K-Theoryand Characteristic Classes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Realizing Cohomology Classes As Euler Classes 1
Ó DOI: 10.2478/s12175-012-0057-2 Math. Slovaca 62 (2012), No. 5, 949–966 REALIZING COHOMOLOGY CLASSES AS EULER CLASSES Aniruddha C Naolekar (Communicated by J´ulius Korbaˇs ) s ◦ ABSTRACT. For a space X,letEk(X), Ek(X)andEk (X) denote respectively the set of Euler classes of oriented k-plane bundles over X, the set of Euler classes of stably trivial k-plane bundles over X and the spherical classes in Hk(X; Z). s ◦ We prove some general facts about the sets Ek(X), Ek(X)andEk (X). We also compute these sets in the cases where X is a projective space, the Dold manifold P (m, 1) and obtain partial computations in the case that X is a product of spheres. c 2012 Mathematical Institute Slovak Academy of Sciences 1. Introduction Given a topological space X, we address the question of which classes x ∈ Hk(X; Z) can be realized as the Euler class e(ξ)ofanorientedk-plane bundle ξ over X. We also look at the question of which integral cohomology classes are spherical. It is convenient to make the following definition. s º ≥ ÒØÓÒ 1.1 For a space X and an integer k 1, the sets Ek(X), Ek(X) ◦ and Ek (X) are defined to be k Ek(X)= e(ξ) ∈ H (X; Z) | ξ is an oriented k-plane bundle over X s k Ek(X)= e(ξ) ∈ H (X; Z) | ξ is a stably trivial k-plane bundle over X ◦ k k ∗ Ek (X)= x ∈ H (X; Z) | there exists f : S −→ X with f (x) =0 . -
Notes on the Atiyah-Singer Index Theorem Liviu I. Nicolaescu
Notes on the Atiyah-Singer Index Theorem Liviu I. Nicolaescu Notes for a topics in topology course, University of Notre Dame, Spring 2004, Spring 2013. Last revision: November 15, 2013 i The Atiyah-Singer Index Theorem This is arguably one of the deepest and most beautiful results in modern geometry, and in my view is a must know for any geometer/topologist. It has to do with elliptic partial differential opera- tors on a compact manifold, namely those operators P with the property that dim ker P; dim coker P < 1. In general these integers are very difficult to compute without some very precise information about P . Remarkably, their difference, called the index of P , is a “soft” quantity in the sense that its determination can be carried out relying only on topological tools. You should compare this with the following elementary situation. m n Suppose we are given a linear operator A : C ! C . From this information alone we cannot compute the dimension of its kernel or of its cokernel. We can however compute their difference which, according to the rank-nullity theorem for n×m matrices must be dim ker A−dim coker A = m − n. Michael Atiyah and Isadore Singer have shown in the 1960s that the index of an elliptic operator is determined by certain cohomology classes on the background manifold. These cohomology classes are in turn topological invariants of the vector bundles on which the differential operator acts and the homotopy class of the principal symbol of the operator. Moreover, they proved that in order to understand the index problem for an arbitrary elliptic operator it suffices to understand the index problem for a very special class of first order elliptic operators, namely the Dirac type elliptic operators. -
Characteristic Classes and K-Theory Oscar Randal-Williams
Characteristic classes and K-theory Oscar Randal-Williams https://www.dpmms.cam.ac.uk/∼or257/teaching/notes/Kthy.pdf 1 Vector bundles 1 1.1 Vector bundles . 1 1.2 Inner products . 5 1.3 Embedding into trivial bundles . 6 1.4 Classification and concordance . 7 1.5 Clutching . 8 2 Characteristic classes 10 2.1 Recollections on Thom and Euler classes . 10 2.2 The projective bundle formula . 12 2.3 Chern classes . 14 2.4 Stiefel–Whitney classes . 16 2.5 Pontrjagin classes . 17 2.6 The splitting principle . 17 2.7 The Euler class revisited . 18 2.8 Examples . 18 2.9 Some tangent bundles . 20 2.10 Nonimmersions . 21 3 K-theory 23 3.1 The functor K ................................. 23 3.2 The fundamental product theorem . 26 3.3 Bott periodicity and the cohomological structure of K-theory . 28 3.4 The Mayer–Vietoris sequence . 36 3.5 The Fundamental Product Theorem for K−1 . 36 3.6 K-theory and degree . 38 4 Further structure of K-theory 39 4.1 The yoga of symmetric polynomials . 39 4.2 The Chern character . 41 n 4.3 K-theory of CP and the projective bundle formula . 44 4.4 K-theory Chern classes and exterior powers . 46 4.5 The K-theory Thom isomorphism, Euler class, and Gysin sequence . 47 n 4.6 K-theory of RP ................................ 49 4.7 Adams operations . 51 4.8 The Hopf invariant . 53 4.9 Correction classes . 55 4.10 Gysin maps and topological Grothendieck–Riemann–Roch . 58 Last updated May 22, 2018. -
The Atiyah-Singer Index Theorem*
CHAPTER 5 The Atiyah-Singer Index Theorem* Peter B. Gilkey Mathematics Department, University of Oregon, Eugene, OR 97403, USA E-mail: gilkey@ math. uo regon, edu Contents 0. Introduction ................................................... 711 1. Clifford algebras and spin structures ..................................... 711 2. Spectral theory ................................................. 718 3. The classical elliptic complexes ........................................ 725 4. Characteristic classes of vector bundles .................................... 730 5. Characteristic classes of principal bundles .................................. 737 6. The index theorem ............................................... 739 References ..................................................... 745 *Research partially supported by the NSF (USA) and MPIM (Germany). HANDBOOK OF DIFFERENTIAL GEOMETRY, VOL. I Edited by EJ.E. Dillen and L.C.A. Verstraelen 2000 Elsevier Science B.V. All fights reserved 709 The Atiyah-Singer index theorem 711 O. Introduction Here is a brief outline to the paper. In Section 1, we review some basic facts concerning Clifford algebras and spin structures. In Section 2, we discuss the spectral theory of self- adjoint elliptic partial differential operators and give the Hodge decomposition theorem. In Section 3, we define the classical elliptic complexes: de Rham, signature, spin, spin c, Yang-Mills, and Dolbeault; these elliptic complexes are all of Dirac type. In Section 4, we define the various characteristic classes for vector bundles that we shall need: Chern forms, Pontrjagin forms, Chern character, Euler form, Hirzebruch L polynomial, A genus, and Todd polynomial. In Section 5, we discuss the characteristic classes for principal bundles. In Section 6, we give the Atiyah-Singer index theorem; the Chern-Gauss-Bonnet formula, the Hirzebruch signature formula, and the Riemann-Roch formula are special cases of the index theorem. We also discuss the equivariant index theorem and the index theorem for manifolds with boundary. -
Characteristic Classes and Smooth Structures on Manifolds Edited by S
7102 tp.fh11(path) 9/14/09 4:35 PM Page 1 SERIES ON KNOTS AND EVERYTHING Editor-in-charge: Louis H. Kauffman (Univ. of Illinois, Chicago) The Series on Knots and Everything: is a book series polarized around the theory of knots. Volume 1 in the series is Louis H Kauffman’s Knots and Physics. One purpose of this series is to continue the exploration of many of the themes indicated in Volume 1. These themes reach out beyond knot theory into physics, mathematics, logic, linguistics, philosophy, biology and practical experience. All of these outreaches have relations with knot theory when knot theory is regarded as a pivot or meeting place for apparently separate ideas. Knots act as such a pivotal place. We do not fully understand why this is so. The series represents stages in the exploration of this nexus. Details of the titles in this series to date give a picture of the enterprise. Published*: Vol. 1: Knots and Physics (3rd Edition) by L. H. Kauffman Vol. 2: How Surfaces Intersect in Space — An Introduction to Topology (2nd Edition) by J. S. Carter Vol. 3: Quantum Topology edited by L. H. Kauffman & R. A. Baadhio Vol. 4: Gauge Fields, Knots and Gravity by J. Baez & J. P. Muniain Vol. 5: Gems, Computers and Attractors for 3-Manifolds by S. Lins Vol. 6: Knots and Applications edited by L. H. Kauffman Vol. 7: Random Knotting and Linking edited by K. C. Millett & D. W. Sumners Vol. 8: Symmetric Bends: How to Join Two Lengths of Cord by R. -
Characteristic Classes and Bounded Cohomology
DISS. ETH Nr. 15636 Characteristic Classes and Bounded Cohomology A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Doctor of Mathematics presented by Michelle Karlsson Dipl. Math. Univ. Gen`eve born on the 25th of July 1976 citizen of Kerns (OW) accepted on the recommendation of Prof. Dr. Marc Burger, examiner Prof. Dr. Wolfgang L¨uck, co-examiner 2004 Acknowledgments I wish to express my sincere gratitude to Prof. Marc Burger for having taken me under his directorship and suggested to me a fascinating subject which brought me into several areas of mathematics. I am also grateful to Prof. Wolfgang L¨uck for kindly accepting to be the external examiner of this dissertation. For fruitful discussions related to my work I owe special thanks to Prof. Johan L. Dupont, PD. Oliver Baues and Prof. Alessandra Iozzi. Many thanks to the whole of Group 1 for providing a productive working environment. Espe- cially to Prof. Guido Mislin for organizing enlightening seminars and reading a short version of this work. Finally, I heartily thank my family and friends for their patience and constant support. Contents Introduction vii 1 Bundles 1 1.1 Principal bundles and classifying spaces . 1 1.1.1 Principal bundles . 1 1.1.2 Classifying spaces . 8 1.2 Elements of Differential geometry . 12 1.2.1 Connections . 12 1.2.2 Curvature . 17 1.3 Flat bundles . 20 1.3.1 Definition . 20 1.3.2 Transition functions . 21 1.3.3 The space of representations . 23 2 Simplicial complexes 25 2.1 Definitions . -
Commentary on Thurston's Work on Foliations
COMMENTARY ON FOLIATIONS* Quoting Thurston's definition of foliation [F11]. \Given a large supply of some sort of fabric, what kinds of manifolds can be made from it, in a way that the patterns match up along the seams? This is a very general question, which has been studied by diverse means in differential topology and differential geometry. ... A foliation is a manifold made out of striped fabric - with infintely thin stripes, having no space between them. The complete stripes, or leaves, of the foliation are submanifolds; if the leaves have codimension k, the foliation is called a codimension k foliation. In order that a manifold admit a codimension- k foliation, it must have a plane field of dimension (n − k)." Such a foliation is called an (n − k)-dimensional foliation. The first definitive result in the subject, the so called Frobenius integrability theorem [Fr], concerns a necessary and sufficient condition for a plane field to be the tangent field of a foliation. See [Spi] Chapter 6 for a modern treatment. As Frobenius himself notes [Sa], a first proof was given by Deahna [De]. While this work was published in 1840, it took another hundred years before a geometric/topological theory of foliations was introduced. This was pioneered by Ehresmann and Reeb in a series of Comptes Rendus papers starting with [ER] that was quickly followed by Reeb's foundational 1948 thesis [Re1]. See Haefliger [Ha4] for a detailed account of developments in this period. Reeb [Re1] himself notes that the 1-dimensional theory had already undergone considerable development through the work of Poincare [P], Bendixson [Be], Kaplan [Ka] and others. -
Characteristic Classes on Grassmannians
Turkish Journal of Mathematics Turk J Math (2014) 38: 492 { 523 http://journals.tubitak.gov.tr/math/ ⃝c TUB¨ ITAK_ Research Article doi:10.3906/mat-1302-54 Characteristic classes on Grassmannians Jin SHI1, Jianwei ZHOU2;∗ 1Suzhou Senior Technical Institute, Suzhou, P.R. China 2Department of Mathematics, Suzhou University, Suzhou, P.R. China Received: 27.02.2013 • Accepted: 03.04.2013 • Published Online: 14.03.2014 • Printed: 11.04.2014 Abstract: In this paper, we study the geometry and topology on the oriented Grassmann manifolds. In particular, we use characteristic classes and the Poincar´eduality to study the homology groups of Grassmann manifolds. We show that for k = 2 or n ≤ 8, the cohomology groups H∗(G(k; n); R) are generated by the first Pontrjagin class, the Euler classes q of the canonical vector bundles. In these cases, the Poincar´eduality: H (G(k; n); R) ! Hk(n−k)−q(G(k; n); R) can be expressed explicitly. Key words: Grassmann manifold, fibre bundle, characteristic class, homology group, Poincar´eduality 1. Introduction Let G(k; n) be the Grassmann manifold formed by all oriented k -dimensional subspaces of Euclidean space n R . For any π 2 G(k; n), there are orthonormal vectors e1; ··· ; ek such that π can be represented by V k n e1 ^ · · · ^ ek . Thus G(k; n) becomes a submanifold of the space (R ); then we can use moving frame to study the Grassmann manifolds. There are 2 canonical vector bundles E = E(k; n) and F = F (k; n) over G(k; n) with fibres generated by vectors of the subspaces and the vectors orthogonal to the subspaces, respectively. -
Bundles with Spherical Euler Class
Pacific Journal of Mathematics BUNDLES WITH SPHERICAL EULER CLASS Luis Guijarro, Thomas Schick, and Gerard Walschap Volume 207 No. 2 December 2002 PACIFIC JOURNAL OF MATHEMATICS Vol. 207, No. 2, 2002 BUNDLES WITH SPHERICAL EULER CLASS Luis Guijarro, Thomas Schick, and Gerard Walschap In this note, we show that the holonomy group of a Rie- mannian connection on a k-dimensional Euclidean vector bun- dle is transitive on the unit sphere bundle whenever the Eu- ler class χ is spherical. We extract several consequences from this, among them that this is always the case as long as χ does not vanish, and the base of the bundle is simply connected and rationally (k + 1)/2-connected. 1. Introduction and statement of main results. Recall that every complete, noncompact Riemannian manifold M with non- negative sectional curvature contains a compact, totally geodesic (hence also nonnegatively curved) submanifold, called a soul. The soul theorem of Cheeger and Gromoll ([2]) states that M is then diffeomorphic to the normal bundle of the soul in M. When studying the converse, namely the question of whether a vector bundle over a closed nonnegatively curved manifold admits a complete met- ric which has also nonnegative sectional curvature, there appear to be con- straints on the topology of the bundle which imply that any such metric must be rigid. One such is the following: Definition 1.1. A Euclidean vector bundle with Riemannian connection is said to have transitive holonomy if the holonomy group associated to the connection acts transitively on (any fiber of) the corresponding sphere bundle. -
Lecture 8: More Characteristic Classes and the Thom Isomorphism We
Lecture 8: More characteristic classes and the Thom isomorphism We begin this lecture by carrying out a few of the exercises in Lecture 1. We take advantage of the fact that the Chern classes are stable characteristic classes, which you proved in Exercise 7.71 from the Whitney sum formula. We also give a few more computations. Then we turn to the Euler class, which is decidedly unstable. We approach it via the Thom class of an oriented real vector bundle. We introduce the Thom complex of a real vector bundle. This construction plays an important role in the course. In lecture I did not prove the existence of the Thom class of an oriented real vector bundle. Here I do so—and directly prove the basic Thom isomorphism theorem—when the base is a CW complex. It follows from Morse theory that a smooth manifold is a CW complex, something we may prove later in the course. I need to assume the theorem that a vector bundle over a contractible base (in this case a closed ball) is trivializable. For a smooth bundle this follows immediately from Proposition 7.3. The book [BT] is an excellent reference for this lecture, especially Chapter IV. Elementary computations with Chern classes (8.1) Stable tangent bundle of projective space. We begin with a stronger version of Proposi- tion 7.51. Recall the exact sequence (7.54) of vector bundles over CPn. Proposition 8.2. The tangent bundle of CPn is stably equivalent to (S∗)⊕(n+1). Proof. The exact sequence (7.54) shows that Q ⊕ S =∼ Cn+1. -
The First and Second Stiefel-Whitney Classes; Orientation and Spin Structure
The first and second Stiefel-Whitney classes; orientation and spin structure Robert Hines December 6, 2017 Classifying spaces and universal bundles Theorem 1. Given a topological group G, there is a space BG and a principal G-bundle EG such that for any space B (homotopy equivalent to a CW-complex), the principal G-bundles on B are in bijection with homotopy classes of maps f : B ! BG via pullback. I.e., given a principal G-bundle E ! B, there exists a map f : B ! BG such that f ∗EG =∼ E and f ∗EG =∼ g∗EG if and only if f and g are homotopy equivalent. 1 k For G = O(n), we can take BG = Grn(R ), a limit of the Grassmann manifolds Grn(R ) k 1 k of n-planes in R . Above this we have EG = Vn(R ), a limit of the Stiefel manifolds Vn(R ) of k orthogonal n-frames in R . The map EG ! BG is given by forgetting the framing. The fiber is clearly O(n). Stiefel-Whitney classes Vaguely, characteristic classes are cohomology classes associated to vector bundles (functorially) ∗ over a space B. We will be concerned with the Stiefel-Whitney classes in H (B; F2) associated to real vector bundles over B. These are mod 2 reductions of obstructions to finding (n − i + 1) linearly independent sections of an n-dimensional vector bundle over the i skeleton of B. i Theorem 2 ([M], Chapter 23). There are characteristic classes wi(ξ) 2 H (B; F2) associated to an n-dimensional real vector bundle ξ : E ! B that satisfy and are uniquely determined by • w0(ξ) = 1 and wi(ξ) = 0 for i > dim ξ, • wi(ξ ⊕ ) = wi(ξ) where is the trivial line bundle R × B, 1 • w1(γ1) 6= 0 where γ1 is the universal line bundle over RP , Pi • wi(ξ ⊕ ζ) = j=0 wj(ξ) [ wi−j(ζ). -
An Introduction to Characteristic Classes
An Introduction to Characteristic Classes Derek Sorensen December 18, 2017 When studying principal G-bundles, a useful tool for studying \how nontrivial" the bundles are (whatever that means) is to study its classifying map. If you look at the notes on principal G-bundles, we know that principal G-bundles over a CW-complex X are in bijective correspondence with the set [X; BG] of homotopy classes of maps. However, in most cases it is not at all straightforward to find and study these maps. Instead, we use the ever-useful tool of cohomology to study the maps on cohomology which are induced by the maps in [X; BG]. This gives us the definition of a characteristic class of a principal G-bundle. Definition 0.1. Let π : E ! B be a principal G-bundle with classifying map ['] 2 [B; BG]. If c 2 H∗(BG), then the characteristic class c(E) 2 H∗(B) is the image of c under the map '∗ : H∗(BG) ! H∗(B). Immediately from this definition, we have that if E1 and E2 are isomorphic principal G-bundles over X, then their characteristic classes are isomorphic. Likewise, if E = B × G is the trivial principal G-bundle, then its classifying map is nullhomotopic, and so its characteristic classes must be trivial. Theorem 0.2. Given any fiber bundle π : E ! B with fiber F and structure group Aut(F ), there exists a principal Aut(F )-bundle P such that E = P ×G F . Characteristic classes can also be defined for arbitrary fiber bundles with fiber F and structure group Aut(F ).