Collagen Assembly at the Cell Surface: Dogmas Revisited
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measurement of Collagen Fibril Size and Organization by Electron
Using transmission electron microscopy and 3View® to determine collagen fibril size and three-dimensional organization Tobias Starborg1,2+, Nicholas S. Kalson1,2+, Yinhui Lu1,2+, Aleksandr Mironov2, Timothy F. Cootes3, David F. Holmes1,2* and Karl E. Kadler1,2* 1Wellcome Trust Centre for Cell-Matrix Research and Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT UNITED KINGDOM 2Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT UNITED KINGDOM 3Faculty of Medicine and Human Sciences, Imaging Sciences and Biomedical Imaging Institute, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT UNITED KINGDOM +Equal contribution *Authors for correspondence: [email protected] [email protected] Telephone +44 161 275 5086 Running title: Size and organization of collagen fibrils in vivo Collagen fibrils are the major tensile element in vertebrate tissues where they occur as ordered bundles in the extracellular matrix. Abnormal fibril assembly and organization results in scarring, fibrosis, poor wound healing and connective tissue diseases. Transmission electron microscopy (TEM) is used to assess formation of the fibrils, predominantly by measuring fibril diameter. Here we describe an enhanced protocol for measuring fibril diameter as well as fibril-volume-fraction, mean fibril length, fibril cross-sectional shape, and fibril 3D organization that are also major determinants of tissue function. Serial section TEM (ssTEM) has been used to visualize fibril 3D-organization in vivo. However, serial block face- scanning electron microscopy (SBF-SEM) has emerged as a time-efficient alternative to ssTEM. The protocol described below is suitable for preparing tissues for TEM and SBF- SEM (by 3View®). -
The Extracellular Matrix: an Accomplice in Gastric Cancer Development and Progression
cells Review The Extracellular Matrix: An Accomplice in Gastric Cancer Development and Progression Ana Margarida Moreira 1,2,3, Joana Pereira 1,2,4, Soraia Melo 1,2,4 , Maria Sofia Fernandes 1,2, Patrícia Carneiro 1,2 , Raquel Seruca 1,2,4 and Joana Figueiredo 1,2,* 1 Epithelial Interactions in Cancer Group, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; [email protected] (A.M.M.); [email protected] (J.P.); [email protected] (S.M.); [email protected] (M.S.F.); [email protected] (P.C.); [email protected] (R.S.) 2 Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal 3 Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal 4 Medical Faculty, University of Porto, 4200-319 Porto, Portugal * Correspondence: jfi[email protected]; Tel.: +351-220408800; Fax: +351-225570799 Received: 15 January 2020; Accepted: 6 February 2020; Published: 8 February 2020 Abstract: The extracellular matrix (ECM) is a dynamic and highly organized tissue structure, providing support and maintaining normal epithelial architecture. In the last decade, increasing evidence has emerged demonstrating that alterations in ECM composition and assembly strongly affect cellular function and behavior. Even though the detailed mechanisms underlying cell-ECM crosstalk are yet to unravel, it is well established that ECM deregulation accompanies the development of many pathological conditions, such as gastric cancer. Notably, gastric cancer remains a worldwide concern, representing the third most frequent cause of cancer-associated deaths. Despite increased surveillance protocols, patients are usually diagnosed at advanced disease stages, urging the identification of novel diagnostic biomarkers and efficient therapeutic strategies. -
Bruch's Membrane Abnormalities in PRDM5-Related Brittle Cornea
Porter et al. Orphanet Journal of Rare Diseases (2015) 10:145 DOI 10.1186/s13023-015-0360-4 RESEARCH Open Access Bruch’s membrane abnormalities in PRDM5-related brittle cornea syndrome Louise F. Porter1,2,3, Roberto Gallego-Pinazo4, Catherine L. Keeling5, Martyna Kamieniorz5, Nicoletta Zoppi6, Marina Colombi6, Cecilia Giunta7, Richard Bonshek2,8, Forbes D. Manson1 and Graeme C. Black1,9* Abstract Background: Brittle cornea syndrome (BCS) is a rare, generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Recessive mutations in transcription factors ZNF469 and PRDM5 cause BCS. Both transcription factors are suggested to act on a common pathway regulating extracellular matrix genes, particularly fibrillar collagens. We identified bilateral myopic choroidal neovascularization as the presenting feature of BCS in a 26-year-old-woman carrying a novel PRDM5 mutation (p.Glu134*). We performed immunohistochemistry of anterior and posterior segment ocular tissues, as expression of PRDM5 in the eye has not been described, or the effects of PRDM5-associated disease on the retina, particularly the extracellular matrix composition of Bruch’smembrane. Methods: Immunohistochemistry using antibodies against PRDM5, collagens type I, III, and IV was performed on the eyes of two unaffected controls and two patients (both with Δ9-14 PRDM5). Expression of collagens, integrins, tenascin and fibronectin in skin fibroblasts of a BCS patient with a novel p.Glu134* PRDM5 mutation was assessed using immunofluorescence. Results: PRDM5 is expressed in the corneal epithelium and retina. We observe reduced expression of major components of Bruch’s membrane in the eyes of two BCS patients with a PRDM5 Δ9-14 mutation. -
Collagen VI-Related Myopathy
Collagen VI-related myopathy Description Collagen VI-related myopathy is a group of disorders that affect skeletal muscles (which are the muscles used for movement) and connective tissue (which provides strength and flexibility to the skin, joints, and other structures throughout the body). Most affected individuals have muscle weakness and joint deformities called contractures that restrict movement of the affected joints and worsen over time. Researchers have described several forms of collagen VI-related myopathy, which range in severity: Bethlem myopathy is the mildest, an intermediate form is moderate in severity, and Ullrich congenital muscular dystrophy is the most severe. People with Bethlem myopathy usually have loose joints (joint laxity) and weak muscle tone (hypotonia) in infancy, but they develop contractures during childhood, typically in their fingers, wrists, elbows, and ankles. Muscle weakness can begin at any age but often appears in childhood to early adulthood. The muscle weakness is slowly progressive, with about two-thirds of affected individuals over age 50 needing walking assistance. Older individuals may develop weakness in respiratory muscles, which can cause breathing problems. Some people with this mild form of collagen VI-related myopathy have skin abnormalities, including small bumps called follicular hyperkeratosis on the arms and legs; soft, velvety skin on the palms of the hands and soles of the feet; and abnormal wound healing that creates shallow scars. The intermediate form of collagen VI-related myopathy is characterized by muscle weakness that begins in infancy. Affected children are able to walk, although walking becomes increasingly difficult starting in early adulthood. They develop contractures in the ankles, elbows, knees, and spine in childhood. -
Vascular Phenotypes in Nonvascular Subtypes of the Ehlers-Danlos Syndrome: a Systematic Review
SYSTEMATIC REVIEW Official journal of the American College of Medical Genetics and Genomics Vascular phenotypes in nonvascular subtypes of the Ehlers-Danlos syndrome: a systematic review Sanne D’hondt, MSc1, Tim Van Damme, MD1 and Fransiska Malfait, MD, PhD1 Purpose: Within the spectrum of the Ehlers-Danlos syndromes (53%), frequently reported in musculocontractural and classical- (EDS), vascular complications are usually associated with the like EDS; intracranial hemorrhages (18%), with a high risk in vascular subtype of EDS. Vascular complications are also observed dermatosparaxis EDS; and arterial dissections (16%), frequently in other EDS subtypes, but the reports are anecdotal and the reported in kyphoscoliotic and classical EDS. Other, more minor, information is dispersed. To better document the nature of vascular vascular complications were reported in cardiac-valvular, arthro- complications among “nonvascular” EDS subtypes, we performed chalasia, spondylodysplastic, and periodontal EDS. a systematic review. Conclusion: Potentially life-threatening vascular complications are Methods: We queried three databases for English-language a rare but important finding in several nonvascular EDS sub- studies from inception until May 2017, documenting both types, highlighting a need for more systematic documentation. This phenotypes and genotypes of patients with nonvascular EDS review will help familiarize clinicians with the spectrum of vascular subtypes. The outcome included the number and nature of vascular complications in EDS and guide follow-up and management. complications. Genet Med advance online publication 5 October 2017 Results: A total of 112 papers were included and data were collected from 467 patients, of whom 77 presented with a vascular Key Words: connective tissue disorder; Ehlers-Danlos syndrome; phenotype. -
Reduction of Type V Collagen Using a Dominant-Negative
CORE Metadata, citation and similar papers at core.ac.uk Provided by PubMed Central Reduction of Type V Collagen Using a Dominant-negative Strategy Alters the Regulation of Fibrillogenesis and Results in the Loss of Corneal-Specific Fibril Morphology Jeffrey K. Marchant, Rita A. Hahn, Thomas F. Linsenmayer, and David E. Birk Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111 Abstract. A number of factors have been implicated in synthesized the truncated or(V) protein, and this was the regulation of tissue-specific collagen fibril diameter. detectable only intracellularly, in a distribution that Previous data suggest that assembly of heterotypic colocalized with lysosomes. To assess endogenous fibrils composed of two different fibrillar collagens rep- etl(V) protein levels, infected cell cultures were as- resents a general mechanism regulating fibril diameter. sayed, and these consistently demonstrated reductions Specifically, we hypothesize that type V collagen is re- relative to control virus-infected or uninfected cultures. quired for the assembly of the small diameter fibrils ob- Analyses of corneal fibril morphology demonstrated served in the cornea. To test this, we used a dominant- that the reduction in type V collagen resulted in the as- negative retroviral strategy to decrease the levels of sembly of large-diameter fibrils with a broad size distri- type V collagen secreted by chicken corneal fibroblasts. bution, characteristics similar to fibrils produced in The chicken or(V) collagen gene was cloned, and ret- connective tissues with low type V concentrations. Im- roviral vectors that expressed a polycistronic mRNA munoelectron microscopy demonstrated the amino- encoding a truncated otl(V) minigene and the reporter terminal domain of type V collagen was associated with gene LacZ were constructed. -
WES Gene Package Multiple Congenital Anomalie.Xlsx
Whole Exome Sequencing Gene package Multiple congenital anomalie, version 5, 1‐2‐2018 Technical information DNA was enriched using Agilent SureSelect Clinical Research Exome V2 capture and paired‐end sequenced on the Illumina platform (outsourced). The aim is to obtain 8.1 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x. Duplicate reads are excluded. Data are demultiplexed with bcl2fastq Conversion Software from Illumina. Reads are mapped to the genome using the BWA‐MEM algorithm (reference: http://bio‐bwa.sourceforge.net/). Variant detection is performed by the Genome Analysis Toolkit HaplotypeCaller (reference: http://www.broadinstitute.org/gatk/). The detected variants are filtered and annotated with Cartagenia software and classified with Alamut Visual. It is not excluded that pathogenic mutations are being missed using this technology. At this moment, there is not enough information about the sensitivity of this technique with respect to the detection of deletions and duplications of more than 5 nucleotides and of somatic mosaic mutations (all types of sequence changes). HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x A4GALT [Blood group, P1Pk system, P(2) phenotype], 111400 607922 101 100 100 99 [Blood group, P1Pk system, p phenotype], 111400 NOR polyagglutination syndrome, 111400 AAAS Achalasia‐addisonianism‐alacrimia syndrome, 231550 605378 73 100 100 100 AAGAB Keratoderma, palmoplantar, -
Change in Collagen Fibril Diameter Distribution of Bovine Anterior Cruciate Ligament Upon Injury Can Be Mimicked in a Nanostructured Scaffold
molecules Article Change in Collagen Fibril Diameter Distribution of Bovine Anterior Cruciate Ligament upon Injury Can Be Mimicked in a Nanostructured Scaffold Zhuldyz Beisbayeva 1, Ainur Zhanbassynova 1, Gulzada Kulzhanova 2, Fariza Mukasheva 1 and Cevat Erisken 1,* 1 Department of Chemical and Materials Engineering, School of Engineering & Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Nur-Sultan 010000, Kazakhstan; [email protected] (Z.B.); [email protected] (A.Z.); [email protected] (F.M.) 2 Department of Biological Sciences, Nazarbayev University, 53 Kabanbay Batyr, Nur-Sultan 010000, Kazakhstan; [email protected] * Correspondence: [email protected] Abstract: More than 200,000 people are suffering from Anterior Cruciate Ligament (ACL) related injuries each year in the US. There is an unmet clinical demand for improving biological attachment between grafts and the host tissue in addition to providing mechanical support. For biological graft integration, it is important to provide a physiologically feasible environment for the host cells to enable them to perform their duties. However, behavior of cells during ACL healing and the mechanism of ACL healing is not fully understood partly due to the absence of appropriate environ- ment to test cell behavior both in vitro and in vivo. This study aims at (i) investigating the change Citation: Beisbayeva, Z.; in fibril diameter of bovine ACL tissue upon injury and (ii) fabricating nanofiber-based scaffolds Zhanbassynova, A.; Kulzhanova, G.; to represent the morphology and structure of healthy and injured ACL tissues. We hypothesized Mukasheva, F.; Erisken, C. Change in that distribution and mean diameter of ACL fibrils will be altered upon injury. -
Understanding the Basis of Ehlers–Danlos Syndrome in the Era of the Next-Generation Sequencing
Archives of Dermatological Research (2019) 311:265–275 https://doi.org/10.1007/s00403-019-01894-0 REVIEW Understanding the basis of Ehlers–Danlos syndrome in the era of the next-generation sequencing Francesca Cortini1,2 · Chiara Villa3 · Barbara Marinelli1 · Romina Combi3 · Angela Cecilia Pesatori1 · Alessandra Bassotti4 Received: 29 July 2018 / Revised: 26 November 2018 / Accepted: 12 February 2019 / Published online: 2 March 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Ehlers–Danlos syndrome (EDS) is a clinically and genetically heterogeneous group of heritable connective tissue disorders (HCTDs) defined by joint laxity, skin alterations, and joint hypermobility. The latest EDS classification recognized 13 sub- types in which the clinical and genetic phenotypes are often overlapping, making the diagnosis rather difficult and strength- ening the importance of the molecular diagnostic confirmation. New genetic techniques such as next-generation sequencing (NGS) gave the opportunity to identify the genetic bases of unresolved EDS types and support clinical counseling. To date, the molecular defects have been identified in 19 genes, mainly in those encoding collagen, its modifying enzymes or other constituents of the extracellular matrix (ECM). In this review we summarize the contribution of NGS technologies to the current knowledge of the genetic background in different EDS subtypes. Keywords Ehlers–Danlos syndrome · Heterogeneity · Heritable connective tissue disorders Introduction in 1988, represents the first attempt to classify EDS, recog- nizing 11 EDS subtypes [4], defined by Roman numerals and Ehlers–Danlos syndrome (EDS) comprises a clinically and classified according to clinical findings and the inheritance heterogeneous group of heritable connective tissue disor- pattern. -
Characterization of Collagen Fibers (I, III, IV) and Elastin of Normal and Neoplastic Canine Prostatic Tissues
veterinary sciences Article Characterization of Collagen Fibers (I, III, IV) and Elastin of Normal and Neoplastic Canine Prostatic Tissues Luis Gabriel Rivera Calderón 1, Priscila Emiko Kobayashi 2, Rosemeri Oliveira Vasconcelos 1, Carlos Eduardo Fonseca-Alves 3 and Renée Laufer-Amorim 2,* 1 Department of Veterinary Pathology, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, São Paulo 14884-900, Brazil; [email protected] (L.G.R.C.); [email protected] (R.O.V.) 2 Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, São Paulo 18618-681, Brazil; [email protected] 3 Department of Veterinary Surgery and Anesthesiology, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, São Paulo 18618-681, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-14-3880-2076 Received: 7 January 2019; Accepted: 25 February 2019; Published: 2 March 2019 Abstract: This study aimed to investigate collagen (Coll-I, III, IV) and elastin in canine normal prostate and prostate cancer (PC) using Picrosirius red (PSR) and Immunohistochemical (IHC) analysis. Eight normal prostates and 10 PC from formalin-fixed, paraffin-embedded samples were used. Collagen fibers area was analyzed with ImageJ software. The distribution of Coll-I and Coll-III was approximately 80% around prostatic ducts and acini, 15% among smooth muscle, and 5% surrounding blood vessels, in both normal prostate and PC. There was a higher median area of Coll-III in PC when compared to normal prostatic tissue (p = 0.001 for PSR and p = 0.05 for IHC). -
Tendon Extracellular Matrix Remodeling and Defective Cell Polarization in the Presence of Collagen VI Mutations
cells Article Tendon Extracellular Matrix Remodeling and Defective Cell Polarization in the Presence of Collagen VI Mutations Manuela Antoniel 1,2, Francesco Traina 3,4, Luciano Merlini 5 , Davide Andrenacci 1,2, Domenico Tigani 6, Spartaco Santi 1,2, Vittoria Cenni 1,2, Patrizia Sabatelli 1,2,*, Cesare Faldini 7 and Stefano Squarzoni 1,2 1 CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”-Unit of Bologna, 40136 Bologna, Italy; [email protected] (M.A.); [email protected] (D.A.); [email protected] (S.S.); [email protected] (V.C.); [email protected] (S.S.) 2 IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy 3 Ortopedia-Traumatologia e Chirurgia Protesica e dei Reimpianti d’Anca e di Ginocchio, Istituto Ortopedico Rizzoli di Bologna, 40136 Bologna, Italy; [email protected] 4 Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, Università Degli Studi Di Messina, 98122 Messina, Italy 5 Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123 Bologna, Italy; [email protected] 6 Department of Orthopedic and Trauma Surgery, Ospedale Maggiore, 40133 Bologna, Italy; [email protected] 7 1st Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-051-6366755; Fax: +39-051-4689922 Received: 20 December 2019; Accepted: 7 February 2020; Published: 11 February 2020 Abstract: Mutations in collagen VI genes cause two major clinical myopathies, Bethlem myopathy (BM) and Ullrich congenital muscular dystrophy (UCMD), and the rarer myosclerosis myopathy. In addition to congenital muscle weakness, patients affected by collagen VI-related myopathies show axial and proximal joint contractures, and distal joint hypermobility, which suggest the involvement of tendon function. -
Recent Developments in Alternative Extraction Processes of Keratin from Keratinous Animal Body Parts As Active Ingredient for Hair Care Products
J Cosmo Trichol Volume 7:3, 2021 Journal of Cosmetology & Trichology 10.4172/2167-7700.1000263 Review Article Open Access Recent Developments in Alternative Extraction Processes of Keratin from Keratinous Animal Body Parts as Active Ingredient for Hair care Products Ken Tasaki* Division of Upcycling, Tomorrow Water, 1225 N Patt St., Anaheim, CA 92801, United States Abstract Recently, keratin has been attracting intense attentions as an active ingredient for hair care products, given its unique nature such as rejuvenating and anti- aging characteristics. Conventionally, keratin is extracted from keratinous animal body parts (KABPs) such as wool by chemical processes or in combination with enzymes. However, for extraction of keratin from KABPs requires large volumes of highly concentrated toxic chemicals, which is not environmentally sustainable. The time-consuming processes for the extraction and the removal of chemicals slow down the productivity. Lately, a number of alternative extraction processes have been reported. We will review these processes and examine their commercial viability. We also report the recent development in our alternative process based on thermal hydrolysis. Keywords: Keratin • Thermal hydrolysis • Molecular weight distribution • Cystine • Hair care they are eventually decomposed overtime, generating methane emissions. Introduction Recently, valorization of these animal body wastes is receiving intense research [1-4]. With the growing global demand for meats, generation Keratin has been increasingly used as an active ingredient for haircare of KABPs will only increase, ensuring a stable supply of KABPs as raw and skincare products. It is also known to have rejuvenating and anti-aging materials to whatever they are turned into. Currently, cosmetics and effects on hair and skin.