New Middle Jurassic Dinosaur Track Record from Northeastern Sichuan Province, China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region
sustainability Article Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region Meijia Xiao 1 , Qingwen Zhang 1,*, Liqin Qu 2, Hafiz Athar Hussain 1 , Yuequn Dong 1 and Li Zheng 1 1 Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China; [email protected] (M.X.); [email protected] (H.A.H.); [email protected] (Y.D.); [email protected] (L.Z.) 2 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-82106031 Received: 12 December 2018; Accepted: 31 January 2019; Published: 11 February 2019 Abstract: Sloping farmland is an essential type of the farmland resource in China. In the Sichuan province, livelihood security and social development are particularly sensitive to changes in the sloping farmland, due to the region’s large portion of hilly territory and its over-dense population. In this study, we focused on spatiotemporal change of the sloping farmland and its driving forces in the Sichuan province. Sloping farmland areas were extracted from geographic data from digital elevation model (DEM) and land use maps, and the driving forces of the spatiotemporal change were analyzed using a principal component analysis (PCA). The results indicated that, from 2000 to 2015, sloping farmland decreased by 3263 km2 in the Sichuan province. The area of gently sloping farmland (<10◦) decreased dramatically by 1467 km2, especially in the capital city, Chengdu, and its surrounding areas. -
Eubrontes and Anomoepus Track
Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 74. 345 EUBRONTES AND ANOMOEPUS TRACK ASSEMBLAGES FROM THE MIDDLE JURASSIC XIASHAXIMIAO FORMATION OF ZIZHONG COUNTY, SICHUAN, CHINA: REVIEW, ICHNOTAXONOMY AND NOTES ON PRESERVED TAIL TRACES LIDA XING1, MARTIN G. LOCKLEY2, GUANGZHAO PENG3, YONG YE3, JIANPING ZHANG1, MASAKI MATSUKAWA4, HENDRIK KLEIN5, RICHARD T. MCCREA6 and W. SCOTT PERSONS IV7 1School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; -email: [email protected]; 2Dinosaur Trackers Research Group, University of Colorado Denver, P.O. Box 173364, Denver, CO 80217; 3 Zigong Dinosaur Museum, Zigong 643013, Sichuan, China; 4 Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan; 5 Saurierwelt Paläontologisches Museum Alte Richt 7, D-92318 Neumarkt, Germany; 6 Peace Region Palaeontology Research Centre, Box 1540, Tumbler Ridge, British Columbia V0C 2W0, Canada; 7 Department of Biological Sciences, University of Alberta 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada Abstract—The Nianpanshan dinosaur tracksite, first studied in the 1980s, was designated as the type locality of the monospecific ichnogenus Jinlijingpus, and the source of another tridactyl track, Chuanchengpus, both presumably of theropod affinity. After the site was mapped in 2001, these two ichnotaxa were considered synonyms of Eubrontes and Anomoepus, respectively, the latter designation being the first identification of this ichnogenus in China. The assemblage indicates a typical Jurassic ichnofauna. The present study reinvestigates the site in the light of the purported new ichnospecies Chuanchengpus shenglingensis that was introduced in 2012. After re- evaluation of the morphological and extramorphological features, C. -
Printmgr File
THE WEB PROOF INFORMATION PACK IS IN DRAFT FORM. The information contained herein is incomplete and is subject to change. This Web Proof Information Pack must be read in conjunction with the section headed “Warning” on the cover of this Web Proof Information Pack. DEFINITIONS In this document, the following terms shall have the meanings set forth below unless the context otherwise requires. “Articles of Association” or “Articles” the articles of association of our Company, adopted on September 4, 2009 and as amended from time to time “Baicao Mine” the Baicao Vanadium-bearing Titanomagnetite Mine located in Xiaoheiqing Townlet, Huili County, Sichuan, the PRC and operated by Huili Caitong “Baicao Processing Plant” the ore processing plant located at our Baicao Mine “Board” the board of Directors “Business Day” a day (other than a Saturday or Sunday) on which banks in Hong Kong are open for business “BVI” the British Virgin Islands “CAGR” compound annual growth rate “Cayman Companies Law” the Companies Law, Cap. 22 (Law 3 of 1961, as consolidated and revised) of the Cayman Islands “Chengdu Yingchi” Chengdu Yingchi Trading Co., Ltd. ( ), a limited liability company (non-state owned) incorporated in the PRC on May 8, 2006 and an Independent Third Party customer of our Group “Chengdu Yushengtian” Chengdu Yushengtian Electrical and Mechanical Equipment Co., Ltd. ( ), a limited liability company (non-state owned) incorporated in the PRC on December 16, 2005 and an Independent Third Party customer of our Group “China” or “PRC” the People’s Republic of China excluding, for the purpose of this document, Hong Kong, the Macau Special Administrative Region of the PRC and Taiwan “Chuan Wei” Sichuan Chuanwei Group Co., Ltd. -
Download the Article
A couple of partially-feathered creatures about the The Outside Story size of a turkey pop out of a stand of ferns. By the water you spot a flock of bigger animals, lean and predatory, catching fish. And then an even bigger pair of animals, each longer than a car, with ostentatious crests on their heads, stalk out of the heat haze. The fish-catchers dart aside, but the new pair have just come to drink. We can only speculate what a walk through Jurassic New England would be like, but the fossil record leaves many hints. According to Matthew Inabinett, one of the Beneski Museum of Natural History’s senior docents and a student of vertebrate paleontology, dinosaur footprints found in the sedimentary rock of the Connecticut Valley reveal much about these animals and their environment. At the time, the land that we know as New England was further south, close to where Cuba is now. A system of rift basins that cradled lakes ran right through our region, from North Carolina to Nova Scotia. As reliable sources of water, with plants for the herbivores and fish for the carnivores, the lakes would have been havens of life. While most of the fossil footprints found in New England so far are in the lower Connecticut Valley, Dinosaur Tracks they provide a window into a world that extended throughout the region. According to Inabinett, the By: Rachel Marie Sargent tracks generally fall into four groupings. He explained that these names are for the tracks, not Imagine taking a walk through a part of New the dinosaurs that made them, since, “it’s very England you’ve never seen—how it was 190 million difficult, if not impossible, to match a footprint to a years ago. -
The Extension Work of Zigong UNESCO Global Geopark: an Example of Sustaining Local Communities
The Extension Work of Zigong UNESCO Global Geopark: An Example of Sustaining Local Communities Li Sun 1,2, Lulin Wang 1,* and Mingzhong Tian 1 1 School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, P.R. China; 2 The Administrator Office of Zigong UNESCO Global Geopark, Zigong 643000, P.R. China. 3 Email: [email protected] Keywords: Zigong, geopark, sustaining, local community Abstract: Zigong UNESCO Global Geopark is well known for its dinosaur findings and vertebrate fossils of the Middle Jurassic Period and a salt mine of the Triassic Period. It was recognized as member of the Global Geoparks Network in February 2008 and revalidated in December 2012. After the Administration for Zigong UNESCO Global Geopark submitted an extension application to UNESCO in November 2015, a new geopark territory was approved, which is 2720% larger than the area initially defined. More geological heritage as well as natural and cultural heritage has been included in and the increased number of communities of the territory is actively involved in the management and development of the geopark. Zigong UNESCO Global Geopark cooperates with those communities as to encourage geotourism with the help of inspiring local enterprises, creating new jobs and offering high quality training courses. The connection between Zigong UNESCO Global Geopark and communities have been gradually improved. So far, it has been proved that the geopark could not only support local sustainable development but also help local people to acquire earth knowledge as well as to improve their lives. 1 INTRODUCTION However, as stated by the Statutes of the International Geoscience and Geopark Programme Zigong UNESCO Global Geopark (UGGp) is (IGGP) and the Operational Guidelines for located in Zigong Municipal City, Sichuan Province, UNESCO Global Geoparks (UNESCO, 2016), Southwest of China. -
The First Record of Anomoepus Tracks from the Middle Jurassic of Henan Province, Central China
Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: http://www.tandfonline.com/loi/ghbi20 The first record of Anomoepus tracks from the Middle Jurassic of Henan Province, Central China Lida Xing, Nasrollah Abbassi, Martin G. Lockley, Hendrik Klein, Songhai Jia, Richard T. McCrea & W. Scott Persons IV To cite this article: Lida Xing, Nasrollah Abbassi, Martin G. Lockley, Hendrik Klein, Songhai Jia, Richard T. McCrea & W. Scott Persons IV (2016): The first record of Anomoepus tracks from the Middle Jurassic of Henan Province, Central China, Historical Biology, DOI: 10.1080/08912963.2016.1149480 To link to this article: http://dx.doi.org/10.1080/08912963.2016.1149480 Published online: 22 Feb 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 Download by: [Lida Xing] Date: 22 February 2016, At: 05:53 HISTORICAL BIOLOGY, 2016 http://dx.doi.org/10.1080/08912963.2016.1149480 The first record of Anomoepus tracks from the Middle Jurassic of Henan Province, Central China Lida Xinga, Nasrollah Abbassib, Martin G. Lockleyc, Hendrik Kleind, Songhai Jiae, Richard T. McCreaf and W. Scott PersonsIVg aSchool of the Earth Sciences and Resources, China University of Geosciences, Beijing, China; bFaculty of Sciences, Department of Geology, University of Zanjan, Zanjan, Iran; cDinosaur Tracks Museum, University of Colorado Denver, Denver, CO, USA; dSaurierwelt Paläontologisches Museum, Neumarkt, Germany; eHenan Geological Museum, Henan Province, China; fPeace Region Palaeontology Research Centre, British Columbia, Canada; gDepartment of Biological Sciences, University of Alberta, Edmonton, Canada ABSTRACT ARTICLE HISTORY Small, gracile mostly tridactyl tracks from the Middle Jurassic of Henan Province represent the first example Received 30 December 2015 of the ichnogenus Anomoepus from this region. -
A New Sauropodomorph Ichnogenus from the Lower Jurassic of Sichuan, China Fills a Gap in the Track Record
Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: http://www.tandfonline.com/loi/ghbi20 A new sauropodomorph ichnogenus from the Lower Jurassic of Sichuan, China fills a gap in the track record Lida Xing, Martin G. Lockley, Jianping Zhang, Hendrik Klein, Daqing Li, Tetsuto Miyashita, Zhongdong Li & Susanna B. Kümmell To cite this article: Lida Xing, Martin G. Lockley, Jianping Zhang, Hendrik Klein, Daqing Li, Tetsuto Miyashita, Zhongdong Li & Susanna B. Kümmell (2016) A new sauropodomorph ichnogenus from the Lower Jurassic of Sichuan, China fills a gap in the track record, Historical Biology, 28:7, 881-895, DOI: 10.1080/08912963.2015.1052427 To link to this article: http://dx.doi.org/10.1080/08912963.2015.1052427 Published online: 24 Jun 2015. Submit your article to this journal Article views: 95 View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 Download by: [University of Alberta] Date: 23 October 2016, At: 09:07 Historical Biology, 2016 Vol. 28, No. 7, 881–895, http://dx.doi.org/10.1080/08912963.2015.1052427 A new sauropodomorph ichnogenus from the Lower Jurassic of Sichuan, China fills a gap in the track record Lida Xinga*, Martin G. Lockleyb, Jianping Zhanga, Hendrik Kleinc, Daqing Lid, Tetsuto Miyashitae, Zhongdong Lif and Susanna B. Ku¨mmellg aSchool of the Earth Sciences and Resources, China University -
Since the Reform and Opening Up1 1
Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS020) p.6378 Research of Acceleration Urbanization Impacts on Resources and Environment in Sichuan Province Caimo,Teng National Bureau of Statistics of China, Survey Organizations of Sichuan No.31, the East Route, Qingjiang Road Chengdu, China, 610072 E-mail: [email protected] Since the reform and opening up, the rapid development of economic society and the rise ceaselessly of urbanization in Sichuan play an important role for material civilization and spiritual civilization, but also bring influence for resources and environment, this paper give an in-depth analysis about this. Ⅰ. The Main Characteristics of the Urbanization Development in Sichuan The reflection of urbanization in essence is from the industry cluster to population cluster., we tend to divided the process of urbanization into four stages, 1949-1978 is the first stage, 1978 – 1990 is the second stage, 1990 -2000 is the third stage, After the year of 2000 is the fourth stage. In view the particularities of the first phase, this paper researches mainly after three stages. 1. The level of the urbanization enhances unceasingly. With the reform and opening-up and the rapid development of social economy, the urbanization in Sichuan has significant achievements. The average annual growth of the level of urbanization is 0.8 percent in the twelve years of the second stage. The average annual growth in the third stage and the four stages is individually 0.5 and 1.3 percentage. The average annual growth of urbanization in the fourth stage is faster respectively 0.5 and 0.8 percent than the previous two stages which reflects obviously the rapid rise of the urbanization after the fourth stage in Sichuan. -
The Gas Distribution Law in a Coal Mine in Shaanxi, China Zhao Lei
Advances in Engineering Research, volume 163 7th International Conference on Energy, Environment and Sustainable Development (ICEESD 2018) The Gas Distribution Law in a Coal Mine in Shaanxi, China Zhao Lei1, a, Qu Shaodong1, 2, 3, 4 1Shaanxi Provincial Land Engineering Construction Group Co., Ltd. Xi’an 710075 2Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd. Xi’an 710075 3Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Land and Resources Xi’an 710075 4Shaanxi Provincial Land Consolidation Engineering Technology Research Center Xi’an 710075 [email protected] Keywords: Gas; Stratigraphic characteristics; Microface; Trap Abstract. Aiming at the abnormal emission of coal seam floor gas in a Coal mine, we implemented the core drilling. Observed the lithology and gas emission information of the target, and combined with the previous studies, we conclude that there are three kinds of sedimentary microfacies in this working face floor: distant bar, estuary sand bar and swamp microfacies. And the gas trap types belongs to the tectonic-lithologic trap. Introduction Ordos basin is a basin formed in Late Triassic Mesozoic[1], the tectonic deformation of the basin is strong in edge, but the internal tectonic deformation is weak[2].A coal mine in Shaanxi is located in the south of Ordos Basin, in recent years, in the process of coal mining, the gas emission can cause some hidden danger to the coal mine production. Comparison and division of formation is the basic geological research, through the stratigraphic division and correlation of the strata distribution can be achieved on the understanding of the situation, and the research of sedimentary facies is to explain the formation of gas occurrence regularity and has very important significance[3,4]. -
Early Mesozoic Basin Development in North China: Indications of Cratonic
Journal of Asian Earth Sciences 62 (2013) 221–236 Contents lists available at SciVerse ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes Early Mesozoic basin development in North China: Indications of cratonic deformation ⇑ Shaofeng Liu a,b, , San Su c, Guowei Zhang d a State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China b College of Geosciences and Resources, China University of Geosciences, Beijing 100083, China c ChevronTexaco China Energy Company, Shangri-La Office Tower, Chengdu, Sichuan 610021, China d State Key Laboratory of Continental Dynamics, Northwest University, Xi’an, Shanxi 710069, China article info abstract Article history: We integrated a systematic sedimentary data into a regional Early Mesozoic stratigraphic framework Received 24 March 2012 which demonstrated a detailed picture of spatiotemporal variations in basin deposition and formation Received in revised form 15 August 2012 in the North China Craton. The Early Mesozoic basin sedimentary evolution is utilized to interpret poly- Accepted 7 September 2012 phase tectonism and to unravel the craton deformation. The Late Triassic, nearly WNW-trending, giant Available online 2 October 2012 intracratonic Ordos basin was widely distributed across most of North China Craton, with a southern wedge-top depozone along the northern East Qilian–Qinling orogenic belt and a northwestern rift depoz- Keywords: one along the Helanshan. The continuous subsidence and deposition within the basin were dominantly North China Craton related to the thrust load of the East Qilian–Qinling belt and inferred mantle flow effects associated with Early Mesozoic Basin development paleotethys plate subduction, and the rift in the northwestern Ordos was driven by nearly north-vergent Craton deformation compression of the eastern North Qilian–North Qinling active margins with the stable North China Cra- Paleo-Pacific subduction ton. -
Early Jurassic Climate and Atmospheric CO2 Concentration In
1 Early Jurassic climate and atmospheric CO2 concentration in the 2 Sichuan paleobasin, Southwest China 3 1 1 2 1 1 1 4 Xianghui Li , Jingyu Wang , Troy Rasbury , Min Zhou , Zhen Wei , Chaokai Zhang 5 1State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, 6 Nanjing 210023 China. 7 2Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA 8 Correpondence to: Xiangui Li ([email protected]) 9 1 10 Abstract: Climatic oscillations had been developed through the (Early) Jurassic from marine sedimentary archives, but 11 remain unclear from terrestrial records. This work presents investigation of climate-sensitive sediments and carbon and 12 oxygen isotope analyses of lacustrine and pedogenic carbonates for the Early Jurassic Ziliujing Formation from the grand 13 Sichuan paleobasin (GSB), Southwest China. Sedimentary and stable isotope proxies manifest that an overall secular (semi-) 14 arid climate dominated the GSB during the Early Jurassic except for the Hettangian. This climate pattern is similar to the 15 arid climate in the Colorado Plateau region, western North America, but distinct from the relatively warm-humid climate in 16 North China and high latitude in Southern Hemisphere. The estimated atmospheric CO2 concentration (pCO2) from carbon 17 isotopes of pedogenic carbonates shows a range of 980-2610 ppmV (~ 3.5-10 times the pre-industrial value) with a mean of 18 1660 ppmV. Three phases of pCO2 (the Sinemurian 1500-2000 ppmV, the Pliensbachian 1000-1500 ppmV, and the early 19 Toarcian 1094-2610 ppmV) and two events of rapid falling pCO2 by ~1000-1300 ppmV are observed, illustrating the pCO2 20 perturbation in the Early Jurassic. -
Download This PDF File
Advances in Geo-Energy Research Vol. 4, No. 3, p. 247-259, 2020 Invited review A review of shale pore structure evolution characteristics with increasing thermal maturities Zhiye Gao1;2 *, Yupeng Fan1;2, Qixiang Xuan1;2, Guowei Zheng1;2 1State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, P. R. China 2Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, P. R. China Keywords: Abstract: Pore structure evolution Pore structure has a significant effect on the occurrence state of shale hydrocarbons and the organic matter pores hydrocarbon storage capability of shale reservoirs. Consequently, it is quite meaningful to thermal simulation experiments clarify the shale pore structure evolution characteristics for understanding the migration and enrichment mechanisms of hydrocarbons within shale reservoirs during different geological Cited as: stages. The abundant existence of organic matter within shales complicates the shale pore Gao, Z., Fan, Y., Xuan, Q., Zheng, G. A structure evolution process by hydrocarbon generation, migration and cracking. Many review of shale pore structure evolution studies have been conducted to reveal the shale pore structure evolution characteristics characteristics with increasing thermal and the controlling factors. Basically, these studies could be divided into two categories maturities. Advances in Geo-Energy based on the sample source: comparing the pore structure of natural shale samples with different thermal maturities; obtaining shale samples with different thermal maturities by Research, 2020, 4(3): 247-259, doi: conducting thermal simulation experiments on low-mature shale samples and comparing 10.46690/ager.2020.03.03. the pore structure of these simulated shale samples.