The Stiefel{Whitney theory of topological insulators Ralph M. Kaufmann ∗ Dan Li y Birgit Wehefritz-Kaufmann z Keywords: topological insulator, topological Z2 invariant, Stiefel{Whitney class, cobordism theory, extended TQFT Abstract We study the topological band theory of time reversal invariant topological insulators and interpret the topological Z2 invariant as an obstruction in terms of Stiefel{Whitney classes. The band struc- ture of a topological insulator defines a Pfaffian line bundle over the momentum space, whose structure group can be reduced to Z2. So the topological Z2 invariant will be understood by the Stiefel{Whitney theory, which detects the orientability of a principal Z2-bundle. More- over, the relation between weak and strong topological insulators will be understood based on cobordism theory. Finally, the topological Z2 invariant gives rise to a fully extended topological quantum field theory (TQFT). arXiv:1604.02792v1 [math-ph] 11 Apr 2016 1 Introduction Time reversal invariant topological insulators, or simply topological insula- tors, are new materials with conducting edge states protected by the time reversal Z2 symmetry and charge conservation (a U(1) symmetry) [5]. The ∗e-mail:
[email protected] ye-mail:
[email protected] ze-mail:
[email protected] 1 electronic band structure of a topological insulator defines a vector bundle over the momentum space, which is called the Bloch bundle by physicists [6]. The Bloch bundle is naturally equipped with a Hermitian metric, so it becomes an even rank Hilbert bundle, i.e., each fiber is an inner product vector space. The characteristic feature of a topological insulator is deter- mined by its top band, i.e., the top subbundle of the Bloch bundle.