Characteristics and Significance of the Penecontemporaneous Karst in Lacustrine Carbonate, Da'anzhai Member, Lower Jurassic, Beibei Area, Eastern Sichuan Basin

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics and Significance of the Penecontemporaneous Karst in Lacustrine Carbonate, Da'anzhai Member, Lower Jurassic, Beibei Area, Eastern Sichuan Basin Accepted Manuscript Characteristics and significance of the penecontemporaneous karst in lacustrine carbonate, Da'anzhai member, lower Jurassic, Beibei area, eastern Sichuan basin Chengpeng Su, Xiucheng Tan, Kailan Shi, Juan Zou, Feifan Lu, Sicong Luo, Hao Tang, Xinyu Zhang PII: S2405-6561(16)30214-0 DOI: 10.1016/j.petlm.2016.12.006 Reference: PETLM 130 To appear in: Petroleum Received Date: 26 October 2016 Revised Date: 15 December 2016 Accepted Date: 29 December 2016 Please cite this article as: C. Su, X. Tan, K. Shi, J. Zou, F. Lu, S. Luo, H. Tang, X. Zhang, Characteristics and significance of the penecontemporaneous karst in lacustrine carbonate, Da'anzhai member, lower Jurassic, Beibei area, eastern Sichuan basin, Petroleum (2017), doi: 10.1016/ j.petlm.2016.12.006. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Characteristics and significance of the penecontemporaneous karst in lacustrine carbonate, Da ′anzhai Member, Lower Jurassic, Beibei area, Eastern Sichuan Basin Chengpeng Su a,c, Xiucheng Tan a,b, *, Kailan Shi c, Juan Zou d, Feifan Lu c, Sicong Luo c, Hao Tang a,b, Xinyu Zhang c a State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China b The sedimentary and accumulation department of key laboratory of carbonate reservoirs, PetroChina, Southwest Petroleum University, Chengdu, 610500, China c School of Geoscience and Technology, Southwest Petroleum University, Chengdu, 610500, China d Exploration and Development Research Institute of PetroChina Southwest Oil & Gas Field Company, Chengdu, Sichuan 610041, China Abstract :There are few reports about the penecontemporaneous karst of the lacustrine carbonate of Da ′anzhai Member which developed on the top of Lower Jurassic Ziliujing Formation, eastern Sichuan Basin. Based on the analysis of the macroscopic and microscopic characteristics of Heping Reservoir section in Beibei area, It is discovered that the penecontemporaneous karst in the lacustrine carbonate, Da ′anzhai Member, and its characters as follows: (1) The dissolved fracture and karren are common, which have been filled with vadose silts, bioclasts, terrigenous quartzes, crystal and intergrown calcites; (2) The penecontemporaneous karstification mainly occurs in the micrites and shell limestones of the middle and upper part of the shallowing-upward sequence, and the desiccation cracks occur in some shallowing-upward sequences; (3) Three meteoric-water diagenetic lenses are identified in this section. By further study we also find the factures, stylolite and burial dissolution pores occur along the karst system (tubes, conduits and caves of the karst). And the asphalt not only fills the stylolites and fractures, but also is mixed with the vadose silt in the karst system, although the pore space formed by penecontemporaneous karstification is filled with vadose material and cements. Therefore it is concluded that the development and modification of the tight lacustrine carbonate reservoir of Da ′anzhai Member, to some extent, are relevant with the penecontemporaneous karstification, and the penecontemporaneous karst reservoir may develop in the buried Da ′anzhai carbonate of the basin. Key words :Sichuan Basin; Da ′anzhai Member; lacustrine carbonate; penecontemporaneous karst; tight reservoir 1 Introduction The tight lacustrine carbonate reservoir of Da ′anzhai Member, Ziliujing Formation in Lower Jurassic is one of the main producing pays in Sichuan Basin [1-3]. AccordingMANUSCRIPT to former studies, the reservoir is controlled by sedimentary facies and mainly formed in the high-energy shell (bioclastic) beach developed area. The major of rock types are bioclastic limestone, shell limestone and mud-bearing shell limestone. Meanwhile, the reservoir space type is pore-fracture pattern, and fractures are the prime reservoir space and vadose channel [4-8]. There is a popular belief that the primary porosity of Da ′anzhai Member’s limestone is barely vanished due to the intense compaction and cementation during inchoate diagenesis. But fractures formed by later-structural rupture and moniliform corrosion pores formed by the corrosion along fractures improve the property of reservoir in rocks tremendously [4-5, 9]. The corroded pores are formed by organic material dissolved acid waters or compacted water in shale during burial period generally [6, 10]. Zheng et al. [10] once briefly introduced the sources of different stages’ corroded hydrothermal fluid in Da′anzhai Member, north Sichuan. The limestone of regionally successively-sedimentary Da ′anzhai part has some sedimentary hiatus in some area, according to research of first sub-member of Da′anzhai in south Langzhong area made by Liu at al. [11]. Meanwhile, the limestone are cropped out and early pores and holes are formed by the corrosion of surface water. They thought that the leading cause of the reservoir formation in the first sub-member of Da ′anzhai is the shallow water of later sedimentation, which result in the effortlessACCEPTED exposure to the surface and corrosion [11-12]. Nevertheless, this viewpoint does not get much attention in recent ten years and merely several authors mention it without deeper research [13-14]. In view of this, the paper set the Da ′anzhai member of Heping Reservoir outcrop in Beibei area, east Sichuan as an example. Based on the macroscopic and microscopic characteristics, the paper studies the identification mark of penecontemporaneous karstification and its impact on the reservoir. Moreover, the paper provides referential * Corresponding author. #8 Xindu Road, Xindu District, Chengdu, 610500, China. E-mail address : [email protected] (C. Su ), [email protected] (X. Tan) ACCEPTED MANUSCRIPT information to the exploration of tight oil reservoir of lacustrine-carbonate in Da ′anzhai member. 2 Geological Background The Long’men Mountain in west Sichuan keeps rising due to the influence of later Indosinian Movement, vast regions of Sichuan Basin turn into inland lake basin. The Xujiahe Formation of upper Triassic, Ziliujing Formation, Shaximiao Formation, Suining Formation and Penglaizhen Formation of Jurassic are deposited in the basin from the bottom up. Meanwhile, the area of lake surface in Da ′anzhai member, Ziliujing Formation, lower Jurassic is the widest among them. The area of the lake surface is more than 10×10 4 square kilometers and the asymmetric vast lake basin is steep in the north and gently in the south [15-16]. Furthermore, Da ′anzhai deposit period has an integrated cycle: lake transgression, maximum lake transgression and lake regression. The third sub-member of Da ′anzhai is corresponding to the initial stage of lake transgression and the main lithology is shell limestone (bioclastic limestone) mixed with some shale. The second sub-member of Da ′anzhai corresponds to the deepwater stage of maximum lake transgression; sediments are mainly dark-color shale mix with some micrites and little shell limestone. Meanwhile, the first sub-member of Da ′anzhai corresponding to the lake regression stage is the main reservoir-developing Formation for Da ′anzhai [17-19], which generate abundant shell limestone (bioclastic limestone) mixed with a little dark shale. On the plane (Fig. 1), the depocenter of lake basin during Da ′anzhai stage, locates over Yilong and Yinshan. Semi-deep lake, shallow lake to semi-deep lake, shore-shallow lake, shore lake and river facies are developed from the center to circum [20-21]. The shell beach (bioclastic beach) is primarily composed by shell limestone (bioclastic limestone), which is intensely distributed in upper slopes of shallow lake, shore-shallow lake outward-surrounded the depocenter [22-23]. MANUSCRIPT Fig.1. Geographical location map of study section and palaeogeogrphy of Da’anzhai Member, lower Jurassic in Sichuan Basin (modified from Zheng et al., 1997) The research sectionACCEPTED is belonging to high fold belt of eastern Sichuan basin, which locates in the Heping reservoir, Dabagou, Tianfu town, Beibei area, Chongqing (Fig. 1). Structure activity of eastern Sichuan basin and Sichuan basin’s periphery are relatively stable in Da ′anzhai stage, and there are no obvious lifting and settling [12, 17]. Furthermore, Shaximiao Formation, Suining Formation and Penglaizhen Formation are all conformable contact in Beibei area. Eastern Sichuan basin area experiences intense folding due to the effect of Yanshan Movement and Himalayan Movement, which generate nowadays high fold belt in eastern Sichuan basin after the extruding lifting and transformation of the Jurassic and strata under it [24]. The research area locates in shore-shallow lake facies of south lake basin. Rock types are multiple, which are ACCEPTED MANUSCRIPT mainly amaranthine calcareous mudstone in shore lake and dark-gray micrite in shallow lake. Meanwhile, shell limestone and bioclastic limestone which constitute shell beach and bioclastic beach are partly developed and the thickness of one single layer is less than 1.5 meter. Besides, micritic dolomite with exposed mark (mudcrack or penecontemporaneous
Recommended publications
  • A New Sauropodomorph Ichnogenus from the Lower Jurassic of Sichuan, China Fills a Gap in the Track Record
    Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: http://www.tandfonline.com/loi/ghbi20 A new sauropodomorph ichnogenus from the Lower Jurassic of Sichuan, China fills a gap in the track record Lida Xing, Martin G. Lockley, Jianping Zhang, Hendrik Klein, Daqing Li, Tetsuto Miyashita, Zhongdong Li & Susanna B. Kümmell To cite this article: Lida Xing, Martin G. Lockley, Jianping Zhang, Hendrik Klein, Daqing Li, Tetsuto Miyashita, Zhongdong Li & Susanna B. Kümmell (2016) A new sauropodomorph ichnogenus from the Lower Jurassic of Sichuan, China fills a gap in the track record, Historical Biology, 28:7, 881-895, DOI: 10.1080/08912963.2015.1052427 To link to this article: http://dx.doi.org/10.1080/08912963.2015.1052427 Published online: 24 Jun 2015. Submit your article to this journal Article views: 95 View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 Download by: [University of Alberta] Date: 23 October 2016, At: 09:07 Historical Biology, 2016 Vol. 28, No. 7, 881–895, http://dx.doi.org/10.1080/08912963.2015.1052427 A new sauropodomorph ichnogenus from the Lower Jurassic of Sichuan, China fills a gap in the track record Lida Xinga*, Martin G. Lockleyb, Jianping Zhanga, Hendrik Kleinc, Daqing Lid, Tetsuto Miyashitae, Zhongdong Lif and Susanna B. Ku¨mmellg aSchool of the Earth Sciences and Resources, China University
    [Show full text]
  • Early Jurassic Climate and Atmospheric CO2 Concentration In
    1 Early Jurassic climate and atmospheric CO2 concentration in the 2 Sichuan paleobasin, Southwest China 3 1 1 2 1 1 1 4 Xianghui Li , Jingyu Wang , Troy Rasbury , Min Zhou , Zhen Wei , Chaokai Zhang 5 1State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, 6 Nanjing 210023 China. 7 2Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA 8 Correpondence to: Xiangui Li ([email protected]) 9 1 10 Abstract: Climatic oscillations had been developed through the (Early) Jurassic from marine sedimentary archives, but 11 remain unclear from terrestrial records. This work presents investigation of climate-sensitive sediments and carbon and 12 oxygen isotope analyses of lacustrine and pedogenic carbonates for the Early Jurassic Ziliujing Formation from the grand 13 Sichuan paleobasin (GSB), Southwest China. Sedimentary and stable isotope proxies manifest that an overall secular (semi-) 14 arid climate dominated the GSB during the Early Jurassic except for the Hettangian. This climate pattern is similar to the 15 arid climate in the Colorado Plateau region, western North America, but distinct from the relatively warm-humid climate in 16 North China and high latitude in Southern Hemisphere. The estimated atmospheric CO2 concentration (pCO2) from carbon 17 isotopes of pedogenic carbonates shows a range of 980-2610 ppmV (~ 3.5-10 times the pre-industrial value) with a mean of 18 1660 ppmV. Three phases of pCO2 (the Sinemurian 1500-2000 ppmV, the Pliensbachian 1000-1500 ppmV, and the early 19 Toarcian 1094-2610 ppmV) and two events of rapid falling pCO2 by ~1000-1300 ppmV are observed, illustrating the pCO2 20 perturbation in the Early Jurassic.
    [Show full text]
  • Sauropod and Small Theropod Tracks from the Lower Jurassic Ziliujing Formation of Zigong City, Sichuan, China, with an Overview
    Ichnos, 21:119–130, 2014 Copyright Ó Taylor & Francis Group, LLC ISSN: 1042-0940 print / 1563-5236 online DOI: 10.1080/10420940.2014.909352 Sauropod and Small Theropod Tracks from the Lower Jurassic Ziliujing Formation of Zigong City, Sichuan, China, with an Overview of Triassic–Jurassic Dinosaur Fossils and Footprints of the Sichuan Basin Lida Xing,1 Guangzhao Peng,2 Yong Ye,2 Martin G. Lockley,3 Hendrik Klein,4 W. Scott Persons IV,5 Jianping Zhang,1 Chunkang Shu,2 and Baoqiao Hao2 1School of the Earth Sciences and Resources, China University of Geosciences, Beijing, China 2Zigong Dinosaur Museum, Zigong, Sichuan, China 3Dinosaur Trackers Research Group, University of Colorado, Denver, Colorado, USA 4Saurierwelt Palaontologisches€ Museum, Neumarkt, Germany 5Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada Keywords Grallator, Parabrontopodus, Hejie tracksite, Ma’anshan A dinosaur footprint assemblage from the Lower Jurassic Member, Zigong Ziliujing Formation of Zigong City, Sichuan, China, comprises about 300 tracks of small tridactyl theropods and large sauropods preserved as concave epireliefs (natural molds). The INTRODUCTION theropod footprints show similarities with both the ichnogenera Zigong is famous for the Middle Jurassic Shunosaurus Grallator and Jialingpus. Three different morphotypes are fauna and the Late Jurassic Mamenchisaurus fauna. However, present, probably related to different substrate conditions and extramorphological variation. A peculiar preservational feature fossils from the Early Jurassic and the Late Triassic are com- in a morphotype that reflects a gracile trackmaker with paratively rare. Previously reported Early Jurassic fossils extremely slender digits, is the presence of a convex epirelief that include fragmentary prosauropod and sauropod skeletal occurs at the bottom of the concave digit impressions.
    [Show full text]
  • Two Theropod Track Assemblages from the Jurassic of Chongqing, China, and the Jurassic Stratigraphy of Sichuan Basin
    - 第51卷 第2期 古 脊 椎 动 物 学 报 pp. 107 130 2013年4月 VERTEBRATA PALASIATICA figs. 1-9 Two theropod track assemblages from the Jurassic of Chongqing, China, and the Jurassic Stratigraphy of Sichuan Basin XING Li-Da1 Martin G. LOCKLEY2 CHEN Wei3 Gerard D. GIERLIŃSKI4,5 LI Jian-Jun6 W. Scott PERSONS IV7 Masaki MATSUKAWA8 YE Yong9 Murray K. GINGRAS10 WANG Chang-Wen11 (1 Key Laboratory of Vertebrate Evolution and Human Origin of Chinese Academy of Sciences Beijing 100044, China [email protected]) (2 Dinosaur Tracks Museum, University of Colorado Denver PO Box 173364, Denver, CO 80217, USA Martin. [email protected]) (3 Chongqing Museum of Natural History Chongqing 400013, China) (4 JuraPark, ul. Sandomierska 4, 27-400 Ostrowiec Świętokrzyski, Poland) (5 Polish Geological Institute Rakowiecka 4, 00-975 Warszawa, Poland) (6 Department of Research, Beijing Museum of Natural History Beijing 100050, China) (7 Department of Biological Sciences, University of Alberta Edmonton, Alberta T6G 2E9, Canada) (8 Department of Environmental Sciences, Tokyo Gakugei University Koganei, Tokyo 184-8501, Japan) (9 Zigong Dinosaur Museum Zigong 643013, Sichuan, China) (10 Department of Earth and Atmospheric Sciences, University of Alberta Edmonton, Alberta T6G 2E9, Canada) (11 Yongchuan District Administration Institute of Cultural Relics and Preservation Chongqing 402160, China) Abstract Four Jurassic dinosaur tracksites have been reported from Chongqing Municipality. These include the Lower Jurassic Dazu site in the Zhenzhuchong Formation, which yields the oldest sauropod trackway known from China. Two of the remaining three sites (Nan’an, and Jinji sites), variously regarded as Middle and Upper Jurassic, are here described in detail for the first time and regarded as Upper Jurassic, both from the Shangshaximiao Formation.
    [Show full text]
  • Types and Quantitative Characterization of Microfractures in the Continental Shale of the Da’Anzhai Member of the Ziliujing Formation in Northeast Sichuan, China
    minerals Article Types and Quantitative Characterization of Microfractures in the Continental Shale of the Da’anzhai Member of the Ziliujing Formation in Northeast Sichuan, China Zhujiang Liu 1,2,3, Hengyuan Qiu 1,2, Zhenxue Jiang 1,2,*, Ruobing Liu 3, Xiangfeng Wei 3, Feiran Chen 3, Fubin Wei 3, Daojun Wang 3, Zhanfei Su 1,2 and Zhanwei Yang 1,2 1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China; [email protected] (Z.L.); [email protected] (H.Q.); [email protected] (Z.S.); [email protected] (Z.Y.) 2 Unconventional Natural Gas Research Institute, China University of Petroleum, Beijing 102249, China 3 Southern Company of Exploration SINOPEC, Chengdu 610041, China; [email protected] (R.L.); [email protected] (X.W.); [email protected] (F.C.); [email protected] (F.W.); [email protected] (D.W.) * Correspondence: [email protected] Abstract: A number of wells in the Sichuan Basin of China have tested industrial gas flow pressure arising from the shale of the Da’anzhai section of the Ziliujing Formation, revealing good explo- ration potential. Microfractures in shales affect the enrichment and preservation of shale gas and are important storage spaces and seepage channels for gas. In order to increase productivity and to reduce the risks associated with shale gas exploration, the types, connectivity, and proportion Citation: Liu, Z.; Qiu, H.; Jiang, Z.; of microfractures in the Da’anzhai Member have been studied in this work by core and thin sec- Liu, R.; Wei, X.; Chen, F.; Wei, F.; tion observations, micro-CT, scanning electron microscopy, nitrogen adsorption, and high-pressure Wang, D.; Su, Z.; Yang, Z.
    [Show full text]
  • Early Jurassic Climate and Atmospheric CO 2 Concentration in the Sichuan Paleobasin, Southwest China
    https://doi.org/10.5194/cp-2020-35 Preprint. Discussion started: 13 May 2020 c Author(s) 2020. CC BY 4.0 License. 1 Early Jurassic climate and atmospheric CO2 concentration in the 2 Sichuan paleobasin, Southwest China 3 1 1 2 1 1 1 4 Xianghui Li , Jingyu Wang , Troy Rasbury , Min Zhou , Zhen Wei , Chaokai Zhang 5 1State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, 6 Nanjing 210023 China. 7 2Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA 8 Correpondence to: Xiangui Li ([email protected]) 9 1 https://doi.org/10.5194/cp-2020-35 Preprint. Discussion started: 13 May 2020 c Author(s) 2020. CC BY 4.0 License. 10 Abstract: 11 Unlike marine archives, terrestrial sediments show more complicated and dynamic environment and climate. This work 12 presents new results of climate-sensitive sediment observation and carbon-oxygen isotope analyses of lacustrine and 13 pedogenic carbonates for the Early Jurassic Ziliujing Formation from the grand Sichuan paleobasin (GSB), Southwest China. 14 Lithofacies analysis indicates calcisols were widespread in riverine and flood plain facies. Climate–sensitive sediments and 15 carbon-oxygen isotopes with palynofloral assemblages manifest that an overall (semi-) arid climate dominated the GSB; and 16 that it became drier through time, accompanied by occasional evaporites in the Toarcian. This climate pattern is similar with 17 the arid climate in Colorado Plateau, western America, but distinct from the relatively warm-humid climate in North China 18 and northern Gondwanaland in Southern Hemisphere. The estimated Early Jurassic atmospheric CO2 concentration (pCO2) 19 from carbon isotopes of pedogenic carbonates shows a range of 980-2610 ppmV (~ 3.5-10 times the pre-industrial value) 20 with a mean 1660 ppmV.
    [Show full text]
  • Early Jurassic Climate and Atmospheric CO2 Concentration in the Sichuan Paleobasin, Southwestern China
    Clim. Past, 16, 2055–2074, 2020 https://doi.org/10.5194/cp-16-2055-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Early Jurassic climate and atmospheric CO2 concentration in the Sichuan paleobasin, southwestern China Xianghui Li1, Jingyu Wang1, Troy Rasbury2, Min Zhou1, Zhen Wei1, and Chaokai Zhang1 1State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China 2Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA Correspondence: Xiangui Li ([email protected]) Received: 5 March 2020 – Discussion started: 13 May 2020 Revised: 3 September 2020 – Accepted: 14 September 2020 – Published: 4 November 2020 Abstract. Climatic oscillations have been developed through 1 Introduction the (Early) Jurassic from marine sedimentary archives but remain unclear from terrestrial records. This work presents ◦ investigation of climate-sensitive sediments and carbon and Global paleotemperatures were possibly 5–10 C higher than oxygen isotope analyses of lacustrine and pedogenic carbon- present during the Jurassic period based on climate modeling ates for the Early Jurassic Ziliujing Formation taken from the results (e.g., Rees et al., 1999; Sellwood and Valdes, 2008). ◦ Basin in southwestern China. Sedimentary and stable iso- However, seawater temperature fluctuated by −5 to C5 C, tope proxies manifest that an overall secular (semi)arid cli- or even much higher magnitude (e.g., Suan et al., 2008; Lit- mate dominated the Sichuan Basin during the Early Juras- tler et al., 2010), based on estimates from the oxygen isotopes sic, except for the Hettangian. This climate pattern is similar of the belemnite and bivalve fossils (Dera et al., 2011, and to the arid climate in the Colorado Plateau region in west- references therein).
    [Show full text]
  • Two Theropod Track Assemblages from the Jurassic of Chongqing, China, and the Jurassic Stratigraphy of Sichuan Basin
    - 第51卷 第2期 古 脊 椎 动 物 学 报 pp. 107 130 2013年4月 VERTEBRATA PALASIATICA figs. 1-9 Two theropod track assemblages from the Jurassic of Chongqing, China, and the Jurassic Stratigraphy of Sichuan Basin XING Li-Da1 Martin G. LOCKLEY2 CHEN Wei3 Gerard D. GIERLIŃSKI4,5 LI Jian-Jun6 W. Scott PERSONS IV7 Masaki MATSUKAWA8 YE Yong9 Murray K. GINGRAS10 WANG Chang-Wen11 (1 Key Laboratory of Vertebrate Evolution and Human Origin of Chinese Academy of Sciences Beijing 100044, China [email protected]) (2 Dinosaur Tracks Museum, University of Colorado Denver PO Box 173364, Denver, CO 80217, USA Martin. [email protected]) (3 Chongqing Museum of Natural History Chongqing 400013, China) (4 JuraPark, ul. Sandomierska 4, 27-400 Ostrowiec Świętokrzyski, Poland) (5 Polish Geological Institute Rakowiecka 4, 00-975 Warszawa, Poland) (6 Department of Research, Beijing Museum of Natural History Beijing 100050, China) (7 Department of Biological Sciences, University of Alberta Edmonton, Alberta T6G 2E9, Canada) (8 Department of Environmental Sciences, Tokyo Gakugei University Koganei, Tokyo 184-8501, Japan) (9 Zigong Dinosaur Museum Zigong 643013, Sichuan, China) (10 Department of Earth and Atmospheric Sciences, University of Alberta Edmonton, Alberta T6G 2E9, Canada) (11 Yongchuan District Administration Institute of Cultural Relics and Preservation Chongqing 402160, China) Abstract Four Jurassic dinosaur tracksites have been reported from Chongqing Municipality. These include the Lower Jurassic Dazu site in the Zhenzhuchong Formation, which yields the oldest sauropod trackway known from China. Two of the remaining three sites (Nan’an, and Jinji sites), variously regarded as Middle and Upper Jurassic, are here described in detail for the first time and regarded as Upper Jurassic, both from the Shangshaximiao Formation.
    [Show full text]
  • Wide-Gauge Sauropod Trackways from the Early Jurassic of Sichuan, China: Oldest Sauropod Trackways from Asia with Special Emphasis on a Specimen Showing a Narrow Turn
    Swiss J Geosci (2016) 109:415–428 DOI 10.1007/s00015-016-0229-0 Wide-gauge sauropod trackways from the Early Jurassic of Sichuan, China: oldest sauropod trackways from Asia with special emphasis on a specimen showing a narrow turn 1 2 3 4 4 Lida Xing • Martin G. Lockley • Daniel Marty • Jianjun He • Xufeng Hu • 4 5 6 6 7 Hui Dai • Masaki Matsukawa • Guangzhao Peng • Yong Ye • Hendrik Klein • 1 6 8 Jianping Zhang • Baoqiao Hao • W. Scott Persons IV Received: 3 February 2016 / Accepted: 31 August 2016 / Published online: 30 September 2016 Ó Swiss Geological Society 2016 Abstract An Early Jurassic sauropod dinosaur tracksite in simultaneously exhibit high heteropody typical for the Lower Jurassic Zhenzhuchong Formation at the Parabrontopodus-type trackways. The relative length of Changhebian site in Dazu County, Sichuan, is known to pes digits I, II and III is difficult to determine, but is sug- have yielded the trackway of a turning sauropod. A re- gestive of a primitive condition where digit I is less well study of the site shows that all in all there are more than developed than in Brontopodus. Thus far, they are the 100 tracks organized in at least three sauropod trackways. stratigraphically oldest sauropod trackways known from The narrow turn in one of the trackways is confirmed and Asia being Hettangian in age. Previously, the trackway analyzed in greater detail. All of the trackways show a with the narrow turn was reported as the first turning wide gauge similar to Brontopodus-type trackways, but sauropod trackway from Asia, but recently several other turning trackways have been reported suggesting that this behaviour is more commonly found than previously Editorial handling: J.-P.
    [Show full text]
  • New Middle Jurassic Dinosaur Track Record from Northeastern Sichuan Province, China
    Swiss J Palaeontol (2017) 136:359–364 DOI 10.1007/s13358-016-0123-4 New Middle Jurassic dinosaur track record from northeastern Sichuan Province, China 1 2 3 3 Lida Xing • Martin G. Lockley • Yongdong Wang • Mike S. Pole • 4 5 6 7 Hendrik Klein • Guangzhao Peng • Xiaoping Xie • Guoquan Zhang • 7 8 Chuntao Deng • Michael E. Burns Received: 6 September 2016 / Accepted: 7 October 2016 / Published online: 22 October 2016 Ó Akademie der Naturwissenschaften Schweiz (SCNAT) 2016 Abstract Two relatively small tridactyl tracks from the Abbreviation Middle Jurassic Xintiangou Formation of northeastern QL Qili site, Xuanhan County, Sichuan Province, China Sichuan are assigned to cf. Anomoepus based on low length/width and anterior triangle ratios, and a relatively short step and inward rotation of the footprint axes. Introduction Anomoepus is typical of many Middle Jurassic dinosaur- dominated ichnofaunas from central and southern China Dinosaur track records are abundant in the Sichuan Basin, and appears to be allied to the globally widespread Lower especially in Jurassic and Early Cretaceous outcrops (Xing Jurassic tetrapod track biochron. et al. 2007, 2014a; Lockley et al. 2013). Jurassic tracks were mainly left by theropods and sauropods with rela- Keywords Dinosaur tracks Á Middle Jurassic Á Xintiangou tively few made by small ornithopods (Xing et al. Formation 2013a, 2014a; Xing and Lockley 2014), consistent with the general profile of contemporaneous dinosaur tracks around the world (Lucas 2007). These tracks correlate well with body fossil records, although the latter also commonly includes stegosaurs (Peng et al. 2005). However, to date, Editorial handling: D. Marty. tracks have only been reported in the southern and eastern areas of the Sichuan Basin.
    [Show full text]
  • Theropod Tracks from the Lower Jurassic of Gulin Area, Sichuan Province, China
    Available online at www.sciencedirect.com ScienceDirect Palaeoworld 26 (2017) 115–123 Theropod tracks from the Lower Jurassic of Gulin area, Sichuan Province, China a b a c d Li-Da Xing , Martin G. Lockley , Jian-Ping Zhang , Hendrik Klein , Susanna B. Kümmell , e f,∗ W. Scott Persons IV , Hong-Wei Kuang a School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China b Dinosaur Trackers Research Group, CB 172, University of Colorado Denver, PO Box 173364, Denver, CO 80217-3364, USA c Saurierwelt Paläontologisches Museum, Neumarkt D-92318, Germany d Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada e Institute of Evolutionary Biology, University Witten/Herdecke, Stockumerstr. 10-12, 58454 Witten, Germany f Institute of Geology, Chinese Academy of Geological Sciences, No.26 Baiwanzhuang Road, Beijing 100037, China Received 17 September 2014; received in revised form 10 October 2015; accepted 5 November 2015 Available online 17 November 2015 Abstract The Jiaoyuan tracksite in the Gulin area of Sichuan Province, China represents a typical saurischian-dominated assemblage with trackways of theropods and sauropods. They occur in the Lower Jurassic Da’anzhai Member of the Ziliujing Formation, a sandstone-siltstone succession of fluvial origin and deposited in the southern Sichuan Basin. Four trackways as well as isolated tracks of theropods are documented and analyzed in this first part a study of sauropod tracks will follow elsewhere. Two morphotypes and size-classes, respectively, can be observed. The larger one is 25–34 cm in length and shows weak to moderate mesaxony.
    [Show full text]
  • Pienkowski, G., Waksmundzka, M., 2009. Palynofacies in Lower Jurassic Epicontinental Deposits of Poland: Tool to Interpret Sedimentary Environments
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/235429272 Pienkowski, G., Waksmundzka, M., 2009. Palynofacies in Lower Jurassic epicontinental deposits of Poland: tool to interpret sedimentary environments. Episodes, 32, 21-32. Epicontine... Article in Episodes · March 2009 CITATIONS READS 19 872 2 authors, including: Grzegorz Pienkowski Państwowy Instytut Geologiczny 74 PUBLICATIONS 758 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrated Understanding of the Early Jurassic Earth System and Timescale (JET) View project Palaeoenvironmental and palaeoclimatical changes in the Rhaetian and Early Jurassic (c. 175 - 204 Ma) based on new data from Poland, United Kingdom and Germany View project All content following this page was uploaded by Grzegorz Pienkowski on 29 May 2014. The user has requested enhancement of the downloaded file. Contents Episodes 1 March 2009 Published by the International Union of Geological Sciences Vol.32, No.1 2 A Message from the President of Geological Society of India Articles 3 Geochemistry of intercalated red and gray pelagic shales from the Mazak Formation of Cenomanian age in Czech Republic by Shao-Yong Jiang, Luba Jansa, Petr Skupien, Jing-Hong Yang, Zdenek Vasicek, Xiu-Mian Hu, and Kui-Dong Zhao 13 Biodiversity and palaeoclimatic implications of fossil wood from the non-marine Jurassic of China by Yongdong Wang, Xiaoju Yang, Wu Zhang, Shaolin Zheng, and Ning Tian 21 Palynofacies in Lower Jurassic epicontinental deposits of Poland: Tool to interpret sedimentary environments by Grzegorz Pieñkowski and Marta Waksmundzka 33 The 16th International Geological Congress, Washington, 1933 by Clifford M.
    [Show full text]