Ephemeroptera
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S Rdna Sequences: a Reply to Sun Et Al
Utah Valley University From the SelectedWorks of T. Heath Ogden 2008 Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) are not monophyletic based on 18S rDNA sequences: A Reply to Sun et al. (2006) T. Heath Ogden, Utah Valley University Available at: https://works.bepress.com/heath_ogden/9/ LETTERS TO THE EDITOR Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S rDNA Sequences: A Response to Sun et al. (2006) 1 2 3 T. HEATH OGDEN, MICHEL SARTORI, AND MICHAEL F. WHITING Sun et al. (2006) recently published an analysis of able on GenBank October 2003. However, they chose phylogenetic relationships of the major lineages of not to include 34 other mayßy 18S rDNA sequences mayßies (Ephemeroptera). Their study used partial that were available 18 mo before submission of their 18S rDNA sequences (Ϸ583 nucleotides), which were manuscript (sequences available October 2003; their analyzed via parsimony to obtain a molecular phylo- manuscript was submitted 1 March 2005). If the au- genetic hypothesis. Their study included 23 mayßy thors had included these additional taxa, they would species, representing 20 families. They aligned the have increased their generic and familial level sam- DNA sequences via default settings in Clustal and pling to include lineages such as Leptohyphidae, Pota- reconstructed a tree by using parsimony in PAUP*. manthidae, Behningiidae, Neoephemeridae, Epheme- However, this tree was not presented in the article, rellidae, and Euthyplociidae. Additionally, there were nor have they made the topology or alignment avail- 194 sequences available (as of 1 March 2005) for other able despite multiple requests. This molecular tree molecular markers, aside from 18S, that could have was compared with previous hypotheses based on been used to investigate higher level relationships. -
Environmental Factors Affecting Mayfly Assemblages in Tufa-Depositing
Knowl. Manag. Aquat. Ecosyst. 2017, 418, 14 Knowledge & © M. Vilenica et al., Published by EDP Sciences 2017 Management of Aquatic DOI: 10.1051/kmae/2017005 Ecosystems www.kmae-journal.org Journal fully supported by Onema RESEARCH PAPER Environmental factors affecting mayfly assemblages in tufa-depositing habitats of the Dinaric Karst Marina Vilenica1,*, Vlatka Mičetić Stanković2, Michel Sartori3, Mladen Kučinić4 and Zlatko Mihaljević4 1 University of Zagreb, Faculty of Teacher Education, Trg Matice hrvatske 12, 44250 Petrinja, Croatia 2 Croatian Natural History Museum, Demetrova 1, 10000 Zagreb, Croatia 3 Museum of Zoology, Place de la Riponne 6, 1005 Lausanne, Switzerland 4 University of Zagreb, Faculty of Science, Rooseveltov trg 6, 10000 Zagreb, Croatia Abstract – Remarkably, unlike other parts of Europe, the ecology of mayflies in the southeastern regions is still poorly known. Here we present the first comprehensive study of Ephemeroptera in the tufa-depositing habitats of the Dinaric Karst. The study was conducted in Plitvice Lakes National Park monthly during a one-year period (2007–2008) in different types of habitats (springs, streams, mountainous rivers, tufa barriers). The aims of the study were to determine mayfly composition, abundance, spatial distribution and habitat preferences, and to examine the environmental factors important for the structuring of mayfly assemblages in Plitvice Lakes National Park. The mayfly fauna of tufa-depositing habitats was composed of 14 species (20 taxa). Water temperature, pH and ammonium concentration were the most important environmental variables explaining mayfly assemblages. Mayfly assemblages grouped according to habitat type. Generally, the most favourable habitat type was mountainous stream, tufa barriers were less favourable, and the least favourable were springs. -
Colonization of a Parthenogenetic Mayfly (Caenidae: Ephemeroptera) from Central Africa
COLONIZATION OF A PARTHENOGENETIC MAYFLY (CAENIDAE: EPHEMEROPTERA) FROM CENTRAL AFRICA M.T. Gillies 1 and R.J. Knowles2 1 Lewes, E. Sussex, BN8 5TD U.K. 2 Department of Zoology, British Museum (Natural History), London, U.K. ABSTRACT A new parthenogenetic species of Caenis s.l. collected from Gabon, and maintained as a laboratory colony for 3 years in London, is formally described and notes are given on its biology in culture. INTRODUCTION DESCRIPTION In February, 1984, in the course of a survey of the Caenis knowlesi sp. nov. molluscan hosts of human schistosomiasis in Ga bon, Central Africa, one of us (RJK) brought Male subimago. Head and pronotum purplish some material back to London for further study. brown, antennae white, rest of thorax pale brown; The collection included the snails (Bulinus forskal antero-lateral margin of pronotum deeply notched ii) together with tadpoles (Leptopleis) and leaf-litter before apex to form a blunt process at the corner from the bed of a forest stream. The Bulinus were (Fig. 1); pro sternum ea 1.6 times as broad as long, set up as a laboratory colony in enamel dishes, coxae separated by a distance about equal to or while the tadpoles and detritus were put in an slightly less than width of coxa (Fig. 2). Fore fe aquarium tank. mur and tibia purplish brown, mid and hind legs When the aquarium was set up a few mayfly cream. Anterior wing veins purple, remainder nymphs were seen amongst the litter, and a few clear. Abdominal terga I-IX purplish brown, on days later the decomposing bodies of adults were III-VIII with a median pale interruption, IX with floating on the surface. -
The Imaginal Characters of Neoephemera Projecta Showing Its Plesiomorphic Position and a New Genus Status in the Family (Ephemeroptera: Neoephemeridae)
insects Article The Imaginal Characters of Neoephemera projecta Showing Its Plesiomorphic Position and a New Genus Status in the Family (Ephemeroptera: Neoephemeridae) Zhenxing Ma and Changfa Zhou * College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; [email protected] * Correspondence: [email protected]; Tel.: +86-139-5174-7595 Simple Summary: The phylogenetically problematic Neoephemeridae is a small family of the order Ephemeroptera, including four genera reported previously. They are genera Neoephemera (in Nearctic region), Ochernova (Central Asia), Leucorhoenanthus (West Palearctic) and Potamanthellus (East Palearctic and Oriental regions), which were geographically isolated until the Neoephemera projecta Zhou and Zheng, a species reported in 2001 from Southwestern China, connected them together. In this work, the imaginal stage and biology of Neoephemera projecta are first observed and described. Furthermore, a series of autapomorphies and plesiomorphies of it are recognized and discussed. Morphologically and biologically, this species is significantly different from other genera and deserves a new plesiomorphic position in the Family Neoephemeridae. Therefore, a new genus Pulchephemera gen. n. is established to reflect its primitive position and intermediate characters of two clades of the family. In addition, some shared characters of this new genus and the family Ephemeridae provide a new perspective or possibility on the phylogeny of Neoephemeridae within Citation: Ma, Z.; Zhou, C. The the order Ephemeroptera. Imaginal Characters of Neoephemera projecta Showing Its Plesiomorphic Abstract: The newly collected imaginal materials of the species Neoephemera projecta Zhou and Zheng, Position and a New Genus Status in the Family (Ephemeroptera: 2001 from Southwestern China, which is linking the other genera of the family Neoephemeridae, Neoephemeridae). -
MAYFLIES) Prepared by Terry Hitchings, Canterbury Museum – July 2003
National Centre for Aquatic Biodiversity and Biosecurity www.niwa.co.nz/ncabb CHECKLIST OF NEW ZEALAND EPHEMEROPTERA (MAYFLIES) Prepared by Terry Hitchings, Canterbury Museum – July 2003 AMELETOPSIDAE Ameletopsis perscitus Eaton, 1899 COLOBURISCIDAE Coloburiscus humeralis Walker, 1853 Coloburiscus tonnoiri Lestage, 1935 ICHTHYBOTIDAE Ichthybotus bicolor Tillyard, 1923 Ichthybotus hudsoni McLachlan, 1894 LEPTOPHLEBIIDAE Acanthophlebia cruentata Hudson, 1904 Arachnocolus phillipsi Towns & Peters, 1979 Atalophlebioides cromwelli Phillips, 1930 Austronella planulata Towns, 1983 Austroclima jollyae Towns & Peters, 1979 Austroclima sepia Phillips, 1930 Cryophlebia aucklandensis Peters, 1971 Deleatidium (Deleatidium) angustum Towns & Peters 1996 Deleatidium (Deleatidium) autumnale Phillips, 1930 Deleatidium (Deleatidium) cerinum Phillips, 1930 Deleatidium (Deleatidium) fumosum Phillips, 1930 Deleatidium (Deleatidium) lillii Eaton, 1899 Deleatidium (Deleatidium) magnum Towns & Peters, 1996 Deleatidium (Deleatidium) myzobranchia Phillips, 1930 Deleatidium (Penniketellum) cornutum Towns & Peters 1996 Deleatidium (Penniketellum) insolitum Towns & Peters, 1979 Deleatidium (Deleatidium) vernale Phillips, 1930 Isothraulus abditus Towns & Peters, 1979 Mauiulus aquilus Towns & Peters, 1996 Mauiulus luma Towns & Peters, 1979 Neozephlebia scita Walker, 1853 Tepakia caligata Towns & Peters, 1996 Zephlebia borealis Phillips, 1930 Zephlebia dentata Eaton, 1871 Zephlebia inconspicua Towns, 1983 Zephlebia nebulosa Towns & Peters, 1996 Zephlebia pirongia Towns -
CHAPTER 4: EPHEMEROPTERA (Mayflies)
Guide to Aquatic Invertebrate Families of Mongolia | 2009 CHAPTER 4 EPHEMEROPTERA (Mayflies) EPHEMEROPTERA Draft June 17, 2009 Chapter 4 | EPHEMEROPTERA 45 Guide to Aquatic Invertebrate Families of Mongolia | 2009 ORDER EPHEMEROPTERA Mayflies 4 Mayfly larvae are found in a variety of locations including lakes, wetlands, streams, and rivers, but they are most common and diverse in lotic habitats. They are common and abundant in stream riffles and pools, at lake margins and in some cases lake bottoms. All mayfly larvae are aquatic with terrestrial adults. In most mayfly species the adult only lives for 1-2 days. Consequently, the majority of a mayfly’s life is spent in the water as a larva. The adult lifespan is so short there is no need for the insect to feed and therefore the adult does not possess functional mouthparts. Mayflies are often an indicator of good water quality because most mayflies are relatively intolerant of pollution. Mayflies are also an important food source for fish. Ephemeroptera Morphology Most mayflies have three caudal filaments (tails) (Figure 4.1) although in some taxa the terminal filament (middle tail) is greatly reduced and there appear to be only two caudal filaments (only one genus actually lacks the terminal filament). Mayflies have gills on the dorsal surface of the abdomen (Figure 4.1), but the number and shape of these gills vary widely between taxa. All mayflies possess only one tarsal claw at the end of each leg (Figure 4.1). Characters such as gill shape, gill position, and tarsal claw shape are used to separate different mayfly families. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Final Report on Field Surveys
Ecological Surveys and Assessments to Facilitate Restoration Activities at the Salt River Marsh: Final Report on Field Surveys Prepared by: Peter J. Badra, Tyler J. Bassett, and Yu Man Lee Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901 For: Michigan Department of Environment, Great Lakes, and Energy, Water Resources Division February 4, 2020 Report Number 2020-05 Suggested Citation: Badra, P.J., T.J. Basset, Y.M. Lee. 2020. Ecological Surveys and Assessments to Facilitate Restoration Activities at the Salt River Marsh: Final Report on Field Surveys. Michigan Natural Features Inventory Report Number 2020-05, Lansing, MI. 97pp. Cover Photos: Background - Looking northwest at Stand 4, from edge of Stand 5, at cattails and common reed in the Salt River Marsh State Wildlife Area. Photo by Tyler J. Basset; Inset, left - Painted turtle hatchling. Photo by Yu Man Lee; Inset, right - American bluet damselfly larvae. Photo by Peter J. Badra. MSU is an affirmative-action, equal-opportunity employer. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, gender identity, religion, age, height, weight, disability, political beliefs, sexual orientation, marital status, family status or veteran status. Copyright 2020 MSU Board of Trustees Acknowledgments Financial support for this project was provided by the Great Lakes Restoration Initiative via the Water Resources Division of the Michigan Department of Environment, Great Lakes, and Energy. Daria Hyde and Ashley Cole-Wick provided essential assistance with the field component of this project. Thank you to the landowners who kindly allowed us to access the Salt River and marsh through their properties, especially during difficult times with high water. -
Patterns of Ecological Performance and Aquatic Insect Diversity in High
University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2012 Patterns of Ecological Performance and Aquatic Insect Diversity in High Quality Protected Area Networks Jason Lesley Robinson University of Tennessee Knoxville, [email protected] Recommended Citation Robinson, Jason Lesley, "Patterns of Ecological Performance and Aquatic Insect Diversity in High Quality Protected Area Networks. " PhD diss., University of Tennessee, 2012. http://trace.tennessee.edu/utk_graddiss/1342 This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Jason Lesley Robinson entitled "Patterns of Ecological Performance and Aquatic Insect Diversity in High Quality Protected Area Networks." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Ecology and Evolutionary Biology. James A. Fordyce, Major Professor We have read this dissertation and recommend its acceptance: J. Kevin Moulton, Nathan J. Sanders, Daniel Simberloff, Charles R. Parker Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official student records.) Patterns of Ecological Performance and Aquatic Insect Diversity in High Quality Protected Area Networks A Dissertation Presented for The Doctor of Philosophy Degree The University of Tennessee, Knoxville Jason Lesley Robinson May 2012 Copyright © 2012 by Jason Lesley Robinson All rights reserved. -