Additional Date Concerning Microbotryum Violaceum S. L. Distribution in Russia

Total Page:16

File Type:pdf, Size:1020Kb

Additional Date Concerning Microbotryum Violaceum S. L. Distribution in Russia МИКОЛОГИЯ È ФИТОПАТОЛОГИЯ Том 44 2010 Вып.2 ГРИБЫ — ВОЗБУДИТЕЛИ БОЛЕЗНЕЙ РАСТЕНИЙ УДК 582.285.1 (471) © Т. Â. Багдaсарова, А. Ð. Карапетян, È. А. Захаров ДОПОЛНИТЕЛЬНЫЕ ДАННЫЕ Î РАСПРОСТРАНЕНИИ MICROBOTRYUM VIOLACEUM S. L. Â РОССИИ BAGDASAROVA T.V., KARAPETYAN A.R., ZAKHAROV I.A. ADDITIONAL DATE CONCERNING MICROBOTRYUM VIOLACEUM S. L. DISTRIBUTION IN RUSSIA Распространение в природе фитопатогенных грибов, поражающих дикие виды, изучено значительно слабее, чем тех грибов, которые паразитируют на культурных растениях. Вместе ñ тем исследования в этом направлении могут дать ценные сведе- ния о механизмах è темпах эволюции отношений паразит—хозяин è о факторах, спо- собствующих èëè, наоборот, ограничивающих расселение фитопатогенов. Перспективным модельным объектом для таких исследований является гриб Mic- robotryum violaceum (Pers.) G. Deml et Oberw. — возбудитель головни пыльников на многих видах семейства Caryophyllaceae. Симптомы поражения растений патогеном хорошо заметны не только на живых, но è на гербарных зараженных образцах. За по- следние годы накоплен большой объем информации об инфицировании этим грибом различных видов растений è о распространении паразита в разных регионах Север- ной Америки è Европы (Freeman et al., 2002; Vanky, 2004; Gac et al., 2007). Для терри- тории России также имеются данные относительно распространения патогена. Во многих монографиях è определителях, посвященных головневым грибам, имеются сведения о распространении Ustilago violacea (Microbotryum violaceum áûë выделен из Ustilago violacea) на территории бывшего СССР. Â работах Ë. С. Гутнер (1941), Â. È. Ульянищева (1952, 1968), М. Ê. Игнатавичюте (1975), È. Â. Каратыгина (2005) è других указаны ареалы данного вида. Â ряде работ сообщается о находках гриба в Арктике è на Дальнем Востоке (Васильева, 1976; Говорова, 1990; Азбукина è др., 1995; Каратыгин è др., 1995, 1999). Антонович (Antonovics et al., 2003) è другие исследователи (Ristaino, 1998; Eloff, 1999) показали, что изучение гербариев дает дополнительную информацию о распро- странении фитопатогенных грибов, в частности M. violaceum. Мы использовали этот подход, обследовав Гербарий биологического факультета им. Ä. Ï. Сырейщикова Московского государственного университета (MW). Изучение гербарных материалов этой коллекции позволило дополнить уже имеющиеся сведения о распространении M. violaceum на территории России, очертить круг видов, которые наиболее часто по- ражаются данным патогеном, è приблизительно оценить процент зараженных особей в природных популяциях. Материал è методы Патогенный гриб Microbotryum violaceum s. l. поражает пыльники более чем у 100 видов растений из семейства Caryophyllaceae (Thrall et al., 1993). Этот вид при- надлежит ê семейству Microbotryaceae (порядок Microbotryales, класс Urediniomyce- 143 tes). По мнению некоторых авторов (Гутнер, 1941; Каратыгин, 2005), M. violaceum распадается на отдельные самостоятельные виды, приуроченные ê определенному растению-хозяину либо ê группе растений-хозяев, причем не обязательно из одно- го рода. Данная система делений M. violaceum соответствует ранее принятой для Us- tilago violacea. Специалисты выделили 14 видов, входящих в состав U. violacea: U. duriaeana Tul., U. ducellieri Maire, U. holostei de Bary, U. stellariae (Sowerby) Liro, U. nivalis Liro, U. antherarum Fr., U. major J. Schrцt, U. silenes-inflatae (DC.) Liro, U. si- lenes-nutantis Liro, U. coronariae Liro, U. lychnidis-dioicae (DC.) Liro, U. dianthorum Liro, U. superba Liro, U. moenchiae-manticae Lindtner. Однако мы в нашей работе будем руководствоваться более широкой трактовкой Microbotryum violaceum è будем рассматривать его в качестве комплексного вида. Такое понимание вида подкрепляет- ся современными молекулярными данными, полученными ñ использованием стан- дартных ядерных è митохондриальных маркеров (Freeman et al., 2002; Gac et al., 2007), микросателлитных последовательностей (Giraud et al., 2002, 2008) è методики кариотипирования различных штаммов (Perlin et al., 1997), на что в одной из своих ра- бот указывал Ванки (Vanky, 2004). Проявлением инфекции является обильное спороношение на пыльниках заражен- ного растения, которые при этом увеличиваются в размере, становятся черно-фиоле- товыми, ñ обильным порошистым налетом, в то время как у незараженных растений размер, форма è цвет пыльников, как правило, характеризуются иным проявлением данных признаков. Изменение окраски è формы пыльников хорошо заметно è на гер- баризированных растениях. Â качестве исследуемого áûë выбран Гербарий биологического факультета им. Ä. Ï. Сырейщикова Московского государственного университета (MW). Прежде никто не использовал обширнейший материал данной коллекции для исследований подобного рода. Â работе использовали материалы Отдела флоры Восточной Европы, насчитывающие 14 209 гербарных листов (225 видов, 33 рода растений семейства Ca- ryophyllaceae), è Отдела флоры Сибири è Дальнего Востока — 5070 листов (209 ви- дов из 25 родов растений семейства Caryophyllaceae). Далее названия видов растений приведены по Ï. Ф. Маевскому (2006) è «Флоре СССР» (1936). Просмотр образцов, сохраняемых в Гербарии биологического факультета МГУ, показал, что никто из коллекторов не обращал внимания на отмеченные выше симп- томы инфекции, во всяком случае зараженность образцов не была отражена на эти- кетках. Поскольку при высушивании è хранении цвет пыльников может меняться, об- разцы ñ темными (потемневшими) пыльниками просматривались под бинокулярным микроскопом при увеличении, позволяющем однозначно увидеть на них спороноше- ние гриба. Для более точной идентификации M. violaceum s. l. споры из пораженных пыльников исследовали под световым микроскопом. Особое внимание при этом уде- ляли морфологии спор, структуре экзоспория, которая у M. violaceum s. l. сетчатая. По характеру поражения M. violaceum s. l. схож ñ другим видом, а, точнее, группой видов из рода Sorosporium, также паразитирующих на растениях из семейства Caryop- hyllaceae è отличающихся иным оттенком спор (табачно-коричневым èëè корич- неватым) è бородавчатой èëè мелкошиповатой морфологией èõ поверхностной структуры. Результаты è обсуждение Â Гербарии МГУ áûëè изучены образцы 346 видов, 36 родов растений семейства Caryophyllaceae. Симптомы заражения áûëè обнаружены на образцах 10 видов расте- ний, относящихся ê 6 родам. Полученные данные дополняют ранее опубликованную информацию (Гутнер, 1941; Ульянищев, 1952, 1968; Savulescu, 1957; Игнатавичюте, 1975; Vanky, 2004) о распространении патогена на территории России (табл. 1). Нами при изучении гербария отмечены новые, прежде не упоминавшиеся в отече- ственной литературе растения-хозяева: Silene dichotoma Ehrh., S. viscosa (L.) Pers., Di- 144 Таблица 1 Распространение M. violaceum s. l. на территории России (по литературным данным) Растение-хозяин Распространение Литературный источник Holosteum L. (костенец): H. um- Смоленская обл. Гутнер, 1941; Ульянищев, bellatum L. 1968 Saponaria officinalis L. (мыльнян- Воронежская, Курская, Москов- Гутнер, 1941; Ульянищев, ка) ская области 1952, 1968; Игнатавичю- те, 1975 Stellaria L. (звездчатка): S. caly- Ивановская, Ленинградская, Мага- Гутнер, 1941; Ульянищев, cantha (Ledeb.) Bong., S. ciliato- данская, Московская, Мурман- 1952, 1968; Игнатавичю- sepala Trautv., S. eschscholtzia- ская, Смоленская, Ярославская, те, 1975; Каратыгин, 2005 na Fenzl, S. graminea L., S. ho- Камчатская области, Республика lostea L., S. longifolia Fr., S. pe- Карелия, Таймыр duncularis Bge., S. diffusa Willd. Moehringia lateriflora Fenzl. (ме- Камчатская, Мурманская, Читин- Гутнер, 1941; Ульянищев, рингия) ская области 1968; Каратыгин, 2005 Silene L. (смолевка): S. acaulis Камчатская, Кировская, Курская, Гутнер, 1941; Ульянищев, (L.) Jacq., S. commutata Guss., Московская, Мурманская, Ново- 1952, 1968; Игнатавичю- S. latifolia Rendle, S. longifolia сибирская, Саратовская, Саха- те, 1975; Каратыгин, 2005 Muehl, S. nutans L., S. otites линская, Смоленская области, Sm., S. repens Patrin, S. rupestris Красноярский край, Республика L., S. wolgensis Bess. Сев. Осетия Viscaria (смолка): V. alpina G. Don, Мурманская, Смоленская области То же V. viscosa Aschers Coronaria flos-cuculi A. Br. (гори- Смоленская обл., Сибирь Гутнер, 1941; Ульянищев, цвет) 1968; Игнатавичюте, 1975; Каратыгин, 2005 Melandryum Roehl. (дрема): M. al- Ленинградская, Московская, Смо- Ульянищев, 1952, 1968; Èã- bum Garcke, M. affine Vahl, ленская области, Республика Ка- натавичюте, 1975; Кара- M. apetalum Fenzl, M. brachype- релия, Приморский край тыгин, 2005 talum Fenzl, M. dioicum (L.) Coss. et Germ., M. rubrum Gar- ñke, M. sibiricum A. Br. Dianthus L. (гвоздика): D. arenari- Воронежская, Кировская, Курская, Гутнер, 1941; Ульянищев, us L., D. chinensis L., D. deltoi- Ленинградская, Московская, Мур- 1968; Игнатавичюте, 1975; des L., D. superbus L. манская, Саратовская, Омская, Каратыгин, 2005 Смоленская, Читинская области, Новая Земля, Якутия, Республи- êè Карелия, Бурятия Gastrolychnis apetala (L.) Tolm. et Магаданская обл., о. Врангеля Каратыгин, 2005 Kozhanczikov (гастролихнис) Minuartia macrocarpa (Pursh) Os- Камчатская обл. То же tenf (минуарция) anthus repens Willd (табл. 2). Кроме того, за счет полученных данных существенно расширена область распространения M. violaceum s. l. на территории России. Зараже- ния зафиксированы в 13 новых областях (см. рисунок). Представленные выше материалы показывают, что возбудитель головни пыльни- ков M. violaceum s. l. встречается, вероятно, на всей территории России: он áûë обна- ружен на образцах, собранных от Кольского полуострова до Северной Осетии è от Брянской
Recommended publications
  • Natural Enemies and Sex: How Seed Predators and Pathogens Contribute to Sex-Differential Reproductive Success in a Gynodioecious Plant
    Oecologia (2002) 131:94–102 DOI 10.1007/s00442-001-0854-8 PLANT ANIMAL INTERACTIONS C.L. Collin · P. S. Pennings · C. Rueffler · A. Widmer J.A. Shykoff Natural enemies and sex: how seed predators and pathogens contribute to sex-differential reproductive success in a gynodioecious plant Received: 3 May 2001 / Accepted: 5 November 2001 / Published online: 14 December 2001 © Springer-Verlag 2001 Abstract In insect-pollinated plants flowers must bal- Introduction ance the benefits of attracting pollinators with the cost of attracting natural enemies, when these respond to floral Flowering plants have many different reproductive sys- traits. This dilemma can have important evolutionary tems, the most predominant being hermaphroditism, consequences for mating-system evolution and polymor- which is found in 72% of all species (Klinkhamer and de phisms for floral traits. We investigate the benefits and Jong 1997). However, unisexuality or dioecy has risks associated with flower size and sex morph variation evolved many times, with gynodioecy – the coexistence in Dianthus sylvestris, a gynodioecious species with pis- of female and hermaphrodite individuals within a species – tillate flowers that are much smaller than perfect flowers. seen as a possible intermediate state between hermaphro- We found that this species is mainly pollinated by noc- ditism and dioecy (Darwin 1888; Thomson and Brunet turnal pollinators, probably moths of the genus Hadena, 1990). Delannay (1978) estimates that 10% of all angio- that also oviposit in flowers and whose caterpillars feed sperm species have this reproductive system, which is on developing fruits and seeds. Hadena preferred larger widespread in the Lamiaceae, Plantaginaceae (Darwin flowers as oviposition sites, and flowers in which Hadena 1888), and Caryophyllaceae (Desfeux et al.
    [Show full text]
  • Anther Smuts of Caryophyllaceae: Molecular Characters Indicate Host-Dependent Species Delimitation+
    Mycological Progress 4(3): 225–238, August 2005 225 Anther smuts of Caryophyllaceae: molecular characters indicate host-dependent species delimitation+ Matthias LUTZ1,*, Markus GÖKER1, Marcin PIATEK2, Martin KEMLER1, Dominik BEGEROW1, and Franz OBERWINKLER1 Phylogenetic relationships of Microbotryum species (Urediniomycetes, Basidiomycota) inhabiting anthers of Caryophyllaceae were investigated by molecular analyses using internal transcribed spacer (ITS) sequences and collections from different host plants. The data show that the current taxonomy of Microbotryum on Caryophyllaceae is only partly satisfactory. Micro- botryum violaceum is confirmed to be a paraphyletic grouping and is split up in monophyletic groups. Microbotryum silenes- inflatae and M. violaceo-verrucosum appear as polyphyletic. Host data are in good agreement with molecular results. Two new species, Microbotryum chloranthae-verrucosum and M. saponariae, are described based on morphological, ecological, and molecular characteristics. An emended circumscription of Microbotryum dianthorum is given. The name Ustilago major (= Microbotryum major) is lectotypified. Taxonomic novelties: Microbotryum chloranthae-verrucosum M. Lutz, Göker, M. Piatek, Kemler, Begerow et Oberw.; Microbotryum saponariae M. Lutz, Göker, M. Piatek, Kemler, Begerow et Oberw. Keywords: anther parasites, ITS, Microbotryum, molecular analysis, smut fungi, Urediniomycetes n the current classification of Microbotryum (VÁNKY ecological factors (e.g., THRALL, BIERE & ANTONOVICS 1993) 1998), 15 species on Caryophyllaceae are accepted, eight and numerous publications dealt with population studies (e.g., I of which occur in the host’s anthers, more rarely also in LEE 1981; MILLER ALEXANDER & ANTONOVICS 1995; MILLER other floral parts. These anther parasites exhibit a couple of ALEXANDER et al. 1996), including investigations in recent outstanding features. Infected anthers become completely host shifts (ANTONOVICS, HOOD & PARTAIN 2002).
    [Show full text]
  • Publis16-Bgpi-002 Eberlein Dis
    Distribution and population structure of the anther smut Microbotryum silenes-acaulis parasitizing an arctic-alpine plant Britta Bueker, Chris Eberlein, Pierre Gladieux, Angela Schaefer, Alodie Snirc, Dominic J. Bennett, Dominik Begerow, Michael E. Hood, Tatiana Giraud To cite this version: Britta Bueker, Chris Eberlein, Pierre Gladieux, Angela Schaefer, Alodie Snirc, et al.. Distribution and population structure of the anther smut Microbotryum silenes-acaulis parasitizing an arctic-alpine plant. Molecular Ecology, Wiley, 2016, 25 (3), pp.811–824. 10.1111/mec.13512. hal-01497390 HAL Id: hal-01497390 https://hal.archives-ouvertes.fr/hal-01497390 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Received Date : 08-Jul-2015 Revised Date : 02-Nov-2015 Accepted Date : 26-Nov-2015 Article type : Original Article Distribution and population structure of the anther smut Microbotryum silenes-acaulis parasitizing an arctic-alpine plant Britta Bueker*1,2, Chris Eberlein*1,3, Pierre Gladieux*4,5, Angela Schaefer1, Alodie Snirc4, Dominic
    [Show full text]
  • Expressed Sequences Tags of the Anther Smut Fungus, Microbotryum
    Expressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity genes Roxana Yockteng, Sylvain Marthey, Hélène Chiapello, Annie Gendrault, Michael Hood, Francois Rodolphe, Benjamin Devier, Patrick Wincker, Carole Dossat, Tatiana Giraud To cite this version: Roxana Yockteng, Sylvain Marthey, Hélène Chiapello, Annie Gendrault, Michael Hood, et al.. Ex- pressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity genes. BMC Genomics, BioMed Central, 2009, 8 (1), pp.272. 10.1186/1471-2164-8- 272. hal-02333218 HAL Id: hal-02333218 https://hal.archives-ouvertes.fr/hal-02333218 Submitted on 31 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BMC Genomics BioMed Central Research article Open Access Expressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity genes Roxana Yockteng1,2, Sylvain Marthey3, Hélène Chiapello3, Annie Gendrault3, Michael E Hood4, François Rodolphe3, Benjamin Devier1, Patrick Wincker5,
    [Show full text]
  • Anther Smuts of Caryophyllaceae. Taxonomy, Nomenclature, Problems in Species Delimitation *
    MYCOLOGIA BALCANICA 1: 189–191 (2004) 189 Anther smuts of Caryophyllaceae. Taxonomy, nomenclature, problems in species delimitation * Kálmán Vánky Herbarium Ustilaginales Vánky (H.U.V.), Gabriel-Biel-Str. 5, D-72076 Tübingen, Germany (e-mail: [email protected]) Received: September 5, 2004 / Accepted: September 24, 2004 Abstract. After a short historical review, taxonomy and nomenclature of the genus Microbotryum in general, and those of the anther smuts of Caryophyllaceae in special, are presented. Problems in species delimitation of these smut fungi are discussed, which is still not solved satisfactorily. Until a better classifi cation of the anther smuts of Caryophyllaceae will be elaborated, the use of the name of M. violaceum s. lat. is proposed for M. dianthorum, M. lychnidis-dioicae, M. silenes-infl atae, Ustilago coronariae, U. silenes-nutantis, and U. superba. Key words: anther smuts, Caryophyllaceae, Microbotryum violaceum, smut fungi, species delimitation, taxonomy Motto:Recognise what you are working with Th e anther smuts of Caryophyllaceae are among the oldest taxonomic and nomenclatural problems of Microbotryum Lév. described smut fungi. In 1797, the fungus in the anthers of (Léveillé 1847: 372), emend. Vánky (1998: 39) was published Silene nutans was named by Persoon Uredo violacea. Since by me (Vánky 1998) in a monograph of the genus. It would that, its name and place in the classifi catory system was also take too long to show how the number of species of changed several times. It was called Ustilago violacea (Pers. : Microbotryum increased to 76 at present, on 7 host plant Pers.) Roussel (1806: 47), Caeoma violaceum (Pers.
    [Show full text]
  • Washington Flora Checklist a Checklist of the Vascular Plants of Washington State Hosted by the University of Washington Herbarium
    Washington Flora Checklist A checklist of the Vascular Plants of Washington State Hosted by the University of Washington Herbarium The Washington Flora Checklist aims to be a complete list of the native and naturalized vascular plants of Washington State, with current classifications, nomenclature and synonymy. The checklist currently contains 3,929 terminal taxa (species, subspecies, and varieties). Taxa included in the checklist: * Native taxa whether extant, extirpated, or extinct. * Exotic taxa that are naturalized, escaped from cultivation, or persisting wild. * Waifs (e.g., ballast plants, escaped crop plants) and other scarcely collected exotics. * Interspecific hybrids that are frequent or self-maintaining. * Some unnamed taxa in the process of being described. Family classifications follow APG IV for angiosperms, PPG I (J. Syst. Evol. 54:563?603. 2016.) for pteridophytes, and Christenhusz et al. (Phytotaxa 19:55?70. 2011.) for gymnosperms, with a few exceptions. Nomenclature and synonymy at the rank of genus and below follows the 2nd Edition of the Flora of the Pacific Northwest except where superceded by new information. Accepted names are indicated with blue font; synonyms with black font. Native species and infraspecies are marked with boldface font. Please note: This is a working checklist, continuously updated. Use it at your discretion. Created from the Washington Flora Checklist Database on September 17th, 2018 at 9:47pm PST. Available online at http://biology.burke.washington.edu/waflora/checklist.php Comments and questions should be addressed to the checklist administrators: David Giblin ([email protected]) Peter Zika ([email protected]) Suggested citation: Weinmann, F., P.F. Zika, D.E. Giblin, B.
    [Show full text]
  • Elevational Disease Distribution in a Natural Plant– Pathogen System: Insights from Changes Across Host Populations and Climate
    Oikos 123: 1126–1136, 2014 doi: 10.1111/oik.01001 © 2014 Th e Authors. Oikos © 2014 Nordic Society Oikos Subject Editor: Anna-Liisa Laine. Accepted 14 February 2014 Elevational disease distribution in a natural plant – pathogen system: insights from changes across host populations and climate Jessica L. Abbate and Janis Antonovics J. L. Abbate ([email protected]), Centre d ’ É cologie Fonctionelle et É volutive (CEFE), UMR 5175, CNRS, 1919 route de Mende, FR-34293, Montpellier, France. – J. Antonovics, Dept of Biology, Univ. of Virginia, Charlottesville, VA 22904, USA. Understanding the factors determining the distribution of parasites and pathogens in natural systems is essential for making predictions about the spread of emerging infectious disease. Here, we report the distribution of the fungal anther-smut disease, caused by Microbotryum spp., on populations of the European wildfl ower Silene vulgaris over a range of elevations. A survey of several geographically distinct mountains in the southern French alps found that anther- smut disease was restricted to high elevations, rarely observed below 1300 m despite availability of hosts below this elevation. Anther smut causes host-sterility, and is recognized as a model system for natural host – pathogen interactions, sharing common features with vector-borne and sexually-transmitted disease in animals. In such systems, many biotic and abiotic factors likely to change over ecological gradients can infl uence disease epidemiology, including host spatial structure, pathogen infectivity, host resistance, and vector behavior. Here, we tested whether host population size, density, or connectivity also declined across elevation, and whether these epidemiologically relevant factors explained the observed disease distribution.
    [Show full text]
  • Evolutionary Strata on Young Mating-Type Chromosomes Despite the Lack of Sexual Antagonism
    Evolutionary strata on young mating-type chromosomes despite the lack of sexual antagonism Sara Brancoa,1, Hélène Badouina,b,1, Ricardo C. Rodríguez de la Vegaa,1, Jérôme Gouzyb, Fantin Carpentiera, Gabriela Aguiletaa, Sophie Siguenzab, Jean-Tristan Brandenburga, Marco A. Coelhoc, Michael E. Hoodd, and Tatiana Girauda,2 aEcologie Systématique Evolution, Univ. Paris Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France; bLaboratoire des Interactions Plantes- Microorganismes, Université de Toulouse, Institut National de la Recherche Agronomique, CNRS, 31326 Castanet-Tolosan, France; cUCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; and dDepartment of Biology, Amherst College, Amherst, MA 01002-5000 Edited by James J. Bull, The University of Texas at Austin, Austin, TX, and approved May 23, 2017 (received for review February 9, 2017) Sex chromosomes can display successive steps of recombination by drift in one of the two sex chromosomes with automatic re- suppression known as “evolutionary strata,” which are thought to combination arrest and the maintenance of a polymorphic state result from the successive linkage of sexually antagonistic genes due to balancing selection on sexes (2, 5–8) (SI Appendix, SI Text to sex-determining genes. However, there is little evidence to sup- and Fig. S1). port this explanation. Here we investigate whether evolutionary Recombination suppression has been documented in fungal strata can evolve without sexual antagonism using fungi that dis- mating-type chromosomes (9, 10), which carry key loci de- play suppressed recombination extending beyond loci determining termining mating compatibility. In basidiomycetes, mating type is mating compatibility despite lack of male/female roles associated typically controlled by two loci: (i) the pheromone receptor (PR) with their mating types.
    [Show full text]
  • The Illustrated Life Cycle of Microbotryum on the Host Plant Silene Latifolia
    875 The illustrated life cycle of Microbotryum on the host plant Silene latifolia Angela Maria Scha¨ fer, Martin Kemler, Robert Bauer, and Dominik Begerow Abstract: The plant-parasitic genus Microbotryum (Pucciniomycotina) has been used as a model for various biological studies, but fundamental aspects of its life history have not been documented in detail. The smut fungus is characterized by a dimorphic life cycle with a haploid saprophytic yeast-like stage and a dikaryotic plant-parasitic stage, which bears the te- liospores as dispersal agents. In this study, seedlings and flowers of Silene latifolia Poir. (Caryophyllaceae) were inoculated with teliospores or sporidial cells of Microbotryum lychnidis-dioicae (DC. ex Liro) G. Deml & Oberw. and the germination of teliospores, the infection process, and the proliferation in the host tissue were documented in vivo using light and elec- tron microscopy. Although germination of the teliospore is crucial for the establishment of Microbotryum, basidium devel- opment is variable under natural conditions. In flowers, where the amount of nutrients is thought to be high, the fungus propagates as sporidia, and mating of compatible cells takes place only when flowers are withering and nutrients are de- creasing. On cotyledons (i.e., nutrient-depleted conditions), conjugation occurs shortly after teliospore germination, often via intrapromycelial mating. After formation of an infectious hypha with an appressorium, the invasion of the host occurs by direct penetration of the epidermis. While the growth in the plant is typically intercellular, long distance proliferation seems mediated through xylem tracheary elements. At the beginning of the vegetation period, fungal cells were found be- tween meristematic shoot host cells, indicating a dormant phase inside the plant.
    [Show full text]
  • Characterising Plant Pathogen Communities and Their Environmental Drivers at a National Scale
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Characterising plant pathogen communities and their environmental drivers at a national scale A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Andreas Makiola Lincoln University, New Zealand 2019 General abstract Plant pathogens play a critical role for global food security, conservation of natural ecosystems and future resilience and sustainability of ecosystem services in general. Thus, it is crucial to understand the large-scale processes that shape plant pathogen communities. The recent drop in DNA sequencing costs offers, for the first time, the opportunity to study multiple plant pathogens simultaneously in their naturally occurring environment effectively at large scale. In this thesis, my aims were (1) to employ next-generation sequencing (NGS) based metabarcoding for the detection and identification of plant pathogens at the ecosystem scale in New Zealand, (2) to characterise plant pathogen communities, and (3) to determine the environmental drivers of these communities. First, I investigated the suitability of NGS for the detection, identification and quantification of plant pathogens using rust fungi as a model system.
    [Show full text]
  • Integrative Analysis of the West African Ceraceosorus Africanus Sp
    Org Divers Evol DOI 10.1007/s13127-016-0285-3 ORIGINAL ARTICLE Integrative analysis of the West African Ceraceosorus africanus sp. nov. provides insights into the diversity, biogeography, and evolution of the enigmatic Ceraceosorales (Fungi: Ustilaginomycotina) Marcin Piątek1 & Kai Riess2 & Dariusz Karasiński1 & Nourou S. Yorou3 & Matthias Lutz4 Received: 28 January 2016 /Accepted: 11 May 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The order Ceraceosorales (Ustilaginomycotina) single gene dataset (D1/D2 28S rDNA) supported the mono- currently includes the single genus Ceraceosorus,withone phyly of the two Ceraceosorus species and the Ceraceosorales species, Ceraceosorus bombacis,parasiticonBombax ceiba and their placement within the Ustilaginomycotina. Molecular in India. The diversity, biogeography, evolution, and phyloge- phylogenetic analyses of a multigene dataset (18S/5.8S/28S netic relationships of this order are still relatively unknown. rDNA/RPB2/TEF1) revealed Exobasidium rhododendri Here, a second species of Ceraceosorus is described from (Exobasidiales) as the closest relative of Ceraceosorus, both West Africa as a novel species, Ceraceosorus africanus,in- clustering together with Entyloma calendulae (Entylomatales), fecting Bombax costatum in Benin, Ghana, and Togo. This indicating affinities to the Exobasidiomycetes. This phylogenet- species produces conspicuous fructifications, similar to ic placement is in agreement with ultrastructural characteristics corticioid basidiomata when mature, but sorus-like in early (presence of local interaction zone and interaction apparatus) stages of ontogenetic development. The fructifications cover reported for the Ceraceosorales, Entylomatales, and much of the leaf surface and resemble leaf blight. This con- Exobasidiales. trasts with the inconspicuous fructifications of C. bombacis comprising small spots scattered over the lower leaf surface Keywords Basidiomycota .
    [Show full text]
  • 3 Major Clades - Subphyla - of the Basidiomycota
    3 Major Clades - Subphyla - of the Basidiomycota Agaricomycotina mushrooms, polypores, jelly fungi, corals, chanterelles, crusts, puffballs, stinkhorns Ustilaginomycotina smuts, Exobasidium, Malassezia Pucciniomycotina rusts, Septobasidium Ustilaginomycotina (Ustilaginomycetes) Ustilaginomycetes Urocystales Ustilaginales Exobasidiomycetes Exobasidiales Malasseziales Tilletiales Entorrhizomycetes simple septum with septal pore cap, not like the dolipore septum with parenthosome of Agaricomycotina Subphylum Ustilaginomycotina- smuts and relatives Ustilaginomycetes About 1500 species, 50 genera Parasitic on about 4000 spp of angiosperms, 75 families Economically important pathogens of cereals Corn smut Ustilago maydis Oat smut U. avenae Tilletia spp. “smuts and bunts” General life cycle of Ustilaginomycetes Alternate between saprobic, monokaryotic yeast and phytoparasitic, dikaryotic filamentous phases Ustilaginales-smuts • mating between monokaryotic spores • no specialized mating structures • unifactorial and bifactorial mating systems • monokaryons nonparasitic, saprobic • dikaryon phytoparasitic • heterothallic- mating of compatible spores • dimorphic- yeast and filamentous phases • teliospores teliospores germinate, give rise to a short germ tube of determinate growth called the promycelium. Promycelium: site of meiosis formation of sporidia Corn smut, Ustilago maydis Life cycle of Ustilago maydis Yeast stage, monokaryon persists in soil as saprobe Teliospores germinate to produce monokaryotic sporidia, equivalent to basidiospores Monokaryotic
    [Show full text]