Download Tropical Glaciers Free Ebook

Total Page:16

File Type:pdf, Size:1020Kb

Download Tropical Glaciers Free Ebook TROPICAL GLACIERS DOWNLOAD FREE BOOK Georg Kaser, Henry Osmaston | 228 pages | 08 Jan 2007 | CAMBRIDGE UNIVERSITY PRESS | 9780521020961 | English | Cambridge, United Kingdom Global warming spells disaster for tropical Andes glaciers Show 25 25 50 All. Geological Survey. Like tropical glaciers elsewhere in the world, the glaciers on the slopes around Puncak Jaya have been shrinking and scientists estimate they could be gone within about a decade. While Coropuna is still shrinking Tropical Glaciers, the situation Tropical Glaciers not as dire as we previously thought. Therefore, the processes of accumulation and ablation are the physical link between glaciers and climate, which explains why these ice bodies are such valuable tracers of climate variability on the scale of decades and centuries. John says:. Even for Kelly, the term Tropical Glaciers raises images of classic ice masses in the Swiss Alps, which partially Tropical Glaciers during the summer and then grow again in the winter due to snowfall. The false-color images are a combination of shortwave infrared, infrared, near infrared, and Tropical Glaciers light. November 3, JPEG. Rwenzori Glaciers. Conditions deteriorated Sunday as wind roared in from the west atop South Sister in Central Oregon, turning back previously optimistic climbers. To determine changes in glacier volume, Mark analyzes laser scans of glacier topography taken by airplanes or satellites. Oct 19, The ablation process — by which glaciers lose snow and ice, converting it into water Tropical Glaciers vapor — depends directly on the energy balance at the Tropical Glaciers. Is the concentration of greenhouse gases proportional Tropical Glaciers the temperate Oct 18, No fresh snow is present in the image, although the wet season began just days later. This document is subject to copyright. They affect the quality, quantity, temperature and timing of freshwater. The indigenous people are very concerned about melting glaciers and water resources, according to Bury, because their livelihoods depend on it. I know there has to be a reason, maybe our system is at a closer tipping point. The melting of the glaciers leads to lakes being formed in Tropical Glaciers which were previously covered by ice. With the intense rainfalls of the region, the glaciers are the highest and most permanent sources of Tropical Glaciers Nile River. Your email only if you want to be contacted back. Glaciers can therefore be seen to play an important socio-economical role in the region. Share on linkedin. Because these steep spots hold very thin ice, they are a less important water resource than the lower, valley glaciers that hold greater volumes of ice. The perception among local indigenous people Tropical Glaciers that weather has become more erratic and extreme in recent years, with stronger rainstorms that can be damaging to crops. However, numerical simulations with climate models show that variation in precipitation over the Tropical Glaciers 10 years was insufficient to affect the evolution of the glacier. Thank you for answering my question in a timely fashion. View more Images of the Day:. It is common knowledge that glaciers are melting in most areas across the globe. Photo credit: William Kochtitzky. More information Privacy policy. Climate Tropical Glaciers Education. Lindsey Konkel. But this approach could leave villages susceptible to flooding and their water supply susceptible to Tropical Glaciers, according to Mark. Leave a Reply Cancel reply Your email address will not be published. Great job Lindsey. By combining accessibility, adaptability and teamwork at its core, our project primarily targets the younger generation Tropical Glaciers is committed to opening their eyes and minds to the reality of climate change. It may come as a surprise that scientists Alice M. TROPICAL GLACIERS Bernard Francou is a French glaciologist and mountaineer. The continued retreat of glaciers will have a number of different quantitative effects. Nov 29, Gannett Glacier on the northeast slope of Gannett Peak is the Tropical Glaciers single glacier in the Rocky Mountains south of Canada. A vast number of tropical glaciers are in the Tropical Glaciers in South America. Pelto; Cliff Hedlund Attribution: Region Alaska. They are the most widely studied over the past years. I would like Tropical Glaciers subscribe to Science X Newsletter. In Greenland lost gigaton of ice in two months contributing 2. Many species of freshwater and Tropical Glaciers plants and animals are dependent on glacier-fed waters to ensure the cold water habitat to which they have adapted. To retard melting of the glaciers used by certain Austrian ski resorts, portions of the Stubai and Pitztal Glaciers were partially covered with plastic. Ligtenberg; Tobias Bolch; Tropical Glaciers J. April 5, Next Up:. VariegatedBlack Rapids, Muldrow, Susitna and Yanert are examples of surging glaciers in Alaska that have made rapid advances in the past. The continued deterioration of glaciers will Tropical Glaciers have inevitable consequences in the high basins — not only on water resources, but also undoubtedly on ecosystems connected to ice masses. Attribution of recent climate change Greenhouse effect Scientific consensus on climate change. November 3, Tyson, Peter. Share on twitter. In the case of Helheim Glacier, researchers used satellite images to determine the movement and retreat of the glacier. April 11, Archived from the original on May Tropical Glaciers, Retrieved January 10, August 22, These include a reduction in area of Tropical Glaciers Wikipedia, the free encyclopedia. July 24, The study, published in Science Advancessupports the overwhelming scientific consensus on the role of carbon dioxide in causing global climate change, but adds additional levels of complexity to the understanding of Earth's climate system and how ice ages rapidly end. More from Earth Sciences. Research in Hornsund. These findings also show that models underestimate the sensitivity of Greenland glaciers to ocean warming and resulting ice sheet runoff. Satellites now allow Klein and other researchers to observe the ice in detail from afar when they cannot get to the remote site. The Tropical Glaciers used the past extents of tropical Tropical Glaciers to infer past changes in tropical temperatures. Glacial retreat slowed and even reversed Tropical Glaciers, in Tropical Glaciers cases, between and as global temperatures Tropical Glaciers slightly. Perito Moreno Glacier is in equilibrium, but has undergone frequent oscillations in the period —96, with a net gain of 4. Archived from the original on Order by newest oldest recommendations. See also: Dry Andes and Wet Andes. The larger glaciers are now approximately a third of their former size when first studied inand numerous smaller glaciers have disappeared completely. Consequently exposed to the radiation influx — particularly strong in the tropics at high elevation — glaciers melt at high rates. It would be seabed if the ice sheet were not there. Bibcode : NatGe OECD Publishing. September 16, April Prior research using beryllium dating indicated that some tropical glaciers achieved their maximum extents during the height of the last ice age. In the Cordillera Blanca, glacier-related natural disasters claimed more than 25, victims between and Glaciers in the Tropics, but Not for Long Our work shows that care must be taken when selecting satellite imagery for determining the extents of glacierized areas to ensure that snow cover, which can obscure ice boundaries, is at a minimum. No fresh snow is present in the image, although the wet season began just days later. View all the latest top news Tropical Glaciers the environmental sciences, or browse the topics below:. Geological Survey, Tropical Glaciers. Thanks to our Tropical Glaciers experiences, we are making them accessible to all, no matter who they are and where they are. Archived from the original Tropical Glaciers March 20, Measurements of the mass balance of individual glaciers have also shown a significant loss of ice. VariegatedBlack Rapids, Muldrow, Susitna and Yanert are examples Tropical Glaciers surging glaciers in Alaska that have made rapid advances in the past. Less ice, more natural hazards The retreat of glaciers also increases the Tropical Glaciers of natural hazards such as flood waves caused by glacial lake outburst floods. During this period all nine glaciers examined have retreated significantly. Bibcode : JGRF. Boy or Girl? Tropical Glaciers photography since clearly show that glaciers such as Grinnell Glacier are all retreating. Your name. Comparing photographs from the midth century with contemporary images provides ample evidence that they have retreated notably since Rivera and M. Disappearing Peruvian glaciers. Bibcode : Natur. Alterations to the ocean currentsdue to increased freshwater inputs from glacier melt, and the potential alterations to thermohaline circulation of the World Oceanmay affect existing fisheries upon which humans depend as well. A Tropical Glaciers wave such as this destroyed a third of the town of Huaraz in Archived from the original on February 6, Glaciers can therefore Tropical Glaciers seen to play an important socio- economical role in the region. Research between and demonstrated that the glaciers in Bridger-Teton Tropical Glaciers Forest and Shoshone National Forest in the Wind River Range shrank by over a Tropical Glaciers of their size during that period. Peru is home to 92 percent of all areas Tropical Glaciers by glaciers in the tropics. Another study showed that two glaciers, Pine Island and Thwaites, are melting five times faster than "in the early s". Hall M. Brecher, A. Schoolroom Glacier is located slightly southwest of Grand Teton is one of the more easily reached glaciers in the park and it is expected to disappear by Geological Survey report provides glimpses of the ice that existed in the area prior to the s. Play media. Wakao Not the least of them is having to hike up mountains with their equipment for days on end. Bibcode : GPC March 7, The Little Ice Age was a period from about to when the world experienced relatively cooler temperatures compared to Tropical Glaciers time before Tropical Glaciers after.
Recommended publications
  • Glacier Clusters Identification Across Chilean Andes Using Topo- Climatic Variables
    EGU21-10852 https://doi.org/10.5194/egusphere-egu21-10852 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Glacier Clusters identification across Chilean Andes using Topo- Climatic variables Alexis Caro1, Fernando Gimeno2, Antoine Rabatel1, Thomas Condom1, and Jean Carlos Ruiz3 1Université Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Géosciences de l’Environnement (UMR 5001), Grenoble, France ([email protected]) 2Department of Environmental Science and Renewable Natural Resources, University of Chile, Santiago, Chile 3Sorbonne Université, Paris, France This study presents a glacier clustering for the Chilean Andes (17.6-55.4°S) realized with the Partitioning Around Medoids (PAM) algorithm and using topographic and climatic variables over the 1980-2019 period. We classified ~24,000 glaciers inside thirteen different clusters (C1 to C13). These clusters show specific conditions in terms of annual and monthly amounts of precipitation, temperature, and solar radiation. In the Northern part of Chile, the Dry Andes (17-36°S) gather five clusters (C1-C5) that display mean annual precipitation and temperature differences up to 400 mm/yr and 8°C, respectively, and a mean elevation difference reaching 1800 m between glaciers in C1 and C5 clusters. In the Wet Andes (36-56°S) the highest differences were observed at the Southern Patagonia Icefield (50°S), with mean annual values for precipitation above 3700 mm/yr (C12, maritime conditions) and below 1000 mm/yr in the east of Southern Patagonia Icefield (C10), and with a difference in mean annual temperature near 4°C and mean elevation contrast of 500 m.
    [Show full text]
  • Remote Sensing Study of Glacial Change in the Northern Patagonian Icefield
    Advances in Remote Sensing, 2015, 4, 270-279 Published Online December 2015 in SciRes. http://www.scirp.org/journal/ars http://dx.doi.org/10.4236/ars.2015.44022 Remote Sensing Study of Glacial Change in the Northern Patagonian Icefield Lucy Dixon, Shrinidhi Ambinakudige Department of Geosciences, Mississippi State University, Starkville, MS, USA Received 23 October 2015; accepted 27 November 2015; published 30 November 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The Patagonian Icefield has the largest temperate ice mass in the southern hemisphere. Using re- mote sensing techniques, this study analyzed multi-decadal glacial retreat and expansion of glaci- er lakes in Northern Patagonia. Glacial boundaries and glacier lake boundaries for 1979, 1985, 2000, and 2013 were delineated from Chilean topographic maps and Landsat satellite images. As- ter stereo images were used to measure mass balance from 2007 to 2012. The highest retreat was observed in San Quintin glacier. The area of glacier lakes increased from 13.49 km2 in 1979 to 65.06 km2 in 2013. Four new glacier lakes formed between 1979 and 2013. Between 2007 and 2012, significant glacial thinning was observed in major glaciers, including HPN1, Pared Norte, Strindberg, Acodado, Nef, San Quintin, Colonia, HPN4, and Benito glaciers. Generally, ablation zones lost more mass than accumulation zones. Keywords Patagonia, Glaciers, South America, ASTER 1. Introduction Glaciers are key indicators for assessing climate change [1]-[3]. Beginning in the nineteenth century, glaciers in many parts of the world retreated significantly, which was a clear indicator of climate warming [3]-[7].
    [Show full text]
  • A Review of the Current State and Recent Changes of the Andean Cryosphere
    feart-08-00099 June 20, 2020 Time: 19:44 # 1 REVIEW published: 23 June 2020 doi: 10.3389/feart.2020.00099 A Review of the Current State and Recent Changes of the Andean Cryosphere M. H. Masiokas1*, A. Rabatel2, A. Rivera3,4, L. Ruiz1, P. Pitte1, J. L. Ceballos5, G. Barcaza6, A. Soruco7, F. Bown8, E. Berthier9, I. Dussaillant9 and S. MacDonell10 1 Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT CONICET Mendoza, Mendoza, Argentina, 2 Univ. Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Géosciences de l’Environnement, Grenoble, France, 3 Departamento de Geografía, Universidad de Chile, Santiago, Chile, 4 Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile, 5 Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Bogotá, Colombia, 6 Instituto de Geografía, Pontificia Universidad Católica de Chile, Santiago, Chile, 7 Facultad de Ciencias Geológicas, Universidad Mayor de San Andrés, La Paz, Bolivia, 8 Tambo Austral Geoscience Consultants, Valdivia, Chile, 9 LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS, Toulouse, France, 10 Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile The Andes Cordillera contains the most diverse cryosphere on Earth, including extensive areas covered by seasonal snow, numerous tropical and extratropical glaciers, and many mountain permafrost landforms. Here, we review some recent advances in the study of the main components of the cryosphere in the Andes, and discuss the Edited by: changes observed in the seasonal snow and permanent ice masses of this region Bryan G. Mark, The Ohio State University, over the past decades. The open access and increasing availability of remote sensing United States products has produced a substantial improvement in our understanding of the current Reviewed by: state and recent changes of the Andean cryosphere, allowing an unprecedented detail Tom Holt, Aberystwyth University, in their identification and monitoring at local and regional scales.
    [Show full text]
  • Debris Flows Occurrence in the Semiarid Central Andes Under Climate Change Scenario
    geosciences Review Debris Flows Occurrence in the Semiarid Central Andes under Climate Change Scenario Stella M. Moreiras 1,2,* , Sergio A. Sepúlveda 3,4 , Mariana Correas-González 1 , Carolina Lauro 1 , Iván Vergara 5, Pilar Jeanneret 1, Sebastián Junquera-Torrado 1 , Jaime G. Cuevas 6, Antonio Maldonado 6,7, José L. Antinao 8 and Marisol Lara 3 1 Instituto Argentino de Nivología, Glaciología & Ciencias Ambientales, CONICET, Mendoza M5500, Argentina; [email protected] (M.C.-G.); [email protected] (C.L.); [email protected] (P.J.); [email protected] (S.J.-T.) 2 Catedra de Edafología, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza M5528AHB, Argentina 3 Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8320000, Chile; [email protected] (S.A.S.); [email protected] (M.L.) 4 Instituto de Ciencias de la Ingeniería, Universidad de O0Higgins, Rancagua 2820000, Chile 5 Grupo de Estudios Ambientales–IPATEC, San Carlos de Bariloche 8400, Argentina; [email protected] 6 Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad de La Serena, Coquimbo 1780000, Chile; [email protected] (J.G.C.); [email protected] (A.M.) 7 Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile 8 Indiana Geological and Water Survey, Indiana University, Bloomington, IN 47404, USA; [email protected] * Correspondence: [email protected]; Tel.: +54-26-1524-4256 Citation: Moreiras, S.M.; Sepúlveda, Abstract: This review paper compiles research related to debris flows and hyperconcentrated flows S.A.; Correas-González, M.; Lauro, C.; in the central Andes (30◦–33◦ S), updating the knowledge of these phenomena in this semiarid region.
    [Show full text]
  • The 21St-Century Fate of the Mocho-Choshuenco Ice Cap in Southern Chile
    The Cryosphere, 15, 3637–3654, 2021 https://doi.org/10.5194/tc-15-3637-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The 21st-century fate of the Mocho-Choshuenco ice cap in southern Chile Matthias Scheiter1,a, Marius Schaefer2, Eduardo Flández3, Deniz Bozkurt4,5, and Ralf Greve6,7 1Research School of Earth Sciences, Australian National University, Canberra, Australia 2Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia, Chile 3Departamento de Física, Facultad de Ciencias, Universidad de Chile, Santiago, Chile 4Departamento de Meteorología, Universidad de Valparaíso, Valparaíso, Chile 5Center for Climate and Resilience Research (CR)2, Santiago, Chile 6Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan 7Arctic Research Center, Hokkaido University, Sapporo, Japan aformerly at: Institut für Geophysik und Geoinformatik, TU Bergakademie Freiberg, Freiberg, Germany Correspondence: Matthias Scheiter ([email protected]) Received: 8 October 2020 – Discussion started: 11 November 2020 Revised: 23 June 2021 – Accepted: 25 June 2021 – Published: 6 August 2021 Abstract. Glaciers and ice caps are thinning and retreat- different global climate models and on the uncertainty asso- ing along the entire Andes ridge, and drivers of this mass ciated with the variation of the equilibrium line altitude with loss vary between the different climate zones. The south- temperature change. Considering our results, we project a ern part of the Andes (Wet Andes) has the highest abun- considerable deglaciation of the Chilean Lake District by the dance of glaciers in number and size, and a proper under- end of the 21st century. standing of ice dynamics is important to assess their evo- lution.
    [Show full text]
  • Glacier Inventory and Recent Glacier Variations in the Andes of Chile, South America
    Annals of Glaciology 58(75pt2) 2017 doi: 10.1017/aog.2017.28 166 © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. Glacier inventory and recent glacier variations in the Andes of Chile, South America Gonzalo BARCAZA,1 Samuel U. NUSSBAUMER,2,3 Guillermo TAPIA,1 Javier VALDÉS,1 Juan-Luis GARCÍA,4 Yohan VIDELA,5 Amapola ALBORNOZ,6 Víctor ARIAS7 1Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile. E-mail: [email protected] 2Department of Geography, University of Zurich, Zurich, Switzerland 3Department of Geosciences, University of Fribourg, Fribourg, Switzerland 4Institute of Geography, Pontificia Universidad Católica de Chile, Santiago, Chile 5Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada 6Department of Geology, University of Concepción, Concepción, Chile 7Department of Geology, University of Chile, Santiago, Chile ABSTRACT. The first satellite-derived inventory of glaciers and rock glaciers in Chile, created from Landsat TM/ETM+ images spanning between 2000 and 2003 using a semi-automated procedure, is pre- sented in a single standardized format. Large glacierized areas in the Altiplano, Palena Province and the periphery of the Patagonian icefields are inventoried. The Chilean glacierized area is 23 708 ± 1185 km2, including ∼3200 km2 of both debris-covered glaciers and rock glaciers.
    [Show full text]
  • Glacier Clusters Identification Across Chilean Andes Using Topo-Climatic
    119 Glacier Clusters identification across Chilean Andes using Topo-Climatic variables Identificación de clústeres glaciares a lo largo de los Andes chilenos usando variables topoclimáticas Historial del artículo Alexis Caroa; Fernando Gimenob; Antoine Rabatela; Thomas Condoma; Recibido: Jean Carlos Ruizc 15 de octubre de 2020 Revisado a Université Grenoble Alpes, CNRS, IRD, Grenoble-INP, Institut des Géosciences de l’Environnement (UMR 5001), 30 de octubre de 2020 Grenoble, France. Aceptado: b Department of Environmental Science and Renewable Natural Resources, University of Chile, Santiago, Chile. 05 de noviembre de 2020 c Sorbonne Université, Paris, France. Keywords Abstract Chilean Andes, climatology, Using topographic and climatic variables, we present glacier clusters in the Chilean Andes (17.6-55.4°S), where the glacier clusters, topography Partitioning Around Medoids (PAM) unsupervised machine learning algorithm was utilized. The results classified 23,974 glaciers inside thirteen clusters, which show specific conditions in terms of annual and monthly amounts of precipitation, temperature, and solar radiation. In the Dry Andes, the mean annual values of the five glacier clusters (C1-C5) display precipitation and temperature difference until 400 mm (29 and 33°S) and 8°C (33°S), with mean elevation contrast of 1800 m between glaciers in C1 and C5 clusters (18 to 34°S). While in the Wet Andes the highest differences were observed at the Southern Patagonia Icefield latitude (50°S), were the mean annual values for precipitation and temperature show maritime precipitation above 3700 mm/yr (C12), where the wet Western air plays a key role, and below 1000 mm/yr in the east of Southern Patagonia Icefield (C10), with differences temperature near of 4°C and mean elevation contrast of 500 m.
    [Show full text]
  • © Cambridge University Press Cambridge University Press 978-0-521-68158-2 - Mountain Weather and Climate, Third Edition Roger G
    Cambridge University Press 978-0-521-68158-2 - Mountain Weather and Climate, Third Edition Roger G. Barry Index More information INDEX Abramov Glacier station 381 altitude effect on (direct) solar radiation 35 Abramov Glacier, mean monthly temperature and altitude effects on sky radiation 42 precipitation 381 altitude of maximum precipitation 286 absolute vorticity 128 altitudinal characteristics 282–288 accidents due to lightning 458 altitudinal effects on solar radiation 38–42 acclimatization 453 altitudinal gradient of air temperature 57 accretion of ice on power lines 322 altitudinal gradients of precipitation 421–421 actual evaporation 394 altitudinal gradients of soil temperature 57–58 acute mountain sickness 446–447 anabatic 187 adaptations 452–456 anabatic slope flows 191 adret 397, 483–485 Andean Quechua 453 Adriatic Sea 176 Andes 128, 421–426, 453 Advanced Regional Prediction System (ARPS) 230 angle of repose 459 aerobic working capacity 454 annual temperature range 26, 27 aerodynamic method 330–331 Antarctic 128 aerosol 461 Antarctic Peninsula 133 aerosol concentrations 37 Antarctica 159, 183–185, 416–419 air avalanches 193 Antarctica, katabatic wind regime 418–419 air pollution 460–468 Appalachian Mountains 136, 264, 298 air pressure 32 Appalachians 142 air pressure and altitude 445 areal representativeness of a gauge 313–314, 318 airflow over mountains, theories 152–154 aridity 380, 414 Alaska 107 Arunachal Pradesh 375 Alberta 173 Asekreme 379, 381 ALPEX 142, 145, 178 aspect 87–96 alpine 3 aspect ratio 82 Alpine Experiment
    [Show full text]
  • Surface Energy Fluxes on Chilean Glaciers
    Surface energy fluxes on Chilean glaciers: measurements and models Marius Schaefer1, Duilio Fonseca1, David Farias-Barahona2, and Gino Casassa3,4 1Instituto de Ciencias Física y Matemáticas, Facultad de Ciencias, Austral University, Valdivia, Chile 2Institute of Geography, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany 3Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile 4Universidad de Magallanes, Punta Arenas, Chile Correspondence: Marius Schaefer ([email protected]) Abstract. The surface energy fluxes of glaciers determine surface melt and their adequate parametrization is one of the keys for a successful prediction of future glacier mass balance and freshwater discharge. Chile hosts glaciers in a large range of latitudes under contrasting climatic settings: from 18◦S in the Atacama Desert to 55◦S on Tierra del Fuego Island, Southern Patagonia. Using three different methods, we computed surface energy fluxes for five glaciers which represent the main glaciological 5 zones of Chile. We found that the main energy sources for surface melt change from the Central Andes, where the net shortwave radiation is driving the melt, to Patagonia, where the turbulent fluxes are an important source of energy. We inferred higher surface melt rates for Patagonian glaciers as compared to the glaciers of the Central Andes due to a higher contribution of the turbulent sensible heat flux, less negative net longwave radiation and a positive contribution of the turbulent latent heat flux. The variability of the atmospheric emissivity was high and not able to be explained exclusively by the variability of the inferred 10 cloud cover. The influence of the stability correction and the roughness length on the magnitude of the turbulent fluxes in the different climate settings was examined.
    [Show full text]
  • Redalyc.Geologic Reconnaissance of Lautaro Volcano, Chilean Patagonia
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Motoki, Akihisa; Orihashi, Yuji; Naranjo, José A.; Hirata, Daiji; Skvarca, Pedro; Anma, Ryo Geologic reconnaissance of Lautaro Volcano, Chilean Patagonia Andean Geology, vol. 33, núm. 1, enero, 2006, pp. 177-187 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173918422008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologic reconnaissance of Lautaro Volcano, Chilean Patagonia Akihisa Motoki Departamento de Mineralogia e Petrologia Ígnea, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana, Rio de Janeiro, Brasil [email protected] Yuji Orihashi Earthquake Research Institute, The University of Tokio, Bunkyo, Tokyo. 113-0032, Japan [email protected] José A. Naranjo Servicio Nacional de Geología y Minería, Casilla 10465, Santiago, Chile [email protected] Daiji Hirata Kanagawa Prefectural Museum of Natural History, Odawara, Kanagawa, 250-0031,Japan [email protected] Pedro Skvarca Instituto Antártico Argentino, Cerrito 1248, C1010AAZ, Buenos Aires, Argentina [email protected] Ryo Anma University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan [email protected] ABSTRACT Lautaro is the volcano closest to the Chile Triple Junction in the Andean Austral Volcanic Zone. The volcanic edifice of 3,607 m a.s.l. stands out on the north-western part of the plateau of the South Patagonian Ice Field.
    [Show full text]
  • Modeling Patagonian Ice Sheet Extent During Past Glaciations Nat Wilson
    Modeling Patagonian ice sheet extent during past glaciations Nat Wilson Mark T. Brandon and Ronald B. Smith April 28, 2009 Abstract: The circa 20 ka Last Glacial Maximum and the circa 1 Ma Greatest Patagonian Glaciation are noteworthy events in the Glacial chronology of the Southern Andes. These Glacial advances are thought to be responses to shifts in the balance of Glacier accumulation and ablation, in which the Glacier equilibrium line moves to lower elevations. This related to changing climatic conditions. The goal of this project is to investigate the nature of these climatic variations and to determine their relative importance in driving a Glaciation in the Andes. A Glacier flow‐routing model solved on a finite difference grid is combined with an orographic precipitation algorithm to simulate the growth and retreat of the Northern Patagonian Ice Field over time scales of tens of thousands of years. This differs from previous explorations of the subject with the mass balance term treating accumulation and ablation separately, where accumulation involves orographic effects, storm frequency, and atmospheric conditions. Ablation is a function of topography and season. As a result, an equilibrium mass balance line is generated based on physical parameters. To ensure the validity of the model, the portion of the LGM ice sheet in the vicinity of Lago Buenos Aires has been simulated and compared to other models and ice sheet proxies. Attempts to recreate a GPG ice sheet primarily by increasing precipitation were unsuccessful, suggesting that an ice cap extending to the farthest mapped moraines must be forced in part by a large temperature depression, in addition to high precipitation delivery.
    [Show full text]
  • Glacier Erosion and Response to Climate, from Alaska to Patagonia
    Glacier erosion and response to climate, from Alaska to Patagonia Michèle N. Koppes A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2007 Program Authorized to Offer Degree: Department of Earth & Space Sciences University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Michèle N. Koppes and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Chair of the Supervisory Committee: Bernard Hallet Reading Committee: Bernard Hallet Alan Gillespie David Montgomery Date: _ In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of the dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, or to the author. Signature ______________________________ Date ______________________________ University of Washington Abstract Glacier erosion and response to climate, from Alaska to Patagonia Michèle N. Koppes Chair of the Supervisory Committee: Professor Bernard Hallet Department of Earth and Space Sciences Contemporary glacial erosion rates based on sediment yields from tidewater glaciers in coastal Alaska and Patagonia are unsurpassed worldwide, and significantly exceed regional exhumation rates.
    [Show full text]