Line Bundles on Projective Spaces Preliminary Draft
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Essential Concepts of Projective Geomtry
Essential Concepts of Projective Geomtry Course Notes, MA 561 Purdue University August, 1973 Corrected and supplemented, August, 1978 Reprinted and revised, 2007 Department of Mathematics University of California, Riverside 2007 Table of Contents Preface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : i Prerequisites: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :iv Suggestions for using these notes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :v I. Synthetic and analytic geometry: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :1 1. Axioms for Euclidean geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 2. Cartesian coordinate interpretations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 3 3. Lines and planes in R and R : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 II. Affine geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 1. Synthetic affine geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7 2. Affine subspaces of vector spaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13 3. Affine bases: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :19 4. Properties of coordinate -
Math.AG] 28 Feb 2007 Osnua Leri Variety Algebraic Nonsingular a the Se[A) Let [Ma])
SOME BASIC RESULTS ON ACTIONS OF NON-AFFINE ALGEBRAIC GROUPS MICHEL BRION Abstract. We study actions of connected algebraic groups on normal algebraic varieties, and show how to reduce them to actions of affine subgroups. 0. Introduction Algebraic group actions have been extensively studied under the as- sumption that the acting group is affine or, equivalently, linear; see [KSS, MFK, PV]. In contrast, little seems to be known about actions of non-affine algebraic groups. In this paper, we show that these actions may be reduced to actions of affine subgroup schemes, in the setting of normal varieties. Our starting point is the following theorem of Nishi and Matsumura (see [Ma]). Let G be a connected algebraic group of automorphisms of a nonsingular algebraic variety X and denote by αX : X −→ A(X) the Albanese morphism, that is, the universal morphism to an abelian variety (see [Se2]). Then G acts on A(X) by translations, compatibly with its action on X, and the kernel of the induced homomorphism G → A(X) is affine. When applied to the action of G on itself via left multiplication, this shows that the Albanese morphism αG : G −→ A(G) is a surjective group homomorphism having an affine kernel. Since arXiv:math/0702518v2 [math.AG] 28 Feb 2007 this kernel is easily seen to be smooth and connected, this gives back Chevalley’s structure theorem: any connected algebraic group G is an extension of an abelian variety A(G) by a connected affine algebraic group Gaff (see [Co]) for a modern proof). The Nishi–Matsumura theorem may be reformulated as follows: for any faithful action of G on a nonsingular variety X, the induced homo- morphism G → A(X) factors through a homomorphism A(G) → A(X) having a finite kernel (see [Ma] again). -
Notes on Automorphism Groups of Projective Varieties
NOTES ON AUTOMORPHISM GROUPS OF PROJECTIVE VARIETIES MICHEL BRION Abstract. These are extended and slightly updated notes for my lectures at the School and Workshop on Varieties and Group Actions (Warsaw, September 23{29, 2018). They present old and new results on automorphism groups of normal projective varieties over an algebraically closed field. Contents 1. Introduction 1 2. Some basic constructions and results 4 2.1. The automorphism group 4 2.2. The Picard variety 7 2.3. The lifting group 10 2.4. Automorphisms of fibrations 14 2.5. Big line bundles 16 3. Proof of Theorem 1 18 4. Proof of Theorem 2 20 5. Proof of Theorem 3 23 References 28 1. Introduction Let X be a projective variety over an algebraically closed field k. It is known that the automorphism group, Aut(X), has a natural structure of smooth k-group scheme, locally of finite type (see [Gro61, Ram64, MO67]). This yields an exact sequence 0 (1.0.1) 1 −! Aut (X) −! Aut(X) −! π0 Aut(X) −! 1; where Aut0(X) is (the group of k-rational points of) a smooth connected algebraic group, and π0 Aut(X) is a discrete group. To analyze the structure of Aut(X), one may start by considering the connected automorphism 0 group Aut (X) and the group of components π0 Aut(X) separately. It turns out that there is no restriction on the former: every smooth connected algebraic group is the connected automorphism group of some normal projective variety X (see [Bri14, Thm. 1]). In characteristic 0, we may further take X to be smooth by using equivariant resolution of singularities (see e.g. -