooth by using equivariant resolution of singularities (see e.g.
    [Show full text]
  • HOMOLOGICAL PROJECTIVE DUALITY by ALEXANDER KUZNETSOV
    HOMOLOGICAL PROJECTIVE DUALITY by ALEXANDER KUZNETSOV ABSTRACT We introduce a notion of homological projective duality for smooth algebraic varieties in dual projective spaces, a homological extension of the classical projective duality. If algebraic varieties X and Y in dual projective spaces are homologically projectively dual, then we prove that the orthogonal linear sections of X and Y admit semiorthogonal decompositions with an equivalent nontrivial component. In particular, it follows that triangulated categories of singu- larities of these sections are equivalent. We also investigate homological projective duality for projectivizations of vector bundles. 1. Introduction Investigation of derived categories of coherent sheaves on algebraic varieties has become one of the most important topics in the modern algebraic geometry. Among other reasons, this is because of the Homological Mirror Symmetry con- jecture of Maxim Kontsevich [Ko] predicting that there is an equivalence of cat- egories between the derived category of coherent sheaves on a Calabi–Yau variety and the derived Fukaya category of its mirror. There is an extension of Mirror Symmetry to the non Calabi–Yau case [HV]. According to this, the mirror of a manifold with non-negative first Chern class is a so-called Landau–Ginzburg model, that is an algebraic variety with a 2-form and a holomorphic function (superpotential) such that the restriction of the 2-form to smooth fibers of the superpotential is symplectic. It is expected that singular fibers of the superpoten- tial of the mirror Landau–Ginzburg model give a decomposition of the derived category of coherent sheaves on the initial algebraic variety into semiorthogonal pieces, a semiorthogonal decomposition.
    [Show full text]
  • Geometry of the Projectivization of Ideals and Applications to Problems of Birationality Remi Bignalet-Cazalet
    Geometry of the projectivization of ideals and applications to problems of birationality Remi Bignalet-Cazalet To cite this version: Remi Bignalet-Cazalet. Geometry of the projectivization of ideals and applications to problems of birationality. Algebraic Geometry [math.AG]. Université Bourgogne Franche-Comté, 2018. English. NNT : 2018UBFCK038. tel-02004276 HAL Id: tel-02004276 https://tel.archives-ouvertes.fr/tel-02004276 Submitted on 1 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. These` de doctorat de l'Universite´ de Bourgogne Franche-Comte´ pr´epar´ee`al'Institut de Math´ematiquesde Bourgogne Ecole´ doctorale Carnot Pasteur (ED553) Doctorat de Math´ematiques par R´emiBignalet-Cazalet Geom´ etrie´ de la projectivisation des ideaux´ et applications aux problemes` de birationalite´ Directeurs de th`ese: Adrien Dubouloz et Daniele Faenzi Th`esesoutenue le 24 octobre 2018 `aDijon Composition du jury Laurent Buse´ INRIA - Sophia Antipolis Examinateur Julie Deserti´ IMJ-PRG - Universit´eParis Diderot Examinatrice Adrien Dubouloz IMB - Universit´ede
    [Show full text]
  • On Some Tensor Representations of the Cremona Group of the Projective Plane
    On some tensor representations of the Cremona group of the projective plane Marat Gizatullin Intellectus est universalium et non singularium. Thomas Aquinas, from Summa contra gentiles (1264) 0 Introduction The Cremona group Cr = Cr(2, K) is the group of birational automorphisms BirP2 of the projective plane; it is (anti-)isomorphic to the automorphism group Aut K(x, y) of the rational function field in two variables. Let W be a 3-dimensional vector space (over an algebraically closed field K of characteristic zero), and P2 = P(W) its projectivization; V = Aut(P2) = PGL(W) = PGL(3, K) is the collineation group of P2, that is, the group of projective linear transformations. Thus V C Cr is a subgroup of the Cremona group. For a linear representation r: GL(W) —> GL(V), consider the projectivization p = P(r): V = PGL(W) -> PGL(V) = AutP(V). An extension of p is a homomorphism p: Cr- which restricts to p on V, that is, p\p = p: V —> AutP(V); in other words, there is a commutative diagram V -^ AutP(V) i i Cr M BirP(F) where the vertical arrows are the natural inclusions. Question Given the projectivization p of a linear representation r, does there exist an extension p of p to the whole Cremona group Cr ? Ill 112 Tensor representations of Cr(2, K) m We shall see that the answer is yes if r = 5 (r0) is the mth symmetric power of the natural representation r0 of GL(W) in the vector space W* of linear forms, and m = 2,3,4.
    [Show full text]
  • Collineation Group As a Subgroup of the Symmetric Group
    COLLINEATION GROUP AS A SUBGROUP OF THE SYMMETRIC GROUP FEDOR BOGOMOLOV AND MARAT ROVINSKY Abstract. Let Ψ be the projectivization (i.e., the set of one-dimensional vector subspaces) of a vector space of dimension 3 over a field. Let H be a closed (in the pointwise convergence topology) ≥ subgroup of the permutation group SΨ of the set Ψ. Suppose that H contains the projective group and an arbitrary self-bijection of Ψ transforming a triple of collinear points to a non-collinear triple. It is well-known from [9] that if Ψ is finite then H contains the alternating subgroup AΨ of SΨ. We show in Theorem 3.1 below that H = SΨ, if Ψ is infinite. Let a group G act on a set Ψ. For an integer N ≥ 1, the G-action on Ψ is called N-transitive if G acts transitively on the set of embeddings into Ψ of a set of N elements. This action is called highly transitive if for any finite set S the group G acts transitively on the set of all embeddings of S into Ψ. The action is highly transitive if and only if the image of G in the permutation group SΨ is dense in the pointwise convergence topology, cf. below. Let Ψ be a projective space of dimension ≥ 2, i.e., the projectivization of a vector space V of dimension ≥ 3 over a field k. The k-linear automorphisms of V induce permutations of Ψ, called projective transformations. Suppose that a group G of permutations of the set Ψ contains all projective transformations and an element which is not a collineation, i.e., transforming a triple of collinear points to a non-collinear triple.
    [Show full text]
  • Math 137 Notes: Undergraduate Algebraic Geometry
    MATH 137 NOTES: UNDERGRADUATE ALGEBRAIC GEOMETRY AARON LANDESMAN CONTENTS 1. Introduction 6 2. Conventions 6 3. 1/25/16 7 3.1. Logistics 7 3.2. History of Algebraic Geometry 7 3.3. Ancient History 7 3.4. Twentieth Century 10 3.5. How the course will proceed 10 3.6. Beginning of the mathematical portion of the course 11 4. 1/27/16 13 4.1. Logistics and Review 13 5. 1/29/16 17 5.1. Logistics and review 17 5.2. Twisted Cubics 17 5.3. Basic Definitions 21 5.4. Regular functions 21 6. 2/1/16 22 6.1. Logistics and Review 22 6.2. The Category of Affine Varieties 22 6.3. The Category of Quasi-Projective Varieties 24 7. 2/4/16 25 7.1. Logistics and review 25 7.2. More on Regular Maps 26 7.3. Veronese Maps 27 7.4. Segre Maps 29 8. 2/5/16 30 8.1. Overview and Review 30 8.2. More on the Veronese Variety 30 8.3. More on the Segre Map 32 9. 2/8/16 33 9.1. Review 33 1 2 AARON LANDESMAN 9.2. Even More on Segre Varieties 34 9.3. Cones 35 9.4. Cones and Quadrics 37 10. 2/10/15 38 10.1. Review 38 10.2. More on Quadrics 38 10.3. Projection Away from a Point 39 10.4. Resultants 40 11. 2/12/16 42 11.1. Logistics 42 11.2. Review 43 11.3. Projection of a Variety is a Variety 44 11.4.
    [Show full text]
  • Projective Geometry at Chalmers in the Fall of 1989
    Table of Contents Introduction ........................ 1 The Projective Plane ........................ 1 The Topology of RP 2 ........................ 3 Projective Spaces in General ........................ 4 The Riemannsphere and Complex Projective Spaces ........................ 4 Axiomatics and Finite Geometries ........................ 6 Duality and Conics ........................ 7 Exercises 1-34 ........................ 10 Crossratio ........................ 15 The -invariant ........................ 16 Harmonic Division ........................ 17 Involutions ........................ 17 Exercises 35-56 ........................ 19 Non-Singular Quadrics ........................ 22 Involutions and Non-Singular Quadrics ........................ 26 Exercises 57-76 ........................ 28 Ellipses,Hyperbolas,Parabolas and circular points at ........................ 31 The Space of Conics ∞ ........................ 32 Exercises 77-105 ........................ 37 Pencils of Conics ........................ 40 Exercises 106-134 ........................ 43 Quadric Surfaces ........................ 46 Quadrics as Double Coverings ........................ 49 Hyperplane sections and M¨obius Transformations ........................ 50 Line Correspondences ........................ 50 Conic Correspondences ........................ 51 Exercises 135-165 ........................ 53 Birational Geometry of Quadric Surfaces ........................ 56 Blowing Ups and Down ........................ 57 Cremona Transformations .......................
    [Show full text]
  • Homogeneous Projective Bundles Over Abelian Varieties (Long Version), Arxiv:1104.0818V3
    Homogeneous projective bundles over abelian varieties Michel Brion Abstract We consider projective bundles (or Brauer-Severi varieties) over an abelian va- riety which are homogeneous, i.e., invariant under translation. We describe the structure of these bundles in terms of projective representations of commutative group schemes; the irreducible bundles correspond to Heisenberg groups and their standard representations. Our results extend those of Mukai on semi-homogeneous vector bundles, and yield a geometric view of the Brauer group of abelian varieties. 1 Introduction The main objects of this article are the projective bundles (or Brauer-Severi varieties) over an abelian variety X which are homogeneous, i.e., isomorphic to their pull-backs under all translations. Among these bundles, the projectivizations of vector bundles are well understood by work of Mukai (see [22]). Indeed, the vector bundles with homogeneous projectivization are exactly the semi-homogeneous vector bundles of [loc. cit.]. Those that arXiv:1104.0818v4 [math.AG] 16 Mar 2013 are simple (i.e., their global endomorphisms are just scalars) admit several remarkable characterizations; for example, they are all obtained as direct images of line bundles under isogenies. Moreover, every indecomposable semi-homogeneous vector bundle is the tensor product of a unipotent bundle and of a simple semi-homogeneous bundle. In this article, we obtain somewhat similar statements for the structure of homoge- neous projective bundles. We build on the results of our earlier paper [9] about homo- geneous principal bundles under an arbitrary algebraic group; here we consider of course the projective linear group PGLn. In loose terms, the approach of [loc.
    [Show full text]
  • Essential Dimensions of Algebraic Groups and a Resolution Theorem for G-Varieties
    Canad. J. Math. Vol. 52 (5), 2000 pp. 1018–1056 Essential Dimensions of Algebraic Groups and a Resolution Theorem for G-Varieties Zinovy Reichstein and Boris Youssin Abstract. Let G be an algebraic group and let X be a generically free G-variety. We show that X can be trans- formed, by a sequence of blowups with smooth G-equivariant centers, into a G-variety X with the following property: the stabilizer of every point of X is isomorphic to a semidirect product U A of a unipotent group U and a diagonalizable group A. As an application of this result, we prove new lower bounds on essential dimensions of some algebraic groups. We also show that certain polynomials in one variable cannot be simplified by a Tschirnhaus trans- formation. 1 Introduction Let k be an algebraically closed base field of characteristic zero, let G be an algebraic group and let X be a G-variety, both defined over k. Assume X is generically free, i.e.,theG-action is free on a dense open subset of X. Recall that by a theorem of Rosenlicht [Ro1], [Ro2]the rational quotient map X B separates orbits of X in general position; in other words, we can think of X as a G-torsor over B. We shall say that X is defined in dimension d if there exists a dominant rational map X X1 of generically free G-varieties X X1 π π1 (1.1) B B1 with dim(B1) ≤ d. (Here the vertical arrows represent rational quotient maps for the G- action.) The smallest integer d such that X is defined in dimension d will be called the essential dimension of X and denoted by ed(X); cf.
    [Show full text]
  • 1 Introduction
    1 Introduction The homotopy theory we will discuss in these lectures has historical origins in very concrete geometric problems. We will begin, in this lecture, by de- scribing some of those problems and their solutions. For the most part these solutions date from work by Frank Adams in the 1960's, but the problems themselves are much older. The central problem we are concerned with involves the construction of interesting sets of tangent vector fields on the (n − 1)-sphere n−1 n S = fx 2 R : kxk = 1g : This embedding of the sphere into Euclidean space provides us with a con- crete way to visualize tangent vectors: A tangent vector at x is a vector n n−1 v 2 R such that x · v = 0. The tangent space to S at a point x is the n n−1 orthogonal complement in R of the line through x. Write TxS , or just Tx, for this vector space. The identification of the tangent space at a point with a subspace of n R provides us with an inner product on each tangent space. This inner product varies continuously with the point on the sphere; it is a \metric" on the tangent bundle. In particular each tangent vector v has a length jjvjj. A vector field on Sn−1 is a continuous section of the tangent bundle. In prosaic terms, this is a continuous function n−1 n v : S ! R such that x · v(x) = 0 for all x 2 Sn−1 : A first question is whether there exists a nowhere vanishing vector field.
    [Show full text]