Wide-Gauge Sauropod Trackways from the Early Jurassic of Sichuan, China: Oldest Sauropod Trackways from Asia with Special Emphasis on a Specimen Showing a Narrow Turn

Total Page:16

File Type:pdf, Size:1020Kb

Wide-Gauge Sauropod Trackways from the Early Jurassic of Sichuan, China: Oldest Sauropod Trackways from Asia with Special Emphasis on a Specimen Showing a Narrow Turn Swiss J Geosci (2016) 109:415–428 DOI 10.1007/s00015-016-0229-0 Wide-gauge sauropod trackways from the Early Jurassic of Sichuan, China: oldest sauropod trackways from Asia with special emphasis on a specimen showing a narrow turn 1 2 3 4 4 Lida Xing • Martin G. Lockley • Daniel Marty • Jianjun He • Xufeng Hu • 4 5 6 6 7 Hui Dai • Masaki Matsukawa • Guangzhao Peng • Yong Ye • Hendrik Klein • 1 6 8 Jianping Zhang • Baoqiao Hao • W. Scott Persons IV Received: 3 February 2016 / Accepted: 31 August 2016 / Published online: 30 September 2016 Ó Swiss Geological Society 2016 Abstract An Early Jurassic sauropod dinosaur tracksite in simultaneously exhibit high heteropody typical for the Lower Jurassic Zhenzhuchong Formation at the Parabrontopodus-type trackways. The relative length of Changhebian site in Dazu County, Sichuan, is known to pes digits I, II and III is difficult to determine, but is sug- have yielded the trackway of a turning sauropod. A re- gestive of a primitive condition where digit I is less well study of the site shows that all in all there are more than developed than in Brontopodus. Thus far, they are the 100 tracks organized in at least three sauropod trackways. stratigraphically oldest sauropod trackways known from The narrow turn in one of the trackways is confirmed and Asia being Hettangian in age. Previously, the trackway analyzed in greater detail. All of the trackways show a with the narrow turn was reported as the first turning wide gauge similar to Brontopodus-type trackways, but sauropod trackway from Asia, but recently several other turning trackways have been reported suggesting that this behaviour is more commonly found than previously Editorial handling: J.-P. Billon-Bruyat and A. G. Milnes. assumed and is now documented from the Early Jurassic to Late Cretaceous. Most of these examples show tight turns Electronic supplementary material The online version of this of between *90° and as much as 180° suggesting that article (doi:10.1007/s00015-016-0229-0) contains supplementary material, which is available to authorized users. despite their large size sauropods could quite easily and abruptly change their direction of movement. & Lida Xing [email protected] Keywords Sauropod tracks Á Turning trackway Á 1 School of the Earth Sciences and Resources, China China Á Dinosaur locomotion Á Zhenzhuchong University of Geosciences, Beijing 100083, China Formation Á Early Jurassic 2 Dinosaur Tracks Museum, University of Colorado Denver, PO Box 173364, Denver, CO 80217, USA Abbreviations 3 Naturhistorisches Museum Basel, Augustinergasse 2, CHB Changhebian track locality, Chongqing, China 4001 Basel, Switzerland CUGB China University of Geosciences, Beijing 4 L/R Left/right No. 208 Hydrogeological and Engineering Geological Team, Chongqing Bureau of Geological and Mineral Resource P Pes Exploration and Development, Chongqing 400700, China M Manus 5 Department of Environmental Sciences, Tokyo Gakugei S Sauropod University, Koganei, Tokyo 184-8501, Japan P0ML Maximum length of pes 0 6 Zigong Dinosaur Museum, Zigong, Sichuan, China M ML Maximum length of manus WAM Width of the manus angulation pattern 7 Saurierwelt Pala¨ontologisches Museum, Alte Richt 7, 92318 Neumarkt, Germany WAP Width of the pes angulation pattern 8 Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada 416 L. Xing et al. 1 Introduction or discussion of the tracksite and all the three visible trackway segments. The main author of this paper inves- The locomotion of sauropod dinosaurs is a challenging tigated the locality again in 2011 and 2015, and the purpose question that can only be answered by integrating both data of the present paper is to present a detailed update, from skeletal remains and trackways. Preserved narrow- description, and interpretation of this important Early and wide-gauge sauropod trackways are essential for Jurassic tracksite. Furthermore, the study gives rare understanding the different gait of these tetrapods that, insights into trackway pattern and gait variability of early solely from skeletons, would remain widely obscure. This is sauropods when changing walking direction and perform- also true for exceptional behaviour, for example when ing a narrow turn. making sharp turns during walking. In Asia, most sauropod tracks are known from the Early Cretaceous, such as the large assemblages of tracks described from Korea (e.g., 2 Geographical and geological setting Lockley et al. 2006; Kim and Lockley 2012) and China (e.g., Lockley et al. 2002; 2014; Xing et al. 2014a), but also The Sichuan Basin contains Early, Middle, and Late smaller assemblages as those from Thailand (Le Loeuff Jurassic vertebrate fossils within a more than 3000 m thick et al. 2002). By comparison the record of Jurassic sauropods depositional sequence (Lucas 2001). Peng et al. (2005) tracks, especially Early Jurassic sauropod tracks, is scarce. described the dinosaur fauna from Zigong area and estab- In China, Early Cretaceous trackways of medium-sized lished a biostratigraphic correlation scheme based on ver- (50 B P’ML\75 cm) and large sauropods (P’ML [75 cm) tebrate fossils. In this scheme, two formations nearly all have a medium to wide gauge pattern and have (Zhenzhuchong and Ziliujing) are identified as Early been referred to Brontopodus-type trackways (Xing et al. Jurassic, two (Xintiangou and Xiashaximiao) as Middle 2014a), while trackways of small sauropods have a narrow Jurassic, and three (Shangshaximiao, Suining, and Pen- to medium gauge and are generally referred to Parabron- glaizhen) as Late Jurassic. topodus-type trackways (Xing et al. 2015a). China’s so far Dazu County is located in the southeast of Sichuan scarce Early Jurassic sauropod track record is comprised Basin. The Changhebian tracksite is located 5 km northeast primarily of Parabrontopodus-type trackways from the of Youting Town. The strata at the site mainly consist of Lower Jurassic Ma’anshan Member of the Ziliujing For- (from bottom to top): abundant fluviatile sandstones from mation of Zigong City, Sichuan (Xing et al. 2014b); Liu- the Upper Triassic Xujiahe Formation which includes six jianpus shunan and cf. Brontopodus-type trackwayss from members, with coal seams in the third and fifth members in the Lower Jurassic Daanzhai Member of Ziliujing Forma- the Youting area. Medium-thick layered siltstones, and tion of Sichuan Province (Xing et al. 2015b); and sauropod fine-grained feldspar quartzitic sandstones with interbed- trackways from the Changhebian tracksite, Chongqing (this ded sandy mudstone form the Lower Jurassic Zhenzhu- paper). Additionally, a poorly-preserved Late Triassic chong Formation (Hettangian) (Fig. 2). This sequence is Eosauropus trackway is known from the uppermost part of capped by Holocene clays. Xujiahe Formation of Longguan, Zigong City, Sichuan The Zhenzhuchong Formation is a 17–68 m thick (Xing et al. 2014c). sequence of shallow lacustrine deposits (Peng et al. 2005), In 1985, Yang Xinglong and Yang Daihuan from the and the tracks are located in the layered siltstones. Abun- Chongqing Nature Museum found nearly a hundred tracks dant plant fossils have been found in the Zhenzhuchong of quadrupedal dinosaurs on top of a siltstone layer of the Formation in the northeastern part of the Sichuan Basin, Lower Jurassic Zhenzhuchong Formation in Changhebian with flora assemblages characterized by ferns, cycads and Village (GPS: 29°2704.1200N, 105°46059.9200E: see Fig. 1), conifers. This floral assemblage significantly differs from Youting Town, Dazu County, Chongqing Municipality. the underlying Upper Triassic Xujiahe Formation (which Yang and Yang (1987) briefly reported this discovery when consists of lycopods, bryophytes and articulatae) and shows describing dinosaur tracks from the Sichuan Basin and features characteristic of the Early Jurassic (Liu et al. 2009). suggested that prosauropods or stegosaurs were the most Qiyangia lilingensis (bivalve) and Palaeolimnadia likely trackmakers. Following a brief study of the site in baitianbaensis (conchostracans) also suggest that the 2001 by Sino-Japanese-American expeditions, Lockley and Zhenzhuchong Formation is Early Jurassic in age (Chen Matsukawa (2009) published a partial map showing an area et al., 2006). Chen et al. (2006) proposed that the Zhen- where a wide-gauge trackway exhibits a sharp left turn and zhuchong Formation of the Sichuan Basin and the Lower they identified this trackway as of sauropod origin, stating Lufeng Formation from Yunnan Province further south, are that this appears to be the oldest sauropod trackway known comparable to each other, while Barrett et al. (2007) sug- from Asia. However, they did not provide a full description gested that the latter is ?Hettangian–?Sinemurian in age. Sauropod tracks from the Jurassic of China: a turning trackway 417 Fig. 1 Geographical setting of the study area and the Changhebian sauropod tracksite in Dazu County, Sichuan Province, China The Zhenzhuchong vertebrate fauna includes the typical material). Using the ratios of width of the pes angulation Lufengosaurus (prosauropod) fauna (Peng et al. 2005; Xing pattern/maximum length of pes (WAP/P’ML) and width et al. 2014b). Dong et al. (1983) have described several of the manus angulation pattern/maximum length of fragmentary Lufengosaurus remains from the southwest manus (WAM/M’ML), gauge (trackway width) was portion and southern margin of Sichuan Basin. calculated for both pes and manus tracks (see Marty 2008; Marty et al. 2010a, b); Table 1). Marty (2008)and Marty et al. (2010a, b) have suggested that 1.0 can be 3 Materials and methods used as an arbitrary threshold to distinguish narrow- gauge from medium-gauge trackways, while 1.2 can be 3.1 Generalities used to divide medium-gauge and wide-gauge trackways, and a value above than 2.0 represents a very wide gauge. The beds of the Changhebian tracksite are inclined at AsnotedbyXingetal.(2016), these categories are approximately 45°, which required specialized moun- somewhat arbitrary divisions between the polar extremes taineering equipment to traverse and study the site in of narrow- and wide-gauge trackways as originally detail (Fig.
Recommended publications
  • CPY Document
    v^ Official Journal of the Biology Unit of the American Topical Association 10 Vol. 40(4) DINOSAURS ON STAMPS by Michael K. Brett-Surman Ph.D. Dinosaurs are the most popular animals of all time, and the most misunderstood. Dinosaurs did not fly in the air and did not live in the oceans, nor on lake bottoms. Not all large "prehistoric monsters" are dinosaurs. The most famous NON-dinosaurs are plesiosaurs, moso- saurs, pelycosaurs, pterodactyls and ichthyosaurs. Any name ending in 'saurus' is not automatically a dinosaur, for' example, Mastodonto- saurus is neither a mastodon nor a dinosaur - it is an amphibian! Dinosaurs are defined by a combination of skeletal features that cannot readily be seen when the animal is fully restored in a flesh reconstruction. Because of the confusion, this compilation is offered as a checklist for the collector. This topical list compiles all the dinosaurs on stamps where the actual bones are pictured or whole restorations are used. It excludes footprints (as used in the Lesotho stamps), cartoons (as in the 1984 issue from Gambia), silhouettes (Ascension Island # 305) and unoffi- cial issues such as the famous Sinclair Dinosaur stamps. The name "Brontosaurus", which appears on many stamps, is used with quotation marks to denote it as a popular name in contrast to its correct scientific name, Apatosaurus. For those interested in a detailed encyclopedic work about all fossils on stamps, the reader is referred to the forthcoming book, 'Paleontology - a Guide to the Postal Materials Depicting Prehistoric Lifeforms' by Fran Adams et. al. The best book currently in print is a book titled 'Dinosaur Stamps of the World' by Baldwin & Halstead.
    [Show full text]
  • The Braincase, Brain and Palaeobiology of the Basal Sauropodomorph Dinosaur Thecodontosaurus Antiquus
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2020, XX, 1–22. With 10 figures. Downloaded from https://academic.oup.com/zoolinnean/advance-article/doi/10.1093/zoolinnean/zlaa157/6032720 by University of Bristol Library user on 14 December 2020 The braincase, brain and palaeobiology of the basal sauropodomorph dinosaur Thecodontosaurus antiquus ANTONIO BALLELL1,*, J. LOGAN KING1, JAMES M. NEENAN2, EMILY J. RAYFIELD1 and MICHAEL J. BENTON1 1School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK 2Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK Received 27 May 2020; revised 15 October 2020; accepted for publication 26 October 2020 Sauropodomorph dinosaurs underwent drastic changes in their anatomy and ecology throughout their evolution. The Late Triassic Thecodontosaurus antiquus occupies a basal position within Sauropodomorpha, being a key taxon for documenting how those morphofunctional transitions occurred. Here, we redescribe the braincase osteology and reconstruct the neuroanatomy of Thecodontosaurus, based on computed tomography data. The braincase of Thecodontosaurus shares the presence of medial basioccipital components of the basal tubera and a U-shaped basioccipital–parabasisphenoid suture with other basal sauropodomorphs and shows a distinct combination of characters: a straight outline of the braincase floor, an undivided metotic foramen, an unossified gap, large floccular fossae, basipterygoid processes perpendicular to the cultriform process in lateral view and a rhomboid foramen magnum. We reinterpret these braincase features in the light of new discoveries in dinosaur anatomy. Our endocranial reconstruction reveals important aspects of the palaeobiology of Thecodontosaurus, supporting a bipedal stance and cursorial habits, with adaptations to retain a steady head and gaze while moving.
    [Show full text]
  • The Princeton Field Guide to Dinosaurs, Second Edition
    MASS ESTIMATES - DINOSAURS ETC (largely based on models) taxon k model femur length* model volume ml x specific gravity = model mass g specimen (modeled 1st):kilograms:femur(or other long bone length)usually in decameters kg = femur(or other long bone)length(usually in decameters)3 x k k = model volume in ml x specific gravity(usually for whole model) then divided/model femur(or other long bone)length3 (in most models femur in decameters is 0.5253 = 0.145) In sauropods the neck is assigned a distinct specific gravity; in dinosaurs with large feathers their mass is added separately; in dinosaurs with flight ablity the mass of the fight muscles is calculated separately as a range of possiblities SAUROPODS k femur trunk neck tail total neck x 0.6 rest x0.9 & legs & head super titanosaur femur:~55000-60000:~25:00 Argentinosaurus ~4 PVPH-1:~55000:~24.00 Futalognkosaurus ~3.5-4 MUCPv-323:~25000:19.80 (note:downsize correction since 2nd edition) Dreadnoughtus ~3.8 “ ~520 ~75 50 ~645 0.45+.513=.558 MPM-PV 1156:~26000:19.10 Giraffatitan 3.45 .525 480 75 25 580 .045+.455=.500 HMN MB.R.2181:31500(neck 2800):~20.90 “XV2”:~45000:~23.50 Brachiosaurus ~4.15 " ~590 ~75 ~25 ~700 " +.554=~.600 FMNH P25107:~35000:20.30 Europasaurus ~3.2 “ ~465 ~39 ~23 ~527 .023+.440=~.463 composite:~760:~6.20 Camarasaurus 4.0 " 542 51 55 648 .041+.537=.578 CMNH 11393:14200(neck 1000):15.25 AMNH 5761:~23000:18.00 juv 3.5 " 486 40 55 581 .024+.487=.511 CMNH 11338:640:5.67 Chuanjiesaurus ~4.1 “ ~550 ~105 ~38 ~693 .063+.530=.593 Lfch 1001:~10700:13.75 2 M.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • Using Dental Enamel Wrinkling to Define Sauropod Tooth Morphotypes from the Cañadón Asfalto Formation, Patagonia, Argentina
    RESEARCH ARTICLE Using Dental Enamel Wrinkling to Define Sauropod Tooth Morphotypes from the Cañadón Asfalto Formation, Patagonia, Argentina Femke M. Holwerda1,2,3*, Diego Pol4,5, Oliver W. M. Rauhut1,3 1 Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB), Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany, 2 GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia (FCT), Universidade Nova de Lisboa, Caparica, Portugal, 3 Department of Earth and Environmental Sciences and GeoBioCenter, Ludwig Maximilians Universität, München, Germany, 4 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina, 5 Museo Paleontológico Egidio Feruglio, Trelew, Argentina * [email protected] Abstract OPEN ACCESS The early Middle Jurassic is regarded as the period when sauropods diversified and be- Citation: Holwerda FM, Pol D, Rauhut OWM (2015) came major components of the terrestrial ecosystems. Not many sites yield sauropod mate- Using Dental Enamel Wrinkling to Define Sauropod Tooth Morphotypes from the Cañadón Asfalto rial of this time; however, both cranial and postcranial material of eusauropods have been Formation, Patagonia, Argentina. PLoS ONE 10(2): found in the Cañadón Asfalto Formation (latest Early Jurassic–early Middle Jurassic) in e0118100. doi:10.1371/journal.pone.0118100 Central Patagonia (Argentina), which may help to shed light on the early evolution of Academic Editor: Peter Dodson, University of eusauropods. These eusauropod remains include teeth associated with cranial and man- Pennsylvania, UNITED STATES dibular material as well as isolated teeth found at different localities. In this study, an assem- Received: September 1, 2014 blage of sauropod teeth from the Cañadón Asfalto Formation found in four different Accepted: January 7, 2015 localities in the area of Cerro Condor (Chubut, Argentina) is used as a mean of assessing sauropod species diversity at these sites.
    [Show full text]
  • Description of Bird Tracks from the Kitadani Formation (Aptian), Katsuyama, Fukui, Japan with Three-Dimensional Imaging Techniques
    Memoir of the Fukui Prefectural Dinosaur Museum 17: 1–8 (2018) ARTICLE © by the Fukui Prefectural Dinosaur Museum DESCRIPTION OF BIRD TRACKS FROM THE KITADANI FORMATION (APTIAN), KATSUYAMA, FUKUI, JAPAN WITH THREE-DIMENSIONAL IMAGING TECHNIQUES Takuya IMAI 1, 2, Yuta TSUKIJI 3 and Yoichi AZUMA 1,4 1 Fukui Prefectural Dinosaur Museum, 51-11 Terao, Muroko, Katsuyama, Fukui 911-8601, Japan 2 Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan 3 Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan 4 Institute of Dinosaur Reseach, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji, Fukui, 910-1195, Japan ABSTRACT The Early Cretaceous ichnofossils of birds numerously occur in South Korea and China. Together with rich skeletal record from northeastern China, they facilitate our understanding about distribution and diversity of birds during the time. In contrast, in Japan, the fossil record of the Early Cretaceous birds is poorly known. Here, we report two ichnotaxa of the Early Cretaceous birds from the Aptian Kitadani Formation. We employ three-dimensional imaging techniques to objectively document and describe the specimens. Specimens include FPDM-F-74 and FPDM-F-75 recovered from an alternating sequence of fine sandstone and mudstone of the Kitadani Formation cropping out in the Kitadani Dinosaur Quarry, Katsuyama, Fukui, Japan. FPDM-F-74 is large in size, bears slender digits with pointy ends (claw impressions), and lacks hallux and webbing traces. These characters allow assignment of FPDM-F-74 to cf.
    [Show full text]
  • The Sauropodomorph Biostratigraphy of the Elliot Formation of Southern Africa: Tracking the Evolution of Sauropodomorpha Across the Triassic–Jurassic Boundary
    Editors' choice The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary BLAIR W. MCPHEE, EMESE M. BORDY, LARA SCISCIO, and JONAH N. CHOINIERE McPhee, B.W., Bordy, E.M., Sciscio, L., and Choiniere, J.N. 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica 62 (3): 441–465. The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other simi- larly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i) synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii) systematically reappraising the strati- graphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought.
    [Show full text]
  • The First Record of Anomoepus Tracks from the Middle Jurassic of Henan Province, Central China
    Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: http://www.tandfonline.com/loi/ghbi20 The first record of Anomoepus tracks from the Middle Jurassic of Henan Province, Central China Lida Xing, Nasrollah Abbassi, Martin G. Lockley, Hendrik Klein, Songhai Jia, Richard T. McCrea & W. Scott Persons IV To cite this article: Lida Xing, Nasrollah Abbassi, Martin G. Lockley, Hendrik Klein, Songhai Jia, Richard T. McCrea & W. Scott Persons IV (2016): The first record of Anomoepus tracks from the Middle Jurassic of Henan Province, Central China, Historical Biology, DOI: 10.1080/08912963.2016.1149480 To link to this article: http://dx.doi.org/10.1080/08912963.2016.1149480 Published online: 22 Feb 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 Download by: [Lida Xing] Date: 22 February 2016, At: 05:53 HISTORICAL BIOLOGY, 2016 http://dx.doi.org/10.1080/08912963.2016.1149480 The first record of Anomoepus tracks from the Middle Jurassic of Henan Province, Central China Lida Xinga, Nasrollah Abbassib, Martin G. Lockleyc, Hendrik Kleind, Songhai Jiae, Richard T. McCreaf and W. Scott PersonsIVg aSchool of the Earth Sciences and Resources, China University of Geosciences, Beijing, China; bFaculty of Sciences, Department of Geology, University of Zanjan, Zanjan, Iran; cDinosaur Tracks Museum, University of Colorado Denver, Denver, CO, USA; dSaurierwelt Paläontologisches Museum, Neumarkt, Germany; eHenan Geological Museum, Henan Province, China; fPeace Region Palaeontology Research Centre, British Columbia, Canada; gDepartment of Biological Sciences, University of Alberta, Edmonton, Canada ABSTRACT ARTICLE HISTORY Small, gracile mostly tridactyl tracks from the Middle Jurassic of Henan Province represent the first example Received 30 December 2015 of the ichnogenus Anomoepus from this region.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • The First Possible Choristoderan Trackway from the Lower
    www.nature.com/scientificreports OPEN The frst possible choristoderan trackway from the Lower Cretaceous Daegu Formation of South Korea and its implications on choristoderan locomotion Yuong‑Nam Lee1*, Dal‑Yong Kong2 & Seung‑Ho Jung2 Here we report a new quadrupedal trackway found in the Lower Cretaceous Daegu Formation (Albian) in the vicinity of Ulsan Metropolitan City, South Korea, in 2018. A total of nine manus‑pes imprints show a strong heteropodous quadrupedal trackway (length ratio is 1:3.36). Both manus and pes tracks are pentadactyl with claw marks. The manus prints rotate distinctly outward while the pes prints are nearly parallel to the direction of travel. The functional axis in manus and pes imprints suggests that the trackmaker moved along the medial side during the stroke progressions (entaxonic), indicating weight support on the inner side of the limbs. There is an indication of webbing between the pedal digits. These new tracks are assigned to Novapes ulsanensis, n. ichnogen., n. ichnosp., which are well‑matched not only with foot skeletons and body size of Monjurosuchus but also the fossil record of choristoderes in East Asia, thereby N. ulsanensis could be made by a monjurosuchid‑like choristoderan and represent the frst possible choristoderan trackway from Asia. N. ulsanensis also suggests that semi‑aquatic choristoderans were capable of walking semi‑erect when moving on the ground with a similar locomotion pattern to that of crocodilians on land. South Korea has become globally famous for various tetrapod footprints from Cretaceous strata1, among which some clades such as frogs2, birds3 and mammals4 have been proved for their existences only with ichnological evidence.
    [Show full text]
  • A New Sauropodomorph Ichnogenus from the Lower Jurassic of Sichuan, China Fills a Gap in the Track Record
    Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: http://www.tandfonline.com/loi/ghbi20 A new sauropodomorph ichnogenus from the Lower Jurassic of Sichuan, China fills a gap in the track record Lida Xing, Martin G. Lockley, Jianping Zhang, Hendrik Klein, Daqing Li, Tetsuto Miyashita, Zhongdong Li & Susanna B. Kümmell To cite this article: Lida Xing, Martin G. Lockley, Jianping Zhang, Hendrik Klein, Daqing Li, Tetsuto Miyashita, Zhongdong Li & Susanna B. Kümmell (2016) A new sauropodomorph ichnogenus from the Lower Jurassic of Sichuan, China fills a gap in the track record, Historical Biology, 28:7, 881-895, DOI: 10.1080/08912963.2015.1052427 To link to this article: http://dx.doi.org/10.1080/08912963.2015.1052427 Published online: 24 Jun 2015. Submit your article to this journal Article views: 95 View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 Download by: [University of Alberta] Date: 23 October 2016, At: 09:07 Historical Biology, 2016 Vol. 28, No. 7, 881–895, http://dx.doi.org/10.1080/08912963.2015.1052427 A new sauropodomorph ichnogenus from the Lower Jurassic of Sichuan, China fills a gap in the track record Lida Xinga*, Martin G. Lockleyb, Jianping Zhanga, Hendrik Kleinc, Daqing Lid, Tetsuto Miyashitae, Zhongdong Lif and Susanna B. Ku¨mmellg aSchool of the Earth Sciences and Resources, China University
    [Show full text]
  • Dinosaurs British Isles
    DINOSAURS of the BRITISH ISLES Dean R. Lomax & Nobumichi Tamura Foreword by Dr Paul M. Barrett (Natural History Museum, London) Skeletal reconstructions by Scott Hartman, Jaime A. Headden & Gregory S. Paul Life and scene reconstructions by Nobumichi Tamura & James McKay CONTENTS Foreword by Dr Paul M. Barrett.............................................................................10 Foreword by the authors........................................................................................11 Acknowledgements................................................................................................12 Museum and institutional abbreviations...............................................................13 Introduction: An age-old interest..........................................................................16 What is a dinosaur?................................................................................................18 The question of birds and the ‘extinction’ of the dinosaurs..................................25 The age of dinosaurs..............................................................................................30 Taxonomy: The naming of species.......................................................................34 Dinosaur classification...........................................................................................37 Saurischian dinosaurs............................................................................................39 Theropoda............................................................................................................39
    [Show full text]