1 Introduction

Total Page:16

File Type:pdf, Size:1020Kb

1 Introduction 1 Introduction The homotopy theory we will discuss in these lectures has historical origins in very concrete geometric problems. We will begin, in this lecture, by de- scribing some of those problems and their solutions. For the most part these solutions date from work by Frank Adams in the 1960's, but the problems themselves are much older. The central problem we are concerned with involves the construction of interesting sets of tangent vector fields on the (n − 1)-sphere n−1 n S = fx 2 R : kxk = 1g : This embedding of the sphere into Euclidean space provides us with a con- crete way to visualize tangent vectors: A tangent vector at x is a vector n n−1 v 2 R such that x · v = 0. The tangent space to S at a point x is the n n−1 orthogonal complement in R of the line through x. Write TxS , or just Tx, for this vector space. The identification of the tangent space at a point with a subspace of n R provides us with an inner product on each tangent space. This inner product varies continuously with the point on the sphere; it is a \metric" on the tangent bundle. In particular each tangent vector v has a length jjvjj. A vector field on Sn−1 is a continuous section of the tangent bundle. In prosaic terms, this is a continuous function n−1 n v : S ! R such that x · v(x) = 0 for all x 2 Sn−1 : A first question is whether there exists a nowhere vanishing vector field. If we have a nonwhere vanishing vector field, we may normalize it by dividing by its length (which is a continuous function on Sn−1) to obtain a unit tangent vector field: a map v : Sn−1 ! Sn−1 such that x · v(x) = 0 for all x 2 Sn−1. There are advantages to replacing the open condition of being everywhere nonzero with the closed condition of being everywhere of length 1, just as there are advantages to thinking about the unit sphere Sn−1 in n place of the noncompact set of nonzero vectors in R . The answer to this question is very well known. Proposition 1.1. Sn−1 admits a unit tangent vector field if and only if n is even. 1 Proof. Suppose first that n is even; say n = 2m. Then Sn−1 can be thought m of as the unit vectors in C , and v(x) = ix satisfies jjv(x)jj = 1 and x·v(x) = 0 for all x 2 Sn−1. This gives us a nonvanishing vector field on each odd sphere. However, when n is odd there are none. Such a v(x) would give a ho- motopy between the identity and the antipodal map α(x) = −x: ht(x) = (cos πt)x + (sin πt)v(x) : We can get a contradiction by using the degree, i.e. the effect of a self-map of n−1 n−1 ∼ S on the (n − 1)-dimensional integral homology group Hn−1(S ; Z) = Z. The degree of the identity is 1, so by homotopy invariance deg α = 1. n But α is a composite of n reflections in R , each of degree −1, so deg α = n (−1) = −1, giving a contradiction. A more refined question now arises: for a given positive integer k, can n−1 we produce a sequence (v1; v2; : : : ; vk−1) of (k −1) vector fields on S that are everywhere linearly independent? How big can we make k and still get an affirmative answer to this question? Once again, we can replace this by an equivalent compact question, this time using the Gram-Schmidt process (which continuous, so we can apply it fiber-wise): find a sequence v1; v2; : : : ; vk−1 of everywhere orthonormal vector fields on Sn−1. And, once again, in certain cases there are rather obvious constructions. If n = 4m, for example, we can regard Sn−1 as the unit vectors in quater- nionic m-space, and then v1(x) = ix ; v2(x) = jx ; v3(x) = ijx provide three orthonormal vector fields. Similarly, the \octonion" multipli- 8 7 cation on R provides seven everywhere independent vector fields on S . In n−1 n−1 n−1 these cases, the vector fields provide an isomorphism S ×R ! TS of vector bundles; that is, a trivialization of the tangent bundle or a par- allelization of the sphere. In fact, Kervaire proved that these are the only spheres that are parallelizable. While these questions are clearly interesting in their own right, we shall see, in this course, that they are equivalent to fundamental questions about the structure of unstable homotopy theory, especially the behavior of the homotopy groups of spheres. For a start, notice that they can be phrased in terms of standard ques- tions about the existence of sections of certain fiber bundles. To define these 2 n fiber bundles, recall that a k-frame (or an orthogonal k-frame) in R is a sequence (v1; : : : ; vk) of mutually orthogonal unit vectors. Regarding them as column vectors, they can be assembled into an n × k matrix v with the T property that the product v v is the k × k identity matrix Ik. Definition 1.2. The Stiefel manifold Vk(E) of an inner product space E is the set of all k-frames in E, topologized as a subset of the product Ek. n If E = R with it standard inner product, we will write Vn;k in place of n Vk(R ). The Stiefel manifold is a compact manifold. It comes equipped with a smooth map n−1 π : Vn;k ! S n−1 sending the k-frame (v0; v1; : : : ; vk−1) to v0 2 S . The rest of the k-frame, (v1; : : : ; vk−1), can be viewed as giving a (k − 1)-frame in the tangent space −1 to the sphere at v0. That is, π (v0) = Vk−1(Tv0 ). n−1 Lemma 1.3. The map π : Vn;k ! S sending v to v0 is the projection map of a fiber bundle. Proof. This means that any point v0 in the base has a neighborhood W over which the projection is isomorphic to a product projection. In this case we can take for W the upper open hemisphere centered at v0, W = 0 n−1 0 −1 fv0 2 S : v0 · v0 > 0g. Then define a map κ : π W ! Vk−1(Tv0 ) 0 −1 0 0 as follows. Let v 2 π W . The sequence (v0; v1; : : : ; vk−1) is still linearly independent, so we can apply the Gram-Schmidt process to it to obtain a 0 sequence (v0; v1; : : : ; vk−1). Define κ(v ) = (v1; : : : ; vk−1). Then −1 (π; κ): π W ! W × Vk−1(Tv0 ) is a homeomorphism compatible with the projections to W . So the projection map always has local cross-sections; the sphere (or any (n − 1)-manifold) admits local (k − 1)-frames as long as k ≤ n. A global cross-section is the same thing as a tangential (k − 1)-frame field (or briefly a (k − 1)-frame) on Sn−1. Finding obstructions to the existence of a cross- section of a fiber bundle is one of a small collection of standard problems in homotopy theory, and we will bring a number of homotopy-theoretic tools to bear on this particular sectioning problem. We may ask how large k can be, given n. The answer is given in terms of a function ρ(n), defined as follows. Let ν(n) be the largest integer such that 2ν divides n. Then write ν = ν(n) as ν = 4b + c, 0 ≤ c ≤ 3, and set ρ(n) = 8b + 2c : 3 Theorem 1.4 (Hurwitz, Radon, Eckmann; Adams). There exist ρ(n) − 1 linearly independent vector fields on Sn−1 (Hurwitz-Radon-Eckmann) and no more (Adams). Here's a table of a few values of this strange function ρ(n). Since ρ(n) depends only on ν(n), we tabulate its values in terms of ν. ν 0 1 2 3 4 5 6 7 ··· 2ν 1 2 4 8 16 32 64 128 ··· ρ(n) 1 2 4 8 9 10 12 16 ··· Thus ρ(n) is roughly twice the exponent of 2 in n; it quickly falls behind n. In fact the only cases in which ρ(n) = n are n = 1; 2; 4; 8; the only paralleliz- able spheres are S0;S1;S3;S7. The sphere S127 admits fifteen everywhere independent vector fields and no more. There are two steps to proving Theorem 1.4: 1. Construct enough vector fields. It turns out that linear algebra { in the form of representations of Clifford algebras { produces a (ρ(n)−1)- frame on Sn−1. 2. Show that no other method can produce more. This is much harder, and was the first major victory for K-theory in topology, the occasion for Frank Adam's introduction of the operations named after him. Let's focus for the moment on the parallelizable case. There are many statements that are equivalent to saying that Sn−1 is parallelizable. If Sn−1 is a Lie group, we can pick a basis for the tangent space at the identity element and translate it around the group; this gives a different way of thinking of the parallelization we got above by thinking of S1 and 3 S as unit vectors in C and H. The 7-sphere is not a Lie group, but it does posess a smooth (though non-associative) multiplication, which can be used to parallelize it.
Recommended publications
  • The Jouanolou-Thomason Homotopy Lemma
    The Jouanolou-Thomason homotopy lemma Aravind Asok February 9, 2009 1 Introduction The goal of this note is to prove what is now known as the Jouanolou-Thomason homotopy lemma or simply \Jouanolou's trick." Our main reason for discussing this here is that i) most statements (that I have seen) assume unncessary quasi-projectivity hypotheses, and ii) most applications of the result that I know (e.g., in homotopy K-theory) appeal to the result as merely a \black box," while the proof indicates that the construction is quite geometric and relatively explicit. For simplicity, throughout the word scheme means separated Noetherian scheme. Theorem 1.1 (Jouanolou-Thomason homotopy lemma). Given a smooth scheme X over a regular Noetherian base ring k, there exists a pair (X;~ π), where X~ is an affine scheme, smooth over k, and π : X~ ! X is a Zariski locally trivial smooth morphism with fibers isomorphic to affine spaces. 1 Remark 1.2. In terms of an A -homotopy category of smooth schemes over k (e.g., H(k) or H´et(k); see [MV99, x3]), the map π is an A1-weak equivalence (use [MV99, x3 Example 2.4]. Thus, up to A1-weak equivalence, any smooth k-scheme is an affine scheme smooth over k. 2 An explicit algebraic form Let An denote affine space over Spec Z. Let An n 0 denote the scheme quasi-affine and smooth over 2m Spec Z obtained by removing the fiber over 0. Let Q2m−1 denote the closed subscheme of A (with coordinates x1; : : : ; x2m) defined by the equation X xixm+i = 1: i Consider the following simple situation.
    [Show full text]
  • Poincar\'E Duality for Spaces with Isolated Singularities
    POINCARÉ DUALITY FOR SPACES WITH ISOLATED SINGULARITIES MATHIEU KLIMCZAK Abstract. In this paper we assign, under reasonable hypothesis, to each pseudomanifold with isolated singularities a rational Poincaré duality space. These spaces are constructed with the formalism of intersection spaces defined by Markus Banagl and are indeed related to them in the even dimensional case. 1. Introduction We are concerned with rational Poincaré duality for singular spaces. There is at least two ways to restore it in this context : • As a self-dual sheaf. This is for instance the case with rational intersection homology. • As a spatialization. That is, given a singular space X, trying to associate to it a new topological space XDP that satisfies Poincaré duality. This strategy is at the origin of the concept of intersection spaces. Let us briefly recall this two approaches. While seeking for a theory of characteristic numbers for complex analytic vari- eties and other singular spaces, Mark Goresky and Robert MacPherson discovered (and then defined in [9] for PL pseudomanifolds and in [8] for topological pseudo- p manifolds) a family of groups IH∗ (X) called intersection homology groups of X. These groups depend on a multi-index p called a perversity. Intersection homology is able to restore Poincaré duality on topological stratified pseudomanifolds. If X is a compact oriented pseudomanifold of dimension n and p, q are two complementary perversities, over Q we have an isomorphism p ∼ n−r IHr (X) = IHq (X), n−r q With IHq (X) := hom(IHn−r(X), Q). Intersection spaces were defined by Markus Banagl in [2] as an attempt to spa- tialize Poincaré duality for singular spaces.
    [Show full text]
  • Homotopy Properties of Thom Complexes (English Translation with the Author’S Comments) S.P.Novikov1
    Homotopy Properties of Thom Complexes (English translation with the author’s comments) S.P.Novikov1 Contents Introduction 2 1. Thom Spaces 3 1.1. G-framed submanifolds. Classes of L-equivalent submanifolds 3 1.2. Thom spaces. The classifying properties of Thom spaces 4 1.3. The cohomologies of Thom spaces modulo p for p > 2 6 1.4. Cohomologies of Thom spaces modulo 2 8 1.5. Diagonal Homomorphisms 11 2. Inner Homology Rings 13 2.1. Modules with One Generator 13 2.2. Modules over the Steenrod Algebra. The Case of a Prime p > 2 16 2.3. Modules over the Steenrod Algebra. The Case of p = 2 17 1The author’s comments: As it is well-known, calculation of the multiplicative structure of the orientable cobordism ring modulo 2-torsion was announced in the works of J.Milnor (see [18]) and of the present author (see [19]) in 1960. In the same works the ideas of cobordisms were extended. In particular, very important unitary (”complex’) cobordism ring was invented and calculated; many results were obtained also by the present author studying special unitary and symplectic cobordisms. Some western topologists (in particular, F.Adams) claimed on the basis of private communication that J.Milnor in fact knew the above mentioned results on the orientable and unitary cobordism rings earlier but nothing was written. F.Hirzebruch announced some Milnors results in the volume of Edinburgh Congress lectures published in 1960. Anyway, no written information about that was available till 1960; nothing was known in the Soviet Union, so the results published in 1960 were obtained completely independently.
    [Show full text]
  • Vector Bundles on Projective Space
    Vector Bundles on Projective Space Takumi Murayama December 1, 2013 1 Preliminaries on vector bundles Let X be a (quasi-projective) variety over k. We follow [Sha13, Chap. 6, x1.2]. Definition. A family of vector spaces over X is a morphism of varieties π : E ! X −1 such that for each x 2 X, the fiber Ex := π (x) is isomorphic to a vector space r 0 0 Ak(x).A morphism of a family of vector spaces π : E ! X and π : E ! X is a morphism f : E ! E0 such that the following diagram commutes: f E E0 π π0 X 0 and the map fx : Ex ! Ex is linear over k(x). f is an isomorphism if fx is an isomorphism for all x. A vector bundle is a family of vector spaces that is locally trivial, i.e., for each x 2 X, there exists a neighborhood U 3 x such that there is an isomorphism ': π−1(U) !∼ U × Ar that is an isomorphism of families of vector spaces by the following diagram: −1 ∼ r π (U) ' U × A (1.1) π pr1 U −1 where pr1 denotes the first projection. We call π (U) ! U the restriction of the vector bundle π : E ! X onto U, denoted by EjU . r is locally constant, hence is constant on every irreducible component of X. If it is constant everywhere on X, we call r the rank of the vector bundle. 1 The following lemma tells us how local trivializations of a vector bundle glue together on the entire space X.
    [Show full text]
  • K-Theoryand Characteristic Classes
    MATH 6530: K-THEORY AND CHARACTERISTIC CLASSES Taught by Inna Zakharevich Notes by David Mehrle [email protected] Cornell University Fall 2017 Last updated November 8, 2018. The latest version is online here. Contents 1 Vector bundles................................ 3 1.1 Grassmannians ............................ 8 1.2 Classification of Vector bundles.................... 11 2 Cohomology and Characteristic Classes................. 15 2.1 Cohomology of Grassmannians................... 18 2.2 Characteristic Classes......................... 22 2.3 Axioms for Stiefel-Whitney classes................. 26 2.4 Some computations.......................... 29 3 Cobordism.................................. 35 3.1 Stiefel-Whitney Numbers ...................... 35 3.2 Cobordism Groups.......................... 37 3.3 Geometry of Thom Spaces...................... 38 3.4 L-equivalence and Transversality.................. 42 3.5 Characteristic Numbers and Boundaries.............. 47 4 K-Theory................................... 49 4.1 Bott Periodicity ............................ 49 4.2 The K-theory spectrum........................ 56 4.3 Some properties of K-theory..................... 58 4.4 An example: K-theory of S2 ..................... 59 4.5 Power Operations............................ 61 4.6 When is the Hopf Invariant one?.................. 64 4.7 The Splitting Principle........................ 66 5 Where do we go from here?........................ 68 5.1 The J-homomorphism ........................ 70 5.2 The Chern Character and e invariant...............
    [Show full text]
  • Characteristic Classes and K-Theory Oscar Randal-Williams
    Characteristic classes and K-theory Oscar Randal-Williams https://www.dpmms.cam.ac.uk/∼or257/teaching/notes/Kthy.pdf 1 Vector bundles 1 1.1 Vector bundles . 1 1.2 Inner products . 5 1.3 Embedding into trivial bundles . 6 1.4 Classification and concordance . 7 1.5 Clutching . 8 2 Characteristic classes 10 2.1 Recollections on Thom and Euler classes . 10 2.2 The projective bundle formula . 12 2.3 Chern classes . 14 2.4 Stiefel–Whitney classes . 16 2.5 Pontrjagin classes . 17 2.6 The splitting principle . 17 2.7 The Euler class revisited . 18 2.8 Examples . 18 2.9 Some tangent bundles . 20 2.10 Nonimmersions . 21 3 K-theory 23 3.1 The functor K ................................. 23 3.2 The fundamental product theorem . 26 3.3 Bott periodicity and the cohomological structure of K-theory . 28 3.4 The Mayer–Vietoris sequence . 36 3.5 The Fundamental Product Theorem for K−1 . 36 3.6 K-theory and degree . 38 4 Further structure of K-theory 39 4.1 The yoga of symmetric polynomials . 39 4.2 The Chern character . 41 n 4.3 K-theory of CP and the projective bundle formula . 44 4.4 K-theory Chern classes and exterior powers . 46 4.5 The K-theory Thom isomorphism, Euler class, and Gysin sequence . 47 n 4.6 K-theory of RP ................................ 49 4.7 Adams operations . 51 4.8 The Hopf invariant . 53 4.9 Correction classes . 55 4.10 Gysin maps and topological Grothendieck–Riemann–Roch . 58 Last updated May 22, 2018.
    [Show full text]
  • Characteristic Classes and Smooth Structures on Manifolds Edited by S
    7102 tp.fh11(path) 9/14/09 4:35 PM Page 1 SERIES ON KNOTS AND EVERYTHING Editor-in-charge: Louis H. Kauffman (Univ. of Illinois, Chicago) The Series on Knots and Everything: is a book series polarized around the theory of knots. Volume 1 in the series is Louis H Kauffman’s Knots and Physics. One purpose of this series is to continue the exploration of many of the themes indicated in Volume 1. These themes reach out beyond knot theory into physics, mathematics, logic, linguistics, philosophy, biology and practical experience. All of these outreaches have relations with knot theory when knot theory is regarded as a pivot or meeting place for apparently separate ideas. Knots act as such a pivotal place. We do not fully understand why this is so. The series represents stages in the exploration of this nexus. Details of the titles in this series to date give a picture of the enterprise. Published*: Vol. 1: Knots and Physics (3rd Edition) by L. H. Kauffman Vol. 2: How Surfaces Intersect in Space — An Introduction to Topology (2nd Edition) by J. S. Carter Vol. 3: Quantum Topology edited by L. H. Kauffman & R. A. Baadhio Vol. 4: Gauge Fields, Knots and Gravity by J. Baez & J. P. Muniain Vol. 5: Gems, Computers and Attractors for 3-Manifolds by S. Lins Vol. 6: Knots and Applications edited by L. H. Kauffman Vol. 7: Random Knotting and Linking edited by K. C. Millett & D. W. Sumners Vol. 8: Symmetric Bends: How to Join Two Lengths of Cord by R.
    [Show full text]
  • Recent Developments in Representation Theory
    RECENT DEVELOPMENTS IN REPRESENTATION THEORY Wilfried 5chmid* Department of Mathematics Harvard University Cambridge, MA 02138 For the purposes of this lecture, "representation theory" means representation theory of Lie groups, and more specifically, of semisimple Lie groups. I am interpreting my assignment to give a survey rather loosely: while I shall touch upon various major advances in the subject, I am concentrating on a single development. Both order and emphasis of my presentation are motivated by expository considerations, and do not reflect my view of the relative importance of various topics. Initially G shall denote a locally compact topological group which is unimodular -- i.e., left and right Haar measure coincide -- and H C G a closed unimodular subgroup. The quotient space G/H then carries a G- invariant measure, so G acts unitarily on the Hilbert space L2(G/H). In essence, the fundamental problem of harmonic analysis is to decompose L2(G/H) into a direct "sum" of irreducibles. The quotation marks allude to the fact that the decomposition typically involves the continuous ana- logue of a sum, namely a direct integral, as happens already for non- compact Abelian groups. If G is of type I -- loosely speaking, if the unitary representations of G behave reasonably -- the abstract Plan- cherel theorem [12] asserts the existence of such a decomposition. This existence theorem raises as many questions as it answers: to make the decomposition useful, one wants to know it explicitly and, most impor- tantly, one wants to understand the structure of the irreducible sum- mands. In principle, any irreducible unitary representation of G can occur as a constituent of L2(G/H), for some H C G.
    [Show full text]
  • THOM COBORDISM THEOREM 1. Introduction in This Short Notes We
    THOM COBORDISM THEOREM MIGUEL MOREIRA 1. Introduction In this short notes we will explain the remarkable theorem of Thom that classifies cobordisms. This theorem was originally proven by Ren´eThom in [] but we will follow a more modern exposition. We want to give a precise idea of the everything involved but we won't give complete details at some points. Let's define the concept of cobordism. Definition 1. Let M; N be two smooth closed n-manifolds. We say that M; N are cobordant if there exists a compact (n + 1)-manifold W such that @W = M t N. This is an equivalence relation. Given a space X and f : M ! X we call the pair (M; f) a singular manifold. We say that (M; f) and (N; g) are cobordant if there is a cobordism W between M and N and f t g extends to F : W ! X. We denote by Nn(X) the set of cobordism classes of singular n-manifolds (M; f). In particular Nn ≡ Nn(∗) is the set of cobordism sets. We'll already state the two amazing theorems by Thom. The first gives a homotopy-theoretical interpretation of Nn and the second actually computes it. Theorem 1. N∗ is a generalized homology theory associated to the Thom spectrum MO, i.e. Nn(X) = colim πn+k(MO(k) ^ X+): k!1 Theorem 2. We have an isomorphism of graded Z=2-algebras ∼ ` π∗MO = Z=2[xi : 0 < i 6= 2 − 1] = Z=2[x2; x4; x5; x6;:::] where xi has grading i.
    [Show full text]
  • Characteristic Classes and Bounded Cohomology
    DISS. ETH Nr. 15636 Characteristic Classes and Bounded Cohomology A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Doctor of Mathematics presented by Michelle Karlsson Dipl. Math. Univ. Gen`eve born on the 25th of July 1976 citizen of Kerns (OW) accepted on the recommendation of Prof. Dr. Marc Burger, examiner Prof. Dr. Wolfgang L¨uck, co-examiner 2004 Acknowledgments I wish to express my sincere gratitude to Prof. Marc Burger for having taken me under his directorship and suggested to me a fascinating subject which brought me into several areas of mathematics. I am also grateful to Prof. Wolfgang L¨uck for kindly accepting to be the external examiner of this dissertation. For fruitful discussions related to my work I owe special thanks to Prof. Johan L. Dupont, PD. Oliver Baues and Prof. Alessandra Iozzi. Many thanks to the whole of Group 1 for providing a productive working environment. Espe- cially to Prof. Guido Mislin for organizing enlightening seminars and reading a short version of this work. Finally, I heartily thank my family and friends for their patience and constant support. Contents Introduction vii 1 Bundles 1 1.1 Principal bundles and classifying spaces . 1 1.1.1 Principal bundles . 1 1.1.2 Classifying spaces . 8 1.2 Elements of Differential geometry . 12 1.2.1 Connections . 12 1.2.2 Curvature . 17 1.3 Flat bundles . 20 1.3.1 Definition . 20 1.3.2 Transition functions . 21 1.3.3 The space of representations . 23 2 Simplicial complexes 25 2.1 Definitions .
    [Show full text]
  • 4. Coherent Sheaves Definition 4.1. If (X,O X) Is a Locally Ringed Space
    4. Coherent Sheaves Definition 4.1. If (X; OX ) is a locally ringed space, then we say that an OX -module F is locally free if there is an open affine cover fUig of X such that FjUi is isomorphic to a direct sum of copies of OUi . If the number of copies r is finite and constant, then F is called locally free of rank r (aka a vector bundle). If F is locally free of rank one then we way say that F is invertible (aka a line bundle). The group of all invertible sheaves under tensor product, denoted Pic(X), is called the Picard group of X. A sheaf of ideals I is any OX -submodule of OX . Definition 4.2. Let X = Spec A be an affine scheme and let M be an A-module. M~ is the sheaf which assigns to every open subset U ⊂ X, the set of functions a s: U −! Mp; p2U which can be locally represented at p as a=g, a 2 M, g 2 R, p 2= Ug ⊂ U. Lemma 4.3. Let A be a ring and let M be an A-module. Let X = Spec A. ~ (1) M is a OX -module. ~ (2) If p 2 X then Mp is isomorphic to Mp. ~ (3) If f 2 A then M(Uf ) is isomorphic to Mf . Proof. (1) is clear and the rest is proved mutatis mutandis as for the structure sheaf. Definition 4.4. An OX -module F on a scheme X is called quasi- coherent if there is an open cover fUi = Spec Aig by affines and ~ isomorphisms FjUi ' Mi, where Mi is an Ai-module.
    [Show full text]
  • 256B Algebraic Geometry
    256B Algebraic Geometry David Nadler Notes by Qiaochu Yuan Spring 2013 1 Vector bundles on the projective line This semester we will be focusing on coherent sheaves on smooth projective complex varieties. The organizing framework for this class will be a 2-dimensional topological field theory called the B-model. Topics will include 1. Vector bundles and coherent sheaves 2. Cohomology, derived categories, and derived functors (in the differential graded setting) 3. Grothendieck-Serre duality 4. Reconstruction theorems (Bondal-Orlov, Tannaka, Gabriel) 5. Hochschild homology, Chern classes, Grothendieck-Riemann-Roch For now we'll introduce enough background to talk about vector bundles on P1. We'll regard varieties as subsets of PN for some N. Projective will mean that we look at closed subsets (with respect to the Zariski topology). The reason is that if p : X ! pt is the unique map from such a subset X to a point, then we can (derived) push forward a bounded complex of coherent sheaves M on X to a bounded complex of coherent sheaves on a point Rp∗(M). Smooth will mean the following. If x 2 X is a point, then locally x is cut out by 2 a maximal ideal mx of functions vanishing on x. Smooth means that dim mx=mx = dim X. (In general it may be bigger.) Intuitively it means that locally at x the variety X looks like a manifold, and one way to make this precise is that the completion of the local ring at x is isomorphic to a power series ring C[[x1; :::xn]]; this is the ring where Taylor series expansions live.
    [Show full text]